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Half-wave precision rectifier
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Consider two cases:

(i) D is conducting: The feedback loop is closed, and the circuit looks like (except for the diode drop) the
buffer we have seen earlier.

Since the input current i− ≈ 0, iR = iD .

V+ − V− =
Vo1

AV
=

Vo + 0.7V

AV
≈ 0V → Vo = V− ≈ V+ = Vi .

This situation arises only if iD > 0 (since the diode can only conduct in the forward direction),

i.e., iR > 0 → Vo = iRR > 0, and therefore Vi = Vo > 0V .

Note: Von does not appear in the graph.
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(ii) D is not conducting → Vo = 0V .

What about Vo1?

Since the op-amp is now in the open-loop configuration, a very small Vi is enough
to drive it to saturation.

Note that Case (ii) occurs when Vi < 0V (we have already looked at Vi > 0).
Since V+ − V− = Vi − 0 = Vi is negative, Vo1 is driven to −Vsat.
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* The circuit is called “super diode” (an ideal diode with Von = 0 V).

* When D conducts, the op-amp operates in the linear region, and we have V+≈V−.

* When D is off, the op-amp operates in the saturation region, V−= 0, V+ =Vi , and Vo1 =−Vsat.

* Where does iR come from?
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A = 1

M = 0.3

fc = 200 kHz

fm = 10 kHz

Application: AM demodulation

Carrier wave:

c(t) = A sin(2πfc t)

Signal (e.g., audio):

m(t) = M sin(2πfmt + φ)

AM wave:

y(t) = [1 + m(t)] c(t)

(Assume M < 1)

e.g., Vividh Bharati:

fc = 1188 kHz,

fm ' 10 kHz (audio).
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AM demodulation using a peak detector
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* charging through super diode, discharging through resistor

* The time constant (RC) needs to be carefully selected.

SEQUEL file: super diode.sqproj
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Clipping and clamping
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* What is the function provided by each circuit?

* Verify with simulation (and in the lab).
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If RL � R, Vi1 =R, and slope = 1 for Vi > Vi1.
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Assume RLC � T → VC can only increase (in one cycle).

When D conducts, V− ≈ VR , and VC (t) = VR − Vm sinωt.

→ Vmax
C = VR − (−Vm) = VR + Vm.

In steady state, VC remains equal to Vmax
C → Vo(t) = Vi (t) + Vmax

C = Vm sinωt + VR + Vm.

Note: Von of the diode does not appear in the expression for Vo(t).
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* The Vi < 0 to Vi > 0 transition requires the
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* The time taken by the op-amp to come out of
saturation can be neglected at low signal frequencies.

* At high signal frequencies, it leads to distortion in the
output waveform.

* Hook up the circuit in the lab, and check it out!
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(i) D1 conducts: V− = V+ = 0V , Vo1 = −VD1 ≈ −0.7V .

D2 cannot conduct (show that, if it did, KCL is not satisfied at Vo).
→ iR2 = 0, Vo = V− = 0V .

iR1 = iD1 which can only be positive ⇒ Vi > 0V .

(ii) D1 is off; this will happen when Vi < 0V .

In this case, D2 conducts and closes the feedback loop through R2.

Vo = V− + iR2R2 = 0 +

(
0− Vi

R1

)
R2 = −R2

R1
Vi .

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vi
Vo

R1

D1

D2

R

R2

iD1

iR1

iD2

iR2

iR

Vo1

Vi
Vo

Vi > 0

R1

D1

D2

R

R2

Vo1

Vi
Vo

Vi < 0

R1

D1

D2

R

R2

(i) D1 conducts: V− = V+ = 0V , Vo1 = −VD1 ≈ −0.7V .

D2 cannot conduct (show that, if it did, KCL is not satisfied at Vo).
→ iR2 = 0, Vo = V− = 0V .

iR1 = iD1 which can only be positive ⇒ Vi > 0V .

(ii) D1 is off; this will happen when Vi < 0V .

In this case, D2 conducts and closes the feedback loop through R2.

Vo = V− + iR2R2 = 0 +

(
0− Vi

R1

)
R2 = −R2

R1
Vi .

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vi
Vo

R1

D1

D2

R

R2

iD1

iR1

iD2

iR2

iR

Vo1

Vi
Vo

Vi > 0

R1

D1

D2

R

R2

Vo1

Vi
Vo

Vi < 0

R1

D1

D2

R

R2

(i) D1 conducts: V− = V+ = 0V , Vo1 = −VD1 ≈ −0.7V .

D2 cannot conduct (show that, if it did, KCL is not satisfied at Vo).
→ iR2 = 0, Vo = V− = 0V .

iR1 = iD1 which can only be positive ⇒ Vi > 0V .

(ii) D1 is off; this will happen when Vi < 0V .

In this case, D2 conducts and closes the feedback loop through R2.

Vo = V− + iR2R2 = 0 +

(
0− Vi

R1

)
R2 = −R2

R1
Vi .

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vi
Vo

R1

D1

D2

R

R2

iD1

iR1

iD2

iR2

iR

Vo1

Vi
Vo

Vi > 0

R1

D1

D2

R

R2

Vo1

Vi
Vo

Vi < 0

R1

D1

D2

R

R2

(i) D1 conducts: V− = V+ = 0V , Vo1 = −VD1 ≈ −0.7V .

D2 cannot conduct (show that, if it did, KCL is not satisfied at Vo).
→ iR2 = 0, Vo = V− = 0V .

iR1 = iD1 which can only be positive ⇒ Vi > 0V .

(ii) D1 is off; this will happen when Vi < 0V .

In this case, D2 conducts and closes the feedback loop through R2.

Vo = V− + iR2R2 = 0 +

(
0− Vi

R1

)
R2 = −R2

R1
Vi .

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vi
Vo

R1

D1

D2

R

R2

iD1

iR1

iD2

iR2

iR

Vo1

Vi
Vo

Vi > 0

R1

D1

D2

R

R2

Vo1

Vi
Vo

Vi < 0

R1

D1

D2

R

R2

(i) D1 conducts: V− = V+ = 0V , Vo1 = −VD1 ≈ −0.7V .

D2 cannot conduct (show that, if it did, KCL is not satisfied at Vo).
→ iR2 = 0, Vo = V− = 0V .

iR1 = iD1 which can only be positive ⇒ Vi > 0V .

(ii) D1 is off; this will happen when Vi < 0V .

In this case, D2 conducts and closes the feedback loop through R2.

Vo = V− + iR2R2 = 0 +

(
0− Vi

R1

)
R2 = −R2

R1
Vi .

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vi
Vo

R1

D1

D2

R

R2

iD1

iR1

iD2

iR2

iR

Vo1

Vi
Vo

Vi > 0

R1

D1

D2

R

R2

Vo1

Vi
Vo

Vi < 0

R1

D1

D2

R

R2

(i) D1 conducts: V− = V+ = 0V , Vo1 = −VD1 ≈ −0.7V .

D2 cannot conduct (show that, if it did, KCL is not satisfied at Vo).
→ iR2 = 0, Vo = V− = 0V .

iR1 = iD1 which can only be positive ⇒ Vi > 0V .

(ii) D1 is off; this will happen when Vi < 0V .

In this case, D2 conducts and closes the feedback loop through R2.

Vo = V− + iR2R2 = 0 +

(
0− Vi

R1

)
R2 = −R2

R1
Vi .

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vi
Vo

R1

D1

D2

R

R2

iD1

iR1

iD2

iR2

iR

Vo1

Vi
Vo

Vi > 0

R1

D1

D2

R

R2

Vo1

Vi
Vo

Vi < 0

R1

D1

D2

R

R2

(i) D1 conducts: V− = V+ = 0V , Vo1 = −VD1 ≈ −0.7V .

D2 cannot conduct (show that, if it did, KCL is not satisfied at Vo).
→ iR2 = 0, Vo = V− = 0V .

iR1 = iD1 which can only be positive ⇒ Vi > 0V .

(ii) D1 is off; this will happen when Vi < 0V .

In this case, D2 conducts and closes the feedback loop through R2.

Vo = V− + iR2R2 = 0 +

(
0− Vi

R1

)
R2 = −R2

R1
Vi .

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vi
Vo

R1

D1

D2

R

R2

iD1

iR1

iD2

iR2

iR

Vo1

Vi
Vo

Vi > 0

R1

D1

D2

R

R2

Vo1

Vi
Vo

Vi < 0

R1

D1

D2

R

R2

(i) D1 conducts: V− = V+ = 0V , Vo1 = −VD1 ≈ −0.7V .

D2 cannot conduct (show that, if it did, KCL is not satisfied at Vo).
→ iR2 = 0, Vo = V− = 0V .

iR1 = iD1 which can only be positive ⇒ Vi > 0V .

(ii) D1 is off; this will happen when Vi < 0V .

In this case, D2 conducts and closes the feedback loop through R2.

Vo = V− + iR2R2 = 0 +

(
0− Vi

R1

)
R2 = −R2

R1
Vi .

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vo1

Vi > 0

Vi
Vo

Vi < 0

Vi
Vo

Vo

Vi

Vo = 0

−R2

R1
Vi

R1

D1

D2

R

R2

R1

D1

D2

R

R2

1 k

1 k

1 k

1 k

2

1

0

−1 

 

 

 

t (ms)

 1  2 0

Vi Vo

Vo1

* Note that the op-amp does not enter saturation since a feedback path is available for
Vi > 0V and Vi < 0V .

SEQUEL file: precision half wave.sqproj

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vo1

Vi > 0

Vi
Vo

Vi < 0

Vi
Vo

Vo

Vi

Vo = 0

−R2

R1
Vi

R1

D1

D2

R

R2

R1

D1

D2

R

R2

1 k

1 k

1 k

1 k

2

1

0

−1 

 

 

 

t (ms)

 1  2 0

Vi Vo

Vo1

* Note that the op-amp does not enter saturation since a feedback path is available for
Vi > 0V and Vi < 0V .

SEQUEL file: precision half wave.sqproj

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vo1

Vi > 0

Vi
Vo

Vi < 0

Vi
Vo

Vo

Vi

Vo = 0

−R2

R1
Vi

R1

D1

D2

R

R2

R1

D1

D2

R

R2

1 k

1 k

1 k

1 k

2

1

0

−1 

 

 

 

t (ms)

 1  2 0

Vi Vo

Vo1

* Note that the op-amp does not enter saturation since a feedback path is available for
Vi > 0V and Vi < 0V .

SEQUEL file: precision half wave.sqproj

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vo1

Vi > 0

Vi
Vo

Vi < 0

Vi
Vo

Vo

Vi

Vo = 0

−R2

R1
Vi

R1

D1

D2

R

R2

R1

D1

D2

R

R2

1 k

1 k

1 k

1 k

2

1

0

−1 

 

 

 

t (ms)

 1  2 0

Vi Vo

Vo1

* Note that the op-amp does not enter saturation since a feedback path is available for
Vi > 0V and Vi < 0V .

SEQUEL file: precision half wave.sqproj

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vo1

Vi > 0

Vi
Vo

Vi < 0

Vi
Vo

Vo

Vi

Vo = 0

−R2

R1
Vi

R1

D1

D2

R

R2

R1

D1

D2

R

R2

1 k

1 k

1 k

1 k

2

1

0

−1 

 

 

 

t (ms)

 1  2 0

Vi Vo

Vo1

* Note that the op-amp does not enter saturation since a feedback path is available for
Vi > 0V and Vi < 0V .

SEQUEL file: precision half wave.sqproj

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vo = 0

Vo

ViVi
Vo

−R2

R1
Vi

R1

D1

D2

R2

R

The diodes are now reversed.

By considering two cases: (i) D1 on, (ii) D1 off, the Vo versus Vi relationship shown
in the figure is obtained (show this).

SEQUEL file: precision half wave 2.sqproj

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vo = 0

Vo

ViVi
Vo

−R2

R1
Vi

R1

D1

D2

R2

R

The diodes are now reversed.

By considering two cases: (i) D1 on, (ii) D1 off, the Vo versus Vi relationship shown
in the figure is obtained (show this).

SEQUEL file: precision half wave 2.sqproj

M. B. Patil, IIT Bombay



Improved half-wave precision rectifier

Vo1

Vo = 0

Vo

ViVi
Vo

−R2

R1
Vi

R1

D1

D2

R2

R

The diodes are now reversed.

By considering two cases: (i) D1 on, (ii) D1 off, the Vo versus Vi relationship shown
in the figure is obtained (show this).

SEQUEL file: precision half wave 2.sqproj

M. B. Patil, IIT Bombay



Full-wave precision rectifier

Half−wave

rectifier

(inverting)

x (−1)

x (−2)

Vo1

Vo1
Vi

Vo
VB

Vi

ViVA

Vi

Vi

VB

Vo
VA

inverting half−wave rectifier inverting summer

Vo

R1

D1

R1

D2
Vo1

R

R/2

R

Vi

(SEQUEL file: precision full wave.sqproj)

1

0

−1

−2

2

t (ms)

 1  2 0
 

 

 

 

 

Vi

Vo

M. B. Patil, IIT Bombay



Full-wave precision rectifier

Half−wave

rectifier

(inverting)

x (−1)

x (−2)

Vo1

Vo1
Vi

Vo
VB

Vi

ViVA

Vi

Vi

VB

Vo
VA

inverting half−wave rectifier inverting summer

Vo

R1

D1

R1

D2
Vo1

R

R/2

R

Vi

(SEQUEL file: precision full wave.sqproj)

1

0

−1

−2

2

t (ms)

 1  2 0
 

 

 

 

 

Vi

Vo

M. B. Patil, IIT Bombay



Full-wave precision rectifier

Half−wave

rectifier

(inverting)

x (−1)

x (−2)

Vo1

Vo1
Vi

Vo
VB

Vi

ViVA

Vi

Vi

VB

Vo
VA

inverting half−wave rectifier inverting summer

Vo

R1

D1

R1

D2
Vo1

R

R/2

R

Vi

(SEQUEL file: precision full wave.sqproj)

1

0

−1

−2

2

t (ms)

 1  2 0
 

 

 

 

 

Vi

Vo

M. B. Patil, IIT Bombay



Wave shaping with diodes

A

D

i

R

R′

0V V

−V0

R0

A

D off

i

R

R′

R0

0V V

−V0

A

D on

i

R

R′

R0

0V V

−V0

Von

i

V

Vbreak

slope = R0 ‖ R

slope = R0

When D is off, i =
V

R0
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R + R′ .

For D to turn on, VA = Von ≈ 0.7 V → V ≡ Vbreak =
R

R′ (V0 + Von) + Von .

When D is on, i =
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+

V − Von
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+
−V0 − Von
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i.e., V = (R0 ‖ R) i + (constant) .
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* The slope R0 ‖ R depends on the resistance values.

* Given the break point and the two slopes, the resistance values can be easily determined.
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Wave shaping with diodes
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Wave shaping with diodes: spectrum
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Wave shaping with diodes: spectrum
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