

M. B. Patil

mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

・ロト ・日 ・ ・ ヨ ・ ・ ヨ

M. B. Patil, IIT Bombay

Consider a diode rectifier:

Consider a diode rectifier:

If $V_i \gg V_D$, the diode drop can be ignored. However, if V_i is small, e.g., $V_i = 0.2 \sin \omega t V$, then the circuit does not rectify, and $V_o(t) = 0 V$.

> < □ > < 部 > < 書 > < 書 > こ 多 < C M. B. Patil, IIT Bombay

Consider a diode rectifier:

If $V_i \gg V_D$, the diode drop can be ignored.

However, if V_i is small, e.g., $V_i = 0.2 \sin \omega t V$, then the circuit does not rectify, and $V_o(t) = 0 V$.

・ロト ・回ト ・モト ・モト

M. B. Patil, IIT Bombay

Precision rectifier circuits overcome this drawback.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_{-} \approx 0$, $i_{R} = i_{D}$.

Further,
$$V_{+} - V_{-} = \frac{V_{o1}}{A_V} = \frac{V_o + 0.7 V}{A_V} \approx 0 V \rightarrow V_o = V_i$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_{-} \approx 0$, $i_{R} = i_{D}$.

Further,
$$V_{+} - V_{-} = rac{V_{o1}}{A_V} = rac{V_{o} + 0.7 \, V}{A_V} pprox 0 \, V o V_o = V_i$$
.

This situation arises only if $i_D > 0$ (since the diode can only conduct in the forward direction), i.e., $V_o > 0 \rightarrow V_i = V_o > 0 V$.

・ロン ・回 と ・ヨン ・ヨン

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the buffer we have seen earlier.

Since the input current $i_{-} \approx 0$, $i_{R} = i_{D}$.

Further,
$$V_{+} - V_{-} = rac{V_{o1}}{A_V} = rac{V_{o} + 0.7 \, V}{A_V} pprox 0 \, V o V_o = V_i$$
.

This situation arises only if $i_D > 0$ (since the diode can only conduct in the forward direction), i.e., $V_o > 0 \rightarrow V_i = V_o > 0 V$.

・ロト ・日下・ ・ ヨト・

M. B. Patil, IIT Bombay

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

What about V_{o1} ?

Since the Op Amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

・ロト ・回ト ・ヨト ・ヨト

Э

What about V_{o1} ?

Since the Op Amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

Note that Case (ii) occurs when $V_i < 0 V$. Since $V_+ - V_- = V_i - 0 = V_i$ is negative, V_{o1} is driven to -Vsat.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

What about V_{o1} ?

Since the Op Amp is now in the open-loop configuration, a very small V_i is enough to drive it to saturation.

Note that Case (ii) occurs when $V_i < 0 V$. Since $V_+ - V_- = V_i - 0 = V_i$ is negative, V_{o1} is driven to -Vsat.

M. B. Patil, IIT Bombay

* The circuit is called a "superdiode" (i.e., a diode with zero V_{on}).

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

* The circuit is called a "superdiode" (i.e., a diode with zero V_{on}).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

- * The circuit is called a "superdiode" (i.e., a diode with zero V_{on}).
- * Note that the Op Amp needs to come out of saturation when V_i changes from negative to positive values. This is a relatively slow process, and it limits the speed of this circuit.

- * The circuit is called a "superdiode" (i.e., a diode with zero V_{on}).
- * Note that the Op Amp needs to come out of saturation when V_i changes from negative to positive values. This is a relatively slow process, and it limits the speed of this circuit.

・ロト ・回ト ・ヨト

M. B. Patil, IIT Bombay

SEQUEL file: precision_half_wave_1.sqproj

・ロト ・回ト ・ヨト ・ヨト

- E

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at $V_o)$. $\rightarrow i_{R2} = 0, \ V_o = V_- = 0 \ V$.

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0, V_o = V_- = 0 V$.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at $V_o)$. $\rightarrow i_{R2} = 0, \ V_o = V_- = 0 \ V$.

・ロト ・回ト ・ヨト ・ヨト

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at $V_o)$. $\rightarrow i_{R2} = 0, \ V_o = V_- = 0 \ V$.

・ロト ・回ト ・ヨト ・ヨト

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.

(ii) D_1 is off; this will happen when $V_i < 0 V$.

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0, V_o = V_- = 0 V$.

イロト イヨト イヨト イヨト

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.

(ii) D_1 is off; this will happen when $V_i < 0 V$. In this case, D_2 conducts and closes the feedback loop through R_2 .

(i) D_1 conducts: $V_- = V_+ = 0 V$, $V_{o1} = -V_{D1} \approx -0.7 V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0, V_o = V_- = 0 V$.

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.

(ii) D_1 is off; this will happen when $V_i < 0 V$. In this case, D_2 conducts and closes the feedback loop through R_2 . $V_o = V_- + i_{R_2}R_2 = 0 + \left(\frac{0 - V_i}{R_1}\right)R_2 = -\frac{R_2}{R_1}V_i$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

* Note that the Op Amp does not enter saturation since a feedback path is available for $V_i > 0 V$ and $V_i < 0 V$.

メロト メポト メヨト メヨト 二日

 Note that the Op Amp does not enter saturation since a feedback path is available for V_i > 0 V and V_i < 0 V.
 SEQUEL file: precision_half_wave.sqproj

M. B. Patil, IIT Bombay

The diodes are now reversed.

The diodes are now reversed.

By considering two cases: (i) D_1 on, (ii) D_1 off, the V_o versus V_i relationship shown in the figure is obtained (show this).

M. B. Patil, IIT Bombay

Image: A image: A

The diodes are now reversed.

By considering two cases: (i) D_1 on, (ii) D_1 off, the V_o versus V_i relationship shown in the figure is obtained (show this).

・ロト ・日下・ ・ ヨト

M. B. Patil, IIT Bombay

SEQUEL file: precision_half_wave_2.sqproj

Image: A mathematic state

< 17 b

M. B. Patil, IIT Bombay

* charging through superdiode, discharging through resistor

M. B. Patil, IIT Bombay

- * charging through superdiode, discharging through resistor
- * The time constant (RC) needs to be carefully selected.

M. B. Patil, IIT Bombay

- * charging through superdiode, discharging through resistor
- * The time constant (RC) needs to be carefully selected. SEQUEL file: super_diode.sqproj

Full-wave precision rectifier

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Full-wave precision rectifier

Full-wave precision rectifier

M. B. Patil, IIT Bombay

▲□→ ▲圖→ ▲目→ ▲目→

æ

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

When D is off, V_A is (by superposition), $V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ● ● ● ● ●

When D is off, V_A is (by superposition), $V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'}$.

For D to turn on, $V_A = V_{on} \approx 0.7 V \rightarrow V \equiv V_{break} = \frac{R}{R'} (V_0 + V_{on}) + V_{on}$.

イロト イヨト イヨト イヨト

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'} \,.$$

For D to turn on, $V_A = V_{on} \approx 0.7 V \rightarrow V \equiv V_{break} = \frac{N}{R'} (V_0 + V_{on}) + V_{on}$.

・ロト ・日下・ ・ ヨト・

≣) ≣

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'} \,.$$

For D to turn on, $V_A = V_{on} \approx 0.7 V \rightarrow V \equiv V_{break} = \frac{R}{R'} (V_0 + V_{on}) + V_{on}$. When D is on,

$$i = \frac{V}{R_0} + \frac{V - V_{on}}{R} + \frac{-V_0 - V_{on}}{R'}$$
$$= V \left[\frac{1}{R_0} + \frac{1}{R}\right] + (\text{constant})$$

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'} \,.$$

For D to turn on, $V_A = V_{on} \approx 0.7 V \rightarrow V \equiv V_{break} = \frac{R}{R'} (V_0 + V_{on}) + V_{on}$. When D is on,

$$i = \frac{V}{R_0} + \frac{V - V_{on}}{R} + \frac{-V_0 - V_{on}}{R'}$$
$$= V \left[\frac{1}{R_0} + \frac{1}{R}\right] + (\text{constant})$$

i.e., $V = (R_0 \parallel R) i + (\text{constant})$.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

When D is off, V_A is (by superposition),

$$V_A = V \frac{R'}{R+R'} - V_0 \frac{R}{R+R'} \, .$$

For D to turn on, $V_A = V_{on} \approx 0.7 V \rightarrow V \equiv V_{break} = \frac{R}{R'} (V_0 + V_{on}) + V_{on}$. When D is on,

$$i = \frac{V}{R_0} + \frac{V - V_{on}}{R} + \frac{-V_0 - V_{on}}{R'}$$
$$= V \left[\frac{1}{R_0} + \frac{1}{R}\right] + (\text{constant})$$

i.e., $V = (R_0 \parallel R) i + (\text{constant})$.

● ▶ ▲ 三 ▶

<□> <@> < E> < E> E のQで

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − ����

・ロト ・回ト ・ヨト ・ヨト

æ

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

・ロト ・回ト ・ヨト ・ヨト

Э

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - の Q ()

Since $V_i = -R_a i$, the V_o versus V_i plot is similar to the V versus i plot, except for the $(-R_a)$ factor. SEQUEL file: ee101_wave_shaper.sqproj

M. B. Patil, IIT Bombay

◆□▶ ◆□▶ ◆臣▶ ◆臣♪

Wave shaping with diodes: spectrum

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Wave shaping with diodes: spectrum

M. B. Patil, IIT Bombay