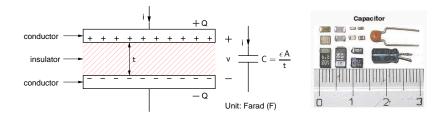


M. B. Patil

mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

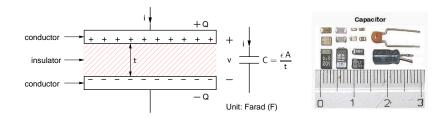
Department of Electrical Engineering Indian Institute of Technology Bombay

イロト イヨト イヨト イヨ

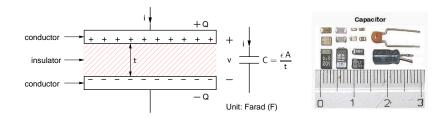


 $\Xi \rightarrow$

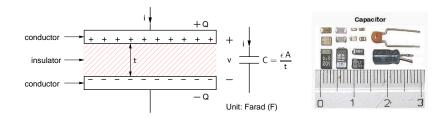
・ロト ・日 ・ ・ ヨ ・ ・



* In practice, capacitors are available in a wide range of shapes and values, and they differ significantly in the way they are fabricated. (http://en.wikipedia.org/wiki/Capacitor)



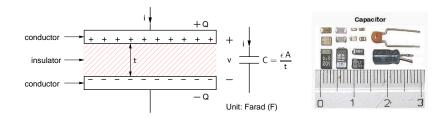
- * In practice, capacitors are available in a wide range of shapes and values, and they differ significantly in the way they are fabricated. (http://en.wikipedia.org/wiki/Capacitor)
- * To make C larger, we need (a) high ϵ , (b) large area, (c) small thickness.



* In practice, capacitors are available in a wide range of shapes and values, and they differ significantly in the way they are fabricated. (http://en.wikipedia.org/wiki/Capacitor)

- * To make C larger, we need (a) high ϵ , (b) large area, (c) small thickness.
- * For a constant capacitance,

$$Q(t) = C v(t), \quad \frac{dQ}{dt} = C \frac{dv}{dt}, \text{ i.e. } i(t) = C \frac{dv}{dt}.$$

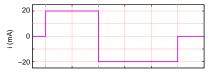


- * In practice, capacitors are available in a wide range of shapes and values, and they differ significantly in the way they are fabricated. (http://en.wikipedia.org/wiki/Capacitor)
- * To make C larger, we need (a) high ϵ , (b) large area, (c) small thickness.
- * For a constant capacitance,

$$Q(t) = C v(t), \quad \frac{dQ}{dt} = C \frac{dv}{dt}, \text{ i.e. } i(t) = C \frac{dv}{dt}.$$

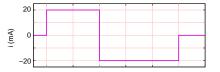
If v = constant, i = 0, i.e., a capacitor behaves like an open circuit in DC conditions as one would expect from two conducting plates separated by an insulator.

Plot v, p, and W versus time for the given source current. Assume v(0)=0 V, $C\!=\!5$ mF.



★ロト ★課 と ★注 と ★注 と 一注

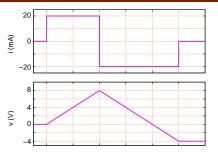
Plot v, p, and W versus time for the given source current. Assume v(0)=0 V, $C\!=\!5$ mF.



★ロト ★課 と ★注 と ★注 と 一注

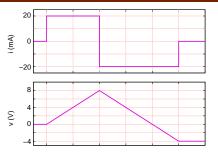
$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \int i(t) \, dt \end{split}$$

Plot v, p, and W versus time for the given source current. Assume v(0)=0 V, $C\!=\!5$ mF.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Plot v, p, and W versus time for the given source current. Assume v(0)=0 V, $C\!=\!5$ mF.



Plot v, p, and W versus time 20 for the given source current. Assume v(0)=0 V, C=5 mF. i (mA) 0 -20 8 4 Ś
$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \ \int i(t) \, dt \end{split}$$
0 0.2 $p(t) = v(t) \times i(t)$ 0.1 power (Watts) 0 -0.1

-0.2

Plot v, p, and W versus time 20 for the given source current. Assume v(0)=0 V, C=5 mF. i (mA) 0 -20 8 4 Ś
$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \ \int i(t) \, dt \end{split}$$
0 0.2 $p(t) = v(t) \times i(t)$ 0.1 power (Watts) $W(t) = \int p(t)\,dt$ 0 -0.1

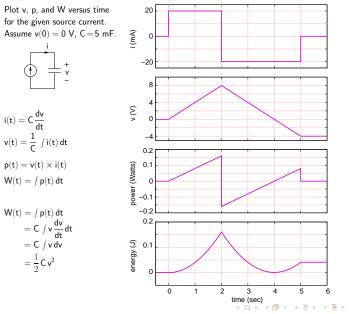
-0.2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

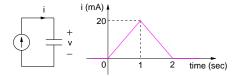
Plot v, p, and W versus time 20 for the given source current. i (mA) Assume v(0)=0 V, $C\!=\!5$ mF. 0 -20 8 4
$$\begin{split} i(t) &= C \frac{dv}{dt} \\ v(t) &= \frac{1}{C} \ {\textstyle \int} i(t) \, dt \end{split}$$
Ś 0 0.2 $p(t) = v(t) \times i(t)$ 0.1 power (Watts) $W(t) = \int p(t)\,dt$ 0 -0.1 -0.2 0.2 energy (J) 0.1 0 3 0 1 2 4 5 6 time (sec) ð $\Xi \rightarrow$

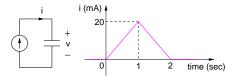
200

E



<き> E ののの M. B. Patil, IIT Bombay

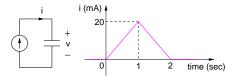




* For the given source current, plot v(t), p(t), and W(t), assuming v(0) = 0 V, C = 5 mF.

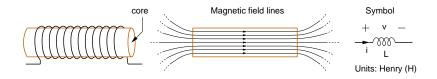
æ

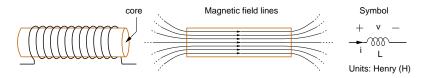
メロト スピア メヨアス



- * For the given source current, plot v(t), p(t), and W(t), assuming v(0) = 0 V, C = 5 mF.
- * Verify your results with circuit simulation.

Inductors







*
$$V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} \left[\left(\frac{\mu N i}{l} \right) A \right]$$

Compare with $v = L \frac{di}{dt}$.
 $\Rightarrow L = \mu N^2 \frac{A}{l} = \mu_r \mu_0 N^2 \frac{A}{l}$.

(日) (四) (日) (日) (日)



*
$$V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} \left[\left(\frac{\mu N i}{l} \right) A \right].$$

Compare with $v = L \frac{di}{dt}$.
 $\Rightarrow L = \mu N^2 \frac{A}{l} = \mu_r \mu_0 N^2 \frac{A}{l}.$

* To make L larger, we need (a) high μ_r , (b) large area, (c) large number of turns.

M. B. Patil, IIT Bombay

・ロト ・日下・ ・ ヨト



*
$$V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} \left[\left(\frac{\mu N i}{l} \right) A \right].$$

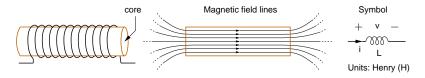
Compare with $v = L \frac{di}{dt}$.

$$\Rightarrow L = \mu N^2 \frac{A}{I} = \mu_r \mu_0 N^2 \frac{A}{I}.$$

- * To make L larger, we need (a) high μ_r , (b) large area, (c) large number of turns.
- * For 99.8 % pure iron, $\mu_r \simeq 5,000$. For "supermalloy" (Ni: 79 %, Mo: 5 %, Fe): $\mu_r \simeq 10^6$.

M. B. Patil, IIT Bombay

・ロト ・ 日 ・ ・ ヨ ・ ・



*
$$V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} \left[\left(\frac{\mu N i}{l} \right) A \right].$$

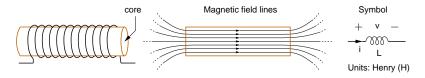
Compare with $v = L \frac{di}{dt}$.

$$\Rightarrow L = \mu N^2 \frac{A}{I} = \mu_r \mu_0 N^2 \frac{A}{I}.$$

* To make L larger, we need (a) high μ_r , (b) large area, (c) large number of turns.

イロト イヨト イヨト イヨト

- * For 99.8 % pure iron, $\mu_r \simeq 5,000$. For "supermalloy" (Ni: 79 %, Mo: 5 %, Fe): $\mu_r \simeq 10^6$.
- If i = constant, v = 0, i.e., an inductor behaves like a short circuit in DC conditions as one would expect from a highly conducting coil.

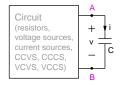


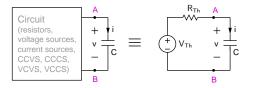
*
$$V = N \frac{d\phi}{dt} = N \frac{d}{dt} (\mathbf{B} \cdot \mathbf{A}) = N \frac{d}{dt} \left[\left(\frac{\mu N i}{l} \right) A \right].$$

Compare with $v = L \frac{di}{dt}$.

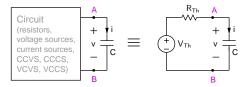
$$\Rightarrow L = \mu N^2 \frac{A}{I} = \mu_r \mu_0 N^2 \frac{A}{I}.$$

- * To make L larger, we need (a) high μ_r , (b) large area, (c) large number of turns.
- * For 99.8 % pure iron, $\mu_r \simeq 5,000$. For "supermalloy" (Ni: 79 %, Mo: 5 %, Fe): $\mu_r \simeq 10^6$.
- If i = constant, v = 0, i.e., an inductor behaves like a short circuit in DC conditions as one would expect from a highly conducting coil.
- Note: B = µ H is an approximation. In practice, B may be a nonlinear function of H, depending on the core material.

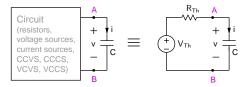




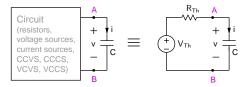
(□) (部) (言) (100 C M. B. Patil, IIT Bombay)



* If all sources are DC (constant), $V_{Th} = \text{constant}$.



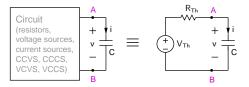
- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.



- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.
- * Homogeneous solution:

 $\frac{dv}{dt} + \frac{1}{\tau} v = 0, \text{ where } \tau = R_{Th} C \text{ is the "time constant."}$ $\rightarrow v^{(h)} = K \exp(-t/\tau).$

・ロト ・日ト・ ・ヨト

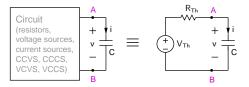


- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.
- * Homogeneous solution:

 $\frac{dv}{dt} + \frac{1}{\tau} v = 0 , \text{ where } \tau = R_{Th} C \text{ is the "time constant."}$ $\rightarrow v^{(h)} = K \exp(-t/\tau) .$

* Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(p)} = V_{Th}$ as a particular solution (which happens to be simply a constant).

イロト イヨト イヨト イヨト



- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.
- * Homogeneous solution:

$$\frac{dv}{dt} + \frac{1}{\tau} v = 0 , \text{ where } \tau = R_{Th} C \text{ is the "time constant."}$$

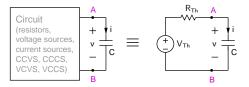
$$\rightarrow v^{(h)} = K \exp(-t/\tau) .$$

* Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(p)} = V_{Th}$ as a particular solution (which happens to be simply a constant).

イロト イヨト イヨト イヨト

M. B. Patil, IIT Bombay

* $v = v^{(h)} + v^{(p)} = K \exp(-t/\tau) + V_{Th}$.



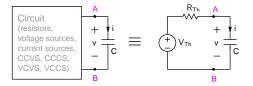
- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + v \rightarrow V_{Th} = R_{Th} C \frac{dv}{dt} + v$.
- * Homogeneous solution:

$$\frac{dv}{dt} + \frac{1}{\tau} v = 0 , \text{ where } \tau = R_{Th} C \text{ is the "time constant."}$$

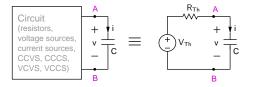
$$\rightarrow v^{(h)} = K \exp(-t/\tau) .$$

- * Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making i = 0, and we get $v^{(p)} = V_{Th}$ as a particular solution (which happens to be simply a constant).
- * $v = v^{(h)} + v^{(p)} = K \exp(-t/\tau) + V_{Th}$.
- * In general, $v(t) = A \exp(-t/\tau) + B$, where A and B can be obtained from known conditions on v.

RC circuits with DC sources (continued)



* If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = RC$.

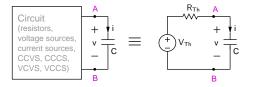


* If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = RC$.

*
$$i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau)$$

M. B. Patil, IIT Bombay

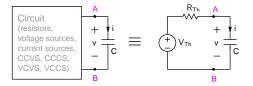
・ロト ・日下・ ・ ヨト



- * If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = RC$.
- * $i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau).$
- * As $t \to \infty$, $i \to 0$, i.e., the capacitor behaves like an open circuit since all derivatives vanish.

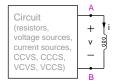
M. B. Patil, IIT Bombay

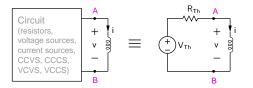
<ロ> <同> <同> <同> < □> <

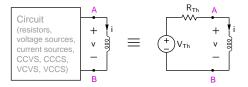


- * If all sources are DC (constant), we have $v(t) = A \exp(-t/\tau) + B$, $\tau = RC$.
- * $i(t) = C \frac{dv}{dt} = C \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau).$
- * As $t \to \infty$, $i \to 0$, i.e., the capacitor behaves like an open circuit since all derivatives vanish.
- Since the circuit in the black box is linear, any variable (current or voltage) in the circuit can be expressed as
 x(t) = K₁ exp(-t/\(\tau\)) + K₂,
 where K₁ and K₂ can be obtained from suitable conditions on x(t).

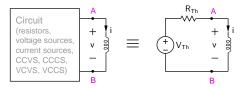
(ロ) (同) (E) (E)



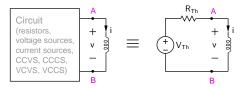




* If all sources are DC (constant), $V_{Th} = \text{constant}$.



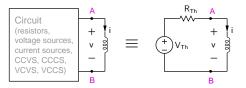
- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.



イロン イヨン イヨン イヨン

- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

$$rac{di}{dt}+rac{1}{ au}\,i=0$$
 , where $au=L/R_{Th}$
 $ightarrow i^{(h)}=K\,\exp(-t/ au)$.



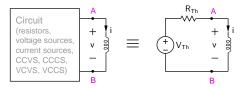
- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

 $rac{di}{dt}+rac{1}{ au}i=0$, where $au=L/R_{Th}$ $ightarrow i^{(h)}=K\,\exp(-t/ au)$.

* Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making v = 0, and we get $i^{(p)} = V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).

M. B. Patil, IIT Bombay

イロト イヨト イヨト イヨト

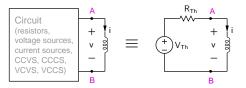


- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

 $rac{di}{dt}+rac{1}{ au}\,i=0$, where $au=L/R_{Th}$ $ightarrow i^{(h)}=K\,\exp(-t/ au)$.

- * Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making v = 0, and we get $i^{(p)} = V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).
- * $i = i^{(h)} + i^{(p)} = K \exp(-t/\tau) + V_{Th}/R_{Th}$.

イロト イヨト イヨト イヨト

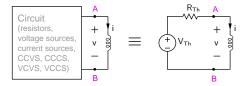


- * If all sources are DC (constant), $V_{Th} = \text{constant}$.
- * KVL: $V_{Th} = R_{Th} i + L \frac{di}{dt}$.
- * Homogeneous solution:

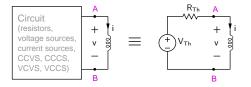
 $rac{di}{dt}+rac{1}{ au}i=0$, where $au=L/R_{Th}$ $ightarrow i^{(h)}=K\,\exp(-t/ au)$.

- * Particular solution is a specific function that satisfies the differntial equation. We know that all time derivatives will vanish as $t \to \infty$, making v = 0, and we get $i^{(p)} = V_{Th}/R_{Th}$ as a particular solution (which happens to be simply a constant).
- * $i = i^{(h)} + i^{(p)} = K \exp(-t/\tau) + V_{Th}/R_{Th}$.
- In general, i(t) = A exp(-t/τ) + B, where A and B can be obtained from known conditions on i.

RL circuits with DC sources (continued)



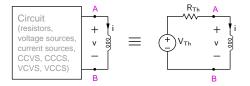
* If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R$.



* If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R$.

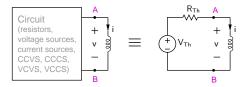
*
$$v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau).$$

・ロト ・日下・ ・ ヨト



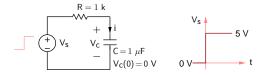
- * If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R$.
- * $v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau).$
- * As $t \to \infty$, $v \to 0$, i.e., the inductor behaves like a short circuit since all derivatives vanish.

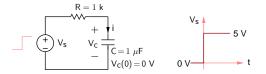
M. B. Patil, IIT Bombay



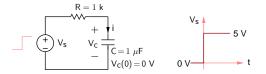
- * If all sources are DC (constant), we have $i(t) = A \exp(-t/\tau) + B$, $\tau = L/R$.
- * $v(t) = L \frac{di}{dt} = L \times A \exp(-t/\tau) \left(-\frac{1}{\tau}\right) \equiv A' \exp(-t/\tau).$
- * As $t \to \infty$, $v \to 0$, i.e., the inductor behaves like a short circuit since all derivatives vanish.
- * Since the circuit in the black box is linear, *any* variable (current or voltage) in the circuit can be expressed as $x(t) = K_1 \exp(-t/\tau) + K_2$, where K_1 and K_2 can be obtained from suitable conditions on x(t).

<ロ> (四) (四) (日) (日) (日)



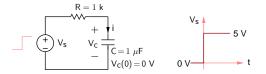


* V_s changes from 0 V (at $t = 0^-$), to 5 V (at $t = 0^+$). As a result of this change, V_c will rise. How fast can V_c change?



- * V_s changes from 0 V (at $t = 0^-$), to 5 V (at $t = 0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 V/1 μ s = 10⁶ V/s?

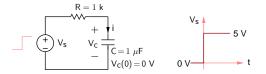
A B > A B >



- * V_s changes from 0 V (at $t = 0^-$), to 5 V (at $t = 0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 V/1 μ s = 10⁶ V/s?

*
$$i = C \frac{dV_c}{dt} = 1 \ \mu F \times 10^6 \ \frac{V}{s} = 1 \ A$$

RC circuits: Can V_c change "suddenly?"



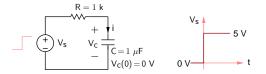
- * V_s changes from 0 V (at $t = 0^-$), to 5 V (at $t = 0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 V/1 μ s = 10⁶ V/s?

*
$$i = C \frac{dV_c}{dt} = 1 \ \mu F \times 10^6 \ \frac{V}{s} = 1 \ A$$

* With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.

M. B. Patil, IIT Bombay

RC circuits: Can V_c change "suddenly?"



- * V_s changes from 0 V (at $t = 0^-$), to 5 V (at $t = 0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 V/1 μ s = 10⁶ V/s?

*
$$i = C \frac{dV_c}{dt} = 1 \ \mu F \times 10^6 \ \frac{V}{s} = 1 \ A$$

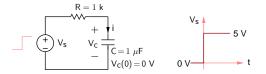
* With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.

・ロト ・回 ・ ・ ヨト ・

M. B. Patil, IIT Bombay

* We conclude that $V_c(0^+) = V_c(0^-) \Rightarrow A$ capacitor does not allow abrupt changes in V_c if there is a finite resistance in the circuit.

RC circuits: Can V_c change "suddenly?"



- * V_s changes from 0 V (at $t = 0^-$), to 5 V (at $t = 0^+$). As a result of this change, V_c will rise. How fast can V_c change?
- * For example, what would happen if V_c changes by 1 V in 1 μ s at a constant rate of 1 V/1 μ s = 10⁶ V/s?

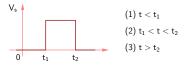
*
$$i = C \frac{dV_c}{dt} = 1 \ \mu F \times 10^6 \ \frac{V}{s} = 1 \ A$$

* With i = 1 A, the voltage drop across R would be 1000 V! Not allowed by KVL.

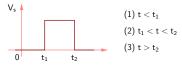
・ロト ・回 ・ ・ ヨト ・

- * We conclude that $V_c(0^+) = V_c(0^-) \Rightarrow A$ capacitor does not allow abrupt changes in V_c if there is a finite resistance in the circuit.
- * Similarly, an inductor does not allow abrupt changes in i_L .

* Identify intervals in which the source voltages/currents are constant. For example,



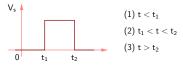
* Identify intervals in which the source voltages/currents are constant. For example,



* For any current or voltage x(t), write general expressions such as, $x(t) = A_1 \exp(-t/\tau) + B_1$, $t < t_1$, $x(t) = A_2 \exp(-t/\tau) + B_2$, $t_1 < t < t_2$, $x(t) = A_3 \exp(-t/\tau) + B_3$, $t > t_2$.

イロト イヨト イヨト イヨト

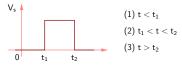
* Identify intervals in which the source voltages/currents are constant. For example,



- * For any current or voltage x(t), write general expressions such as, $x(t) = A_1 \exp(-t/\tau) + B_1$, $t < t_1$, $x(t) = A_2 \exp(-t/\tau) + B_2$, $t_1 < t < t_2$, $x(t) = A_3 \exp(-t/\tau) + B_3$, $t > t_2$.
- Work out suitable conditions on x(t) at specific time points using

イロト イヨト イヨト イヨト

* Identify intervals in which the source voltages/currents are constant. For example,

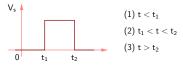


- * For any current or voltage x(t), write general expressions such as, $x(t) = A_1 \exp(-t/\tau) + B_1$, $t < t_1$, $x(t) = A_2 \exp(-t/\tau) + B_2$, $t_1 < t < t_2$, $x(t) = A_3 \exp(-t/\tau) + B_3$, $t > t_2$.
- Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to τ), all derivatives are zero.

イロト イヨト イヨト イヨト

$$\Rightarrow i_C = C \ \frac{dV_c}{dt} = 0$$
, and $V_L = L \ \frac{di_L}{dt} = 0$.

* Identify intervals in which the source voltages/currents are constant. For example,



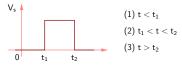
- * For any current or voltage x(t), write general expressions such as, $x(t) = A_1 \exp(-t/\tau) + B_1$, $t < t_1$, $x(t) = A_2 \exp(-t/\tau) + B_2$, $t_1 < t < t_2$, $x(t) = A_3 \exp(-t/\tau) + B_3$, $t > t_2$.
- Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to τ), all derivatives are zero.

$$\Rightarrow i_C = C \; rac{dV_c}{dt} = 0$$
 , and $V_L = L \; rac{di_L}{dt} = 0$

(b) When a source voltage (or current) changes, say, at $t = t_0$, $V_c(t)$ or $i_L(t)$ cannot change abruptly, i.e., $V_c(t_0^+) = V_c(t_0^-)$, and $i_L(t_0^+) = i_L(t_0^-)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

* Identify intervals in which the source voltages/currents are constant. For example,



- * For any current or voltage x(t), write general expressions such as, $x(t) = A_1 \exp(-t/\tau) + B_1$, $t < t_1$, $x(t) = A_2 \exp(-t/\tau) + B_2$, $t_1 < t < t_2$, $x(t) = A_3 \exp(-t/\tau) + B_3$, $t > t_2$.
- Work out suitable conditions on x(t) at specific time points using
 - (a) If the source voltage/current has not changed for a "long" time (long compared to τ), all derivatives are zero.

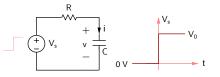
$$\Rightarrow i_C = C \; rac{dV_c}{dt} = 0$$
 , and $V_L = L \; rac{di_L}{dt} = 0$

(b) When a source voltage (or current) changes, say, at t = t₀, V_c(t) or i_L(t) cannot change abruptly, i.e.,
 V_c(t₀⁺) = V_c(t₀⁻), and i_L(t₀⁺) = i_L(t₀⁻).

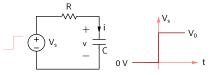
・ロト ・回 ト ・ヨト ・ヨト

M. B. Patil, IIT Bombay

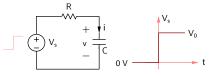
* Compute A_1, B_1, \cdots using the conditions on x(t).



(ロ) (部) (注) (注) (注) (3,000)



Let $\mathbf{v}(\mathbf{t}) = \mathbf{A} \exp(-\mathbf{t}/\tau) + \mathbf{B}, \quad \mathbf{t} > 0$ (A)



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1) $v(0^{-}) = V_s(0^{-}) = 0 V$

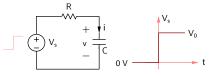
 $v(0^+) \simeq v(0^-) = 0 V$

Note that we need the condition at 0^+ (and not at 0^-)

200

because Eq. (A) applies only for t > 0.

(2) As $t \to \infty$, $i \to 0 \to v(\infty) = V_S(\infty) = V_0$



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1) $v(0^-) = V_S(0^-) = 0 V$

 $v(0^+) \simeq v(0^-) = 0 V$

Note that we need the condition at 0^+ (and not at 0^-)

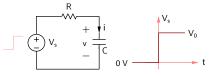
◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

because Eq. (A) applies only for t > 0.

(2) As $t \to \infty$, $i \to 0 \to v(\infty) = V_S(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$\begin{split} \mathbf{t} &= \mathbf{0}^+: \mathbf{0} = \mathsf{A} + \mathsf{B} \,, \\ \mathbf{t} &\to \infty: \, \mathsf{V_0} = \mathsf{B} \,. \\ \text{i.e., } &\mathsf{A} &= \mathsf{V_0} \,, \mathsf{B} = -\mathsf{V_0} \end{split}$$



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1) $v(0^-) = V_S(0^-) = 0 V$

 $\mathbf{v}(0^+)\simeq\mathbf{v}(0^-)=0\ \mathsf{V}$

Note that we need the condition at 0^+ (and not at 0^-)

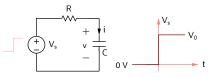
◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

because Eq. (A) applies only for t > 0.

(2) As $t \to \infty$, $i \to 0 \to v(\infty) = V_S(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$\begin{split} t &= 0^+ \colon 0 = A + B \,, \\ t &\to \infty \colon V_0 = B \,. \\ i.e., \, A &= V_0 \,, B = -V_0 \\ \hline v(t) &= V_0 \left[1 - exp(-t/\tau) \right] \end{split}$$



200

Let
$$\mathbf{v}(\mathbf{t}) = \mathbf{A} \exp(-\mathbf{t}/\tau) + \mathbf{B}, \ \mathbf{t} > 0$$
 (A)

Conditions on v(t):

(1) $v(0^-) = V_S(0^-) = 0 V$

 $\mathsf{v}(0^+)\simeq\mathsf{v}(0^-)=0~\mathsf{V}$

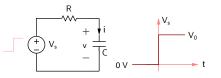
Note that we need the condition at 0^+ (and not at $0^-)$

because Eq. (A) applies only for t > 0.

(2) As $t \to \infty$, $i \to 0 \to v(\infty) = V_S(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$\begin{split} t &= 0^+ \colon 0 = A + B \,, \\ t &\to \infty \colon V_0 = B \,. \\ i.e., \ A &= V_0 \,, B = -V_0 \\ v(t) &= V_0 \left[1 - exp(-t/\tau) \right] \end{split}$$



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1) $v(0^-) = V_S(0^-) = 0 V$

 $\mathbf{v}(0^+)\simeq\mathbf{v}(0^-)=0\ \mathsf{V}$

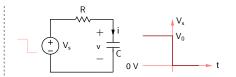
Note that we need the condition at 0^+ (and not at $0^-)$

because Eq. (A) applies only for t > 0.

(2) As $t \to \infty$, $i \to 0 \to v(\infty) = V_S(\infty) = V_0$

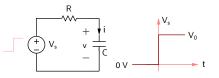
Imposing (1) and (2) on Eq. (A), we get

$$\begin{split} t &= 0^+ \colon 0 = A + B \ , \\ t &\to \infty \colon V_0 = B \ . \\ i.e., \ A &= V_0 \ , B = -V_0 \\ v(t) &= V_0 \left[1 - exp(-t/\tau) \right] \end{split}$$



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

イロン スポン スポン スポン 一部



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1) $\mathbf{v}(0^-) = \mathbf{V}_{\mathbf{S}}(0^-) = 0 \ \mathbf{V}$

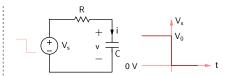
 $\mathbf{v}(0^+)\simeq\mathbf{v}(0^-)=0~\mathbf{V}$

Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As $t \to \infty$, $i \to 0 \to v(\infty) = V_S(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$\begin{split} t &= 0^+ : 0 = A + B \,, \\ t &\to \infty : \, V_0 = B \,. \\ i.e., \, A &= V_0 \,, B = -V_0 \\ v(t) &= V_0 \left[1 - exp(-t/\tau) \right] \end{split}$$



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

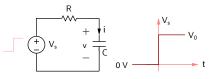
Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = \mathbf{V}_{\mathbf{S}}(0^-) = \mathbf{V}_0$$

 $\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = \mathbf{V}_0$

Note that we need the condition at 0^+ (and not at $0^-)$ because Eq. (A) applies only for t >0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_S(\infty) = 0$ V



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1) $\mathbf{v}(0^-) = \mathbf{V}_{\mathbf{S}}(0^-) = 0 \mathbf{V}$

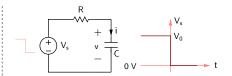
 $\mathbf{v}(0^+)\simeq\mathbf{v}(0^-)=0\ \mathbf{V}$

Note that we need the condition at 0^+ (and not at $0^-)$ because Eq. (A) applies only for t >0.

(2) As $t \to \infty$, $i \to 0 \to v(\infty) = V_S(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$\begin{split} t &= 0^+ \colon 0 = A + B \,, \\ t &\to \infty \colon V_0 = B \,. \\ i.e., \, A &= V_0 \,, B = -V_0 \\ \\ \hline v(t) &= V_0 \, [1 - exp(-t/\tau)] \end{split}$$



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = \mathbf{V}_{\mathbf{S}}(0^-) = \mathbf{V}_0$$

 $\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = \mathbf{V}_0$

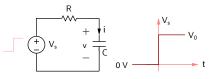
Note that we need the condition at 0^+ (and not at 0^-) because Eq. (A) applies only for t > 0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_S(\infty) = 0$ V

Imposing (1) and (2) on Eq. (A), we get

$$\begin{split} \mathbf{t} &= 0^+ : \, \mathsf{V}_0 = \mathsf{A} + \mathsf{B} \,, \\ \mathbf{t} &\to \infty : \, 0 = \mathsf{B} \,. \\ \text{i.e., } \, \mathsf{A} &= \mathsf{V}_0 \,, \mathsf{B} = 0 \end{split}$$

◆ロ → ◆周 → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1) $\mathbf{v}(0^-) = \mathbf{V}_{\mathbf{S}}(0^-) = 0 \mathbf{V}$

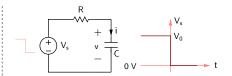
 $\mathsf{v}(0^+)\simeq\mathsf{v}(0^-)=0~\mathsf{V}$

Note that we need the condition at 0^+ (and not at $0^-)$ because Eq. (A) applies only for t >0.

(2) As $t \to \infty$, $i \to 0 \to v(\infty) = V_S(\infty) = V_0$

Imposing (1) and (2) on Eq. (A), we get

$$\begin{split} t &= 0^+ \colon 0 = A + B \,, \\ t &\to \infty \colon V_0 = B \,. \\ i.e., \, A &= V_0 \,, B = -V_0 \\ \\ \hline v(t) &= V_0 \, [1 - \exp(-t/\tau)] \end{split}$$



Let
$$v(t) = A \exp(-t/\tau) + B$$
, $t > 0$ (A)

Conditions on v(t):

(1)
$$\mathbf{v}(0^-) = \mathbf{V}_{\mathbf{S}}(0^-) = \mathbf{V}_0$$

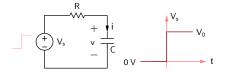
 $\mathbf{v}(0^+) \simeq \mathbf{v}(0^-) = \mathbf{V}_0$

Note that we need the condition at 0^+ (and not at $0^-)$ because Eq. (A) applies only for t >0.

(2) As
$$t \to \infty$$
, $i \to 0 \to v(\infty) = V_S(\infty) = 0$ V

Imposing (1) and (2) on Eq. (A), we get

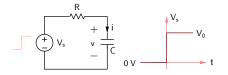
 $t = 0^+: V_0 = A + B,$ $t \to \infty: 0 = B.$ i.e., $A = V_0, B = 0$ $v(t) = V_0 \exp(-t/\tau)$ $(z \to + \sqrt{2}) + (z \to +$



Compute i(t), t > 0.

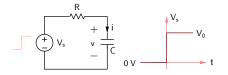
・ロン ・御 と ・ ヨ と ・ ヨ と

Э



Compute i(t), t > 0.

$$\begin{aligned} \text{(A)} \quad i(t) &= C \, \frac{d}{dt} \, V_0 \left[1 - \exp(-t/\tau) \right] \\ &= \frac{C V_0}{\tau} \exp(-t/\tau) = \frac{V_0}{R} \exp(-t/\tau) \end{aligned}$$



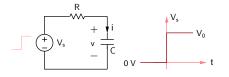
Compute i(t), t > 0.

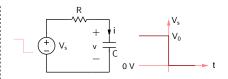
$$\begin{aligned} \text{(A)} \quad & \text{i}(t) = C \, \frac{d}{dt} \, V_0 \, [1 - \exp(-t/\tau)] \\ & = \frac{C V_0}{\tau} \exp(-t/\tau) = \frac{V_0}{R} \exp(-t/\tau) \\ \text{(B)} \quad & \text{Let i}(t) = A' \exp(-t/\tau) + B', \ t > 0 \, . \\ & t = 0^+ : v = 0 \, , \ V_S = V_0 \ \Rightarrow i(0^+) = V_0/R \\ & t \to \infty : i(t) = 0 \, . \end{aligned}$$

Using these conditions, we obtain

$$\mathsf{A}' = \frac{\mathsf{V}_0}{\mathsf{R}} \,, \,\, \mathsf{B}' = 0 \,\, \Rightarrow \, \mathsf{i}(\mathsf{t}) = \frac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Э





イロト イヨト イヨト イヨト

E

Compute i(t), t > 0.

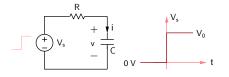
$$\begin{aligned} \text{(A)} \quad & \text{i}(t) = C \, \frac{d}{dt} \, V_0 \, [1 - \exp(-t/\tau)] \\ & = \frac{CV_0}{\tau} \exp(-t/\tau) = \frac{V_0}{R} \exp(-t/\tau) \\ \text{(B)} \quad & \text{Let} \, \text{i}(t) = A' \exp(-t/\tau) + B', \ t > 0 \, . \\ & \text{t} = 0^+: \textbf{v} = 0 \, , \ V_S = V_0 \, \Rightarrow \text{i}(0^+) = V_0/R \end{aligned}$$

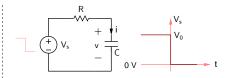
$$t \rightarrow \infty$$
: $i(t) = 0$.

Using these conditions, we obtain

$$\mathsf{A}' = rac{\mathsf{V}_0}{\mathsf{R}}, \; \mathsf{B}' = 0 \; \Rightarrow \mathsf{i}(\mathsf{t}) = rac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t > 0.





Compute i(t), t > 0.

$$\begin{aligned} \text{(A)} \quad & \text{i}(t) = C \, \frac{d}{dt} \, V_0 \, [1 - \exp(-t/\tau)] \\ & = \frac{C V_0}{\tau} \exp(-t/\tau) = \frac{V_0}{R} \exp(-t/\tau) \\ \text{(B)} \quad \text{Let } \text{i}(t) = \text{A}' \exp(-t/\tau) + \text{B}', \quad t > 0 \, . \end{aligned}$$

$$\mathsf{t} = 0^+ {:} \, \mathsf{v} = 0 \, , \ \mathsf{V}_{\mathsf{S}} = \mathsf{V}_0 \ \Rightarrow \mathsf{i}(0^+) = \mathsf{V}_0/\mathsf{R} \, .$$

$$t \rightarrow \infty$$
: $i(t) = 0$.

Using these conditions, we obtain

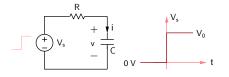
$$\mathsf{A}' = rac{\mathsf{V}_0}{\mathsf{R}}, \; \mathsf{B}' = 0 \; \Rightarrow \mathsf{i}(\mathsf{t}) = rac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

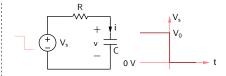
Compute i(t), t > 0.

$$\begin{aligned} \text{(A)} \quad i(t) &= C \, \frac{d}{dt} \, V_0 \left[\text{exp}(-t/\tau) \right] \\ &= - \frac{C V_0}{\tau} \, \text{exp}(-t/\tau) = - \frac{V_0}{R} \, \text{exp}(-t/\tau) \end{aligned}$$

イロト イポト イヨト イヨト

E





Compute i(t), t > 0.

(A)
$$i(t) = C \frac{d}{dt} V_0 [1 - \exp(-t/\tau)]$$

 $= \frac{CV_0}{\tau} \exp(-t/\tau) = \frac{V_0}{R} \exp(-t/\tau)$
(B) Let $i(t) = A' \exp(-t/\tau) + B'$, $t > 0$.
 $t = 0^{\pm t} w = 0$, $V = V = V$, $r = 0$, $V = V$

$$\begin{split} t &= 0^+ \colon \mathsf{v} = 0 \,, \ \mathsf{V}_\mathsf{S} = \mathsf{V}_0 \, \Rightarrow \mathsf{i}(0^+) = \mathsf{V}_0/\mathsf{R} \,. \\ t &\to \infty \colon \mathsf{i}(t) = 0 \,. \end{split}$$

Using these conditions, we obtain

$$\mathsf{A}' = rac{\mathsf{V}_0}{\mathsf{R}}, \; \mathsf{B}' = 0 \; \Rightarrow \mathsf{i}(\mathsf{t}) = rac{\mathsf{V}_0}{\mathsf{R}} \exp(-\mathsf{t}/\tau)$$

Compute i(t), t > 0.

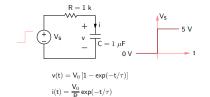
$$\begin{aligned} \text{(A)} \quad & \text{i}(t) = \mathsf{C} \, \frac{\mathsf{d}}{\mathsf{d}t} \, \mathsf{V}_0 \, [\exp(-t/\tau)] \\ & = -\frac{\mathsf{C}\mathsf{V}_0}{\tau} \exp(-t/\tau) = -\frac{\mathsf{V}_0}{\mathsf{R}} \exp(-t/\tau) \\ \text{(B)} \quad & \text{Let} \, \text{i}(t) = \mathsf{A}' \exp(-t/\tau) + \mathsf{B}', \quad t > 0 \, . \\ & \text{t} = 0^+ : \mathsf{v} = \mathsf{V}_0 \, , \ \mathsf{V}_{\mathsf{S}} = 0 \, \Rightarrow \, \text{i}(0^+) = -\mathsf{V}_0/\mathsf{R} \\ & \text{t} \to \infty : \, \text{i}(t) = 0 \, . \end{aligned}$$

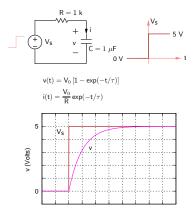
Using these conditions, we obtain

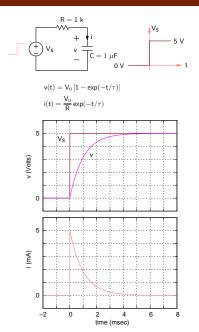
・ロト ・回ト ・ヨト

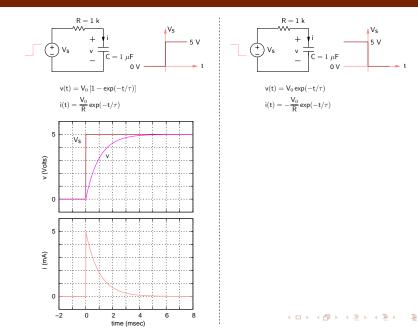
$$\mathsf{A}' = -rac{\mathsf{V}_0}{\mathsf{R}}, \ \mathsf{B}' = 0 \ \Rightarrow \mathsf{i}(\mathsf{t}) = -rac{\mathsf{V}_0}{\mathsf{R}}\exp(-\mathsf{t}/ au)$$

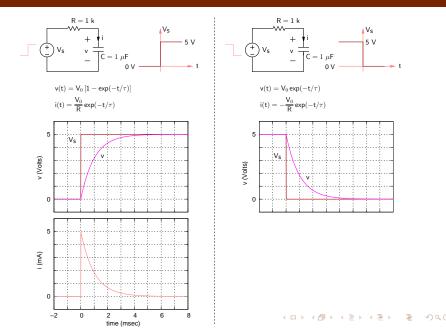
M. B. Patil, IIT Bombay

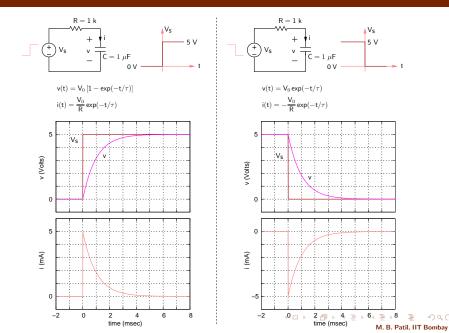












x	e ^{-x}	$1 - e^{-x}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

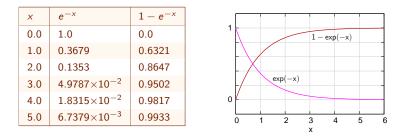
x	e ^{-x}	$1 - e^{-x}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

* For x = 5, $e^{-x} \simeq 0$, $1 - e^{-x} \simeq 1$.

x	e ^{-x}	$1 - e^{-x}$
0.0	1.0	0.0
1.0	0.3679	0.6321
2.0	0.1353	0.8647
3.0	4.9787×10^{-2}	0.9502
4.0	1.8315×10^{-2}	0.9817
5.0	6.7379×10^{-3}	0.9933

- * For x = 5, $e^{-x} \simeq 0$, $1 e^{-x} \simeq 1$.
- * In *RC* circuits, $x = t/\tau \Rightarrow$ When $t = 5\tau$, the charging (or discharging) process is almost complete.

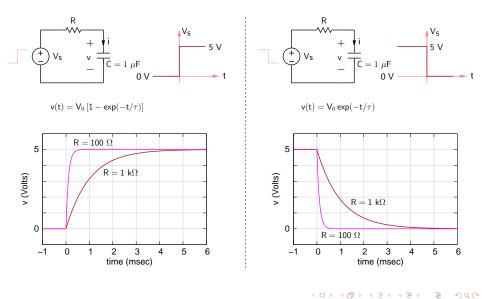
(≧▶ ≧ ∽へぐ M.B.Patil, IIT Bombay



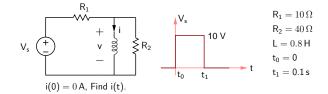
- * For x = 5, $e^{-x} \simeq 0$, $1 e^{-x} \simeq 1$.
- * In *RC* circuits, $x = t/\tau \Rightarrow$ When $t = 5\tau$, the charging (or discharging) process is almost complete.

・ロト ・回ト ・モト ・モト

M. B. Patil, IIT Bombay

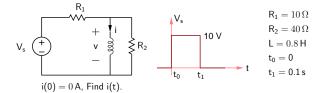


M. B. Patil, IIT Bombay



・ロト ・回 ト ・ヨト ・ヨト

Э

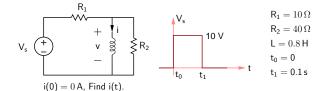


イロト イヨト イヨト イヨト

Э

There are three intervals of constant V_s :

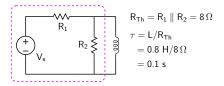
 $\begin{array}{l} (1) \ t < t_0 \\ (2) \ t_0 < t < t_1 \\ (3) \ t > t_1 \end{array}$



There are three intervals of constant V_s:

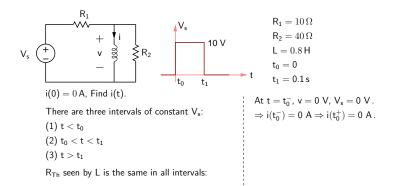
- $\begin{array}{l} (1) \ t < t_0 \\ (2) \ t_0 < t < t_1 \end{array}$
- (3) $t > t_1$

 R_{Th} seen by L is the same in all intervals:



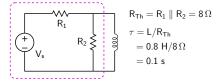
イロト イヨト イヨト イヨト

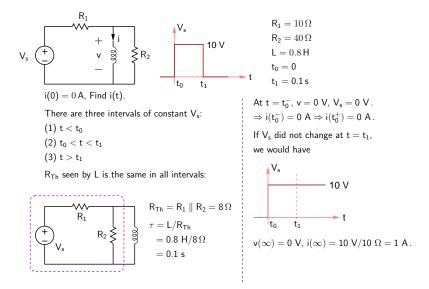
3



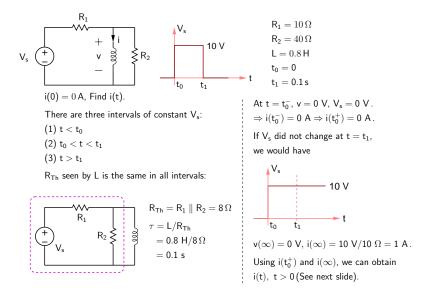
イロト イヨト イヨト イヨト

3



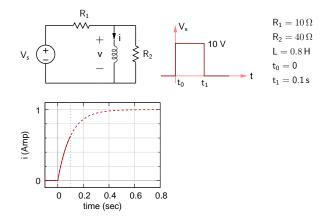


◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○

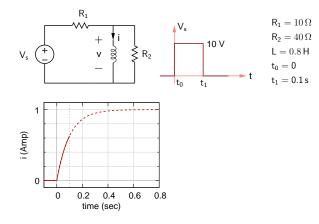


M. B. Patil, IIT Bombay

・ロト ・日下・ ・ ヨト・



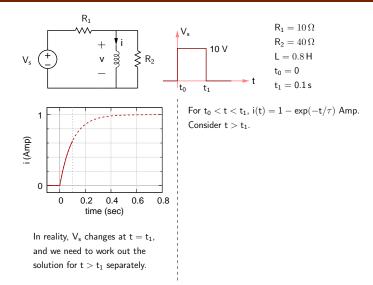
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで



イロト イヨト イヨト イヨト

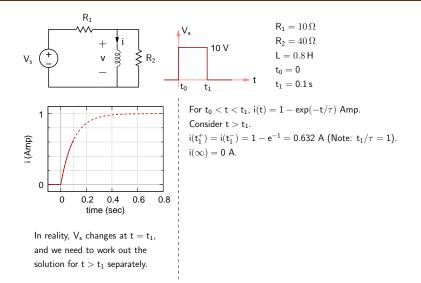
E

In reality, V_s changes at $t=t_1,$ and we need to work out the solution for $t>t_1$ separately.

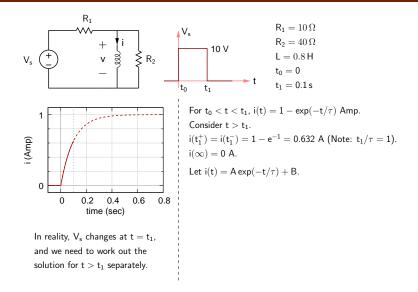


イロト イヨト イヨト イヨト

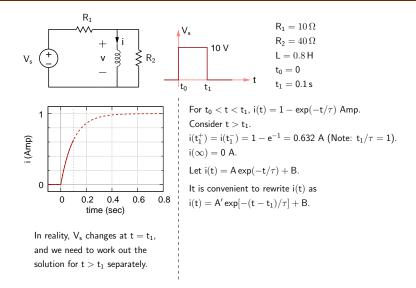
Э



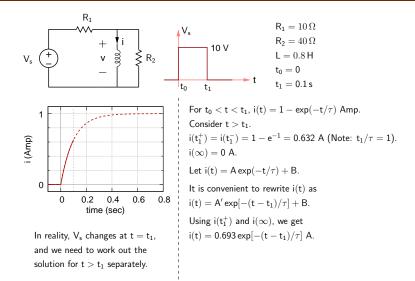
◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = ∽ 9 < @



(ロ) (部) (E) (E) (E)

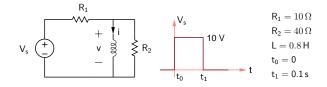


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ 9 < @



M. B. Patil, IIT Bombay

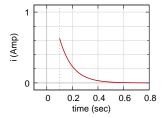
・ロト ・日下・ ・ ヨト・

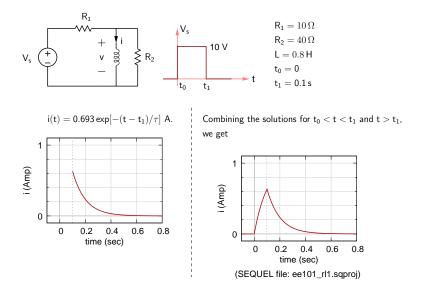


イロト イヨト イヨト イヨト

E

$$i(t) = 0.693 \exp[-(t-t_1)/\tau] \ \text{A}.$$

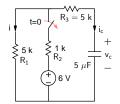


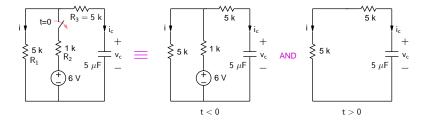


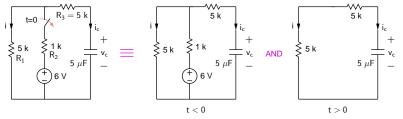
M. B. Patil, IIT Bombay

 $\exists \rightarrow$

・ロト ・回ト ・ヨト ・



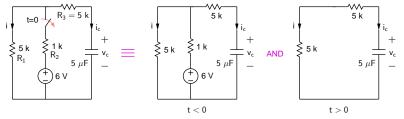




イロト イヨト イヨト イ

문 🛌 문

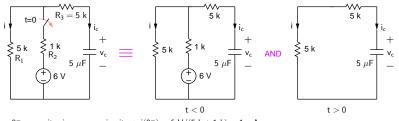
 $t=0^-\colon$ capacitor is an open circuit, $\Rightarrow i(0^-)=6~V/(5~k+1~k)=1~mA.$



イロト イヨト イヨト イヨト

E

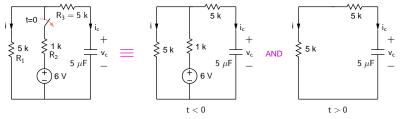
$$\begin{split} t &= 0^-: \text{ capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k}+1 \text{ k}) = 1 \text{ mA.} \\ v_c(0^-) &= 6 \text{ V}-1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_c(0^+) = 5 \text{ V.} \end{split}$$



イロト イヨト イヨト イヨト

E

$$\begin{split} t &= 0^-: \text{ capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA.} \\ v_c(0^-) &= 6 \text{ V} - 1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_c(0^+) = 5 \text{ V.} \\ \Rightarrow i(0^+) &= 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA.} \end{split}$$

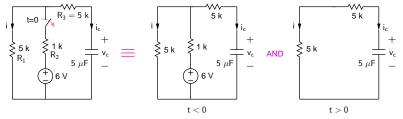


イロト イポト イヨト イヨト

3

$$\begin{split} t &= 0^-: \text{ capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA.} \\ v_c(0^-) &= 6 \text{ V} - 1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_c(0^+) = 5 \text{ V.} \\ \Rightarrow i(0^+) &= 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA.} \end{split}$$

Let $i(t) = A \exp(-t/\tau) + B$ for t > 0, with $\tau = 10 \text{ k} \times 5 \,\mu\text{F} = 50 \text{ ms.}$



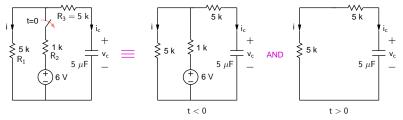
イロト イポト イヨト イヨト

3

$$\begin{split} t &= 0^-: \text{ capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA.} \\ v_c(0^-) &= 6 \text{ V} - 1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_c(0^+) = 5 \text{ V.} \\ \Rightarrow i(0^+) &= 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA.} \end{split}$$

Let $i(t) = A \exp(-t/\tau) + B$ for t > 0, with $\tau = 10 \text{ k} \times 5 \mu\text{F} = 50 \text{ ms}$.

Using $i(0^+)$ and $i(\infty)=0$ A, we get $i(t)=0.5\exp(\text{-}t/\tau) \text{ mA}. \label{eq:integral}$



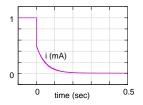
イロト イヨト イヨト イヨト

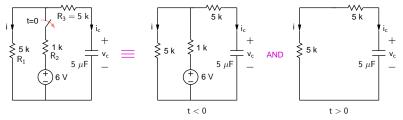
э

$$\begin{split} t &= 0^-: \text{ capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA.} \\ v_c(0^-) &= 6 \text{ V} - 1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_c(0^+) = 5 \text{ V.} \\ \Rightarrow i(0^+) &= 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA.} \end{split}$$

Let $i(t) = A \exp(-t/\tau) + B$ for t > 0, with $\tau = 10 \text{ k} \times 5 \mu\text{F} = 50 \text{ ms}$.

Using $i(0^+)$ and $i(\infty)=0$ A, we get $i(t)=0.5\exp(\text{-}t/\tau) \ \text{mA}. \label{eq:integral}$

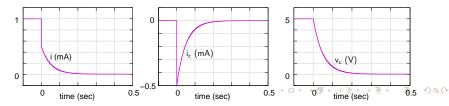


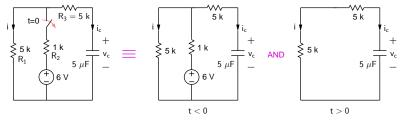


$$\begin{split} t &= 0^-: \text{ capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \text{ V}/(5 \text{ k} + 1 \text{ k}) = 1 \text{ mA.} \\ v_c(0^-) &= 6 \text{ V} - 1 \text{ mA} \times R_2 = 5 \text{ V} \Rightarrow v_c(0^+) = 5 \text{ V.} \\ \Rightarrow i(0^+) &= 5 \text{ V}/(5 \text{ k} + 5 \text{ k}) = 0.5 \text{ mA.} \end{split}$$

Let
$$i(t) = A \exp(-t/\tau) + B$$
 for $t > 0$, with $\tau = 10 \text{ k} \times 5 \mu\text{F} = 50 \text{ ms.}$

Using i(0⁺) and i(
$$\infty$$
) = 0 A, we get i(t) = 0.5 exp(-t/ au) mA.

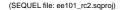


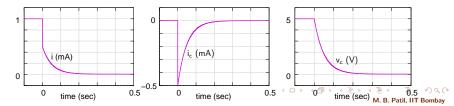


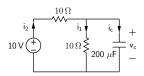
$$\begin{split} t &= 0^-: \text{ capacitor is an open circuit, } \Rightarrow i(0^-) = 6 \ V/(5 \ k+1 \ k) = 1 \ mA. \\ v_c(0^-) &= 6 \ V - 1 \ mA \times R_2 = 5 \ V \Rightarrow v_c(0^+) = 5 \ V. \\ \Rightarrow i(0^+) &= 5 \ V/(5 \ k+5 \ k) = 0.5 \ mA. \end{split}$$

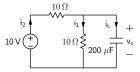
Let
$$i(t) = A \exp(-t/\tau) + B$$
 for $t > 0$, with $\tau = 10 \text{ k} \times 5 \mu\text{F} = 50 \text{ ms}$.

Using i(0⁺) and i(
$$\infty$$
) = 0 A, we get i(t) = 0.5 exp(-t/ τ) mA.

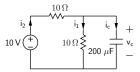








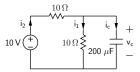
* Given $v_c(0) = 0$ V, find $v_c(t)$ for t > 0. Using this $v_c(t)$, find i_1 , i_2 , i_c for t > 0. Plot v_c , i_1 , i_2 , i_c versus t.



- * Given $v_c(0) = 0$ V, find $v_c(t)$ for t > 0. Using this $v_c(t)$, find i_1 , i_2 , i_c for t > 0. Plot v_c , i_1 , i_2 , i_c versus t.
- * Find i_1, i_2, i_c directly (i.e., without getting v_c) by finding the initial and final conditions for each of them $(i_1(0^+) \text{ and } i_1(\infty), \text{ etc.})$ and then using them to compute the coefficients in the general expression, $x(t) = A \exp(-t/\tau) + B$.

M. B. Patil, IIT Bombay

・ロト ・回 ト ・ ヨト ・



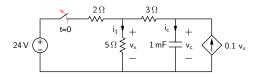
- * Given $v_c(0) = 0$ V, find $v_c(t)$ for t > 0. Using this $v_c(t)$, find i_1 , i_2 , i_c for t > 0. Plot v_c , i_1 , i_2 , i_c versus t.
- Find i₁, i₂, i_c directly (i.e., without getting v_c) by finding the initial and final conditions for each of them (i₁(0⁺) and i₁(∞), etc.) and then using them to compute the coefficients in the general expression, x(t) = A exp(-t/τ) + B.

・ロト ・ 日 ・ ・ 田 ・ ・

M. B. Patil, IIT Bombay

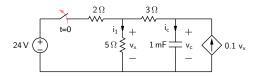
* Verify your results with SEQUEL (file: ee101_rc3.sqproj).

RC circuits: home work



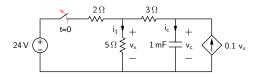
<ロ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ♪ ○ Q () M. B. Patil, IIT Bombay

RC circuits: home work

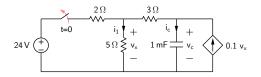


* Find $v_c(0^-)$, $v_c(\infty)$.

н



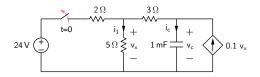
- * Find $v_c(0^-)$, $v_c(\infty)$.
- * Find R_{Th} as seen by the capacitor for t > 0.



- * Find $v_c(0^-)$, $v_c(\infty)$.
- * Find R_{Th} as seen by the capacitor for t > 0.
- * Solve for $v_c(t)$ and $i_1(t)$, t > 0.

M. B. Patil, IIT Bombay

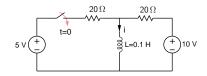
・ロト ・日下・ ・ ヨト

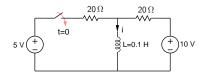


・ロト ・日下・ ・ ヨト

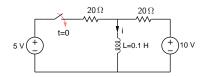
M. B. Patil, IIT Bombay

- * Find $v_c(0^-)$, $v_c(\infty)$.
- * Find R_{Th} as seen by the capacitor for t > 0.
- * Solve for $v_c(t)$ and $i_1(t)$, t > 0.
- * Verify your results with SEQUEL (file: ee101_rc4.sqproj).



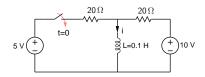


* Find $i(0^-)$, $i(\infty)$.



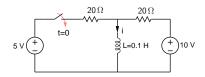
M. B. Patil, IIT Bombay

- * Find $i(0^-)$, $i(\infty)$.
- * Find R_{Th} as seen by the inductor for t > 0.



- * Find $i(0^-)$, $i(\infty)$.
- * Find R_{Th} as seen by the inductor for t > 0.
- * Solve for i(t), t > 0.

<□ > < ② > < ≧ > < ≧ > < ≧ > < ≧ > ○ Q () M. B. Patil, IIT Bombay



・ロト ・回ト ・ヨト

M. B. Patil, IIT Bombay

- * Find $i(0^-)$, $i(\infty)$.
- * Find R_{Th} as seen by the inductor for t > 0.
- * Solve for i(t), t > 0.
- * Verify your results with SEQUEL (file: ee101_r12.sqproj).