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Introduction

* Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone)
are analog quantities, varying continuously with time.

* Digital format offers several advantages: digital signal processing, storage, use of computers, robust
transmission, etc.

* An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.

* The reverse conversion (from digital to analog) is also required. For example, music stored in a DVD in
digital format must be converted to an analog voltage for playing out on a speaker.

* A DAC (Digital-to-Analog Converter) is used to convert a digital signal to the analog format.
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* For a 4-bit DAC, with input S3S2S1S0, the output voltage is

VA = K
[
(S3 × 23) + (S2 × 22) + (S1 × 21) + (S0 × 20)

]
.

In general, VA = K
∑N−1

0 Sk2k .

* K is proportional to the reference voltage VR . Its value depends on how the DAC is implemented.
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DAC using binary-weighted resistors

Inputs: S3, S2, S1, S0

Output: VA
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* If the input bit Sk is 1, Ak gets connected to VR ; else, it gets connected to ground. → V (Ak ) = Sk × VR .

* Since the inverting terminal of the op-amp is at virtual ground, Ik =
V (Ak )− 0

Rk

=
Sk VR

Rk

.

* I =
S0VR

8 R
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S1VR
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+

S2VR

2 R
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R
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* The output voltage is Vo = −Rf I = −VR
Rf

2N−1R

N−1∑
0

Sk × 2k
.
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DAC using binary-weighted resistors: Example

VA

Rf

I7
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R0= 27 R

I1

R1= 26 R
I0

A1

A0

A7

* Consider an 8-bit DAC with VR = 5 V. What is the smallest value of R which will limit the current drawn from the supply
(VR ) to 10 mA?

Maximum current is drawn from VR when the input is 1111 1111.
→ All nodes A0 to A7 get connected to VR .

→ 10 mA =
VR

R
+

VR

2R
+ · · · + VR

27R
=

1

27

VR

R

(
20 + 21 + · · · + 27

)
=

1

27

VR

R

(
28 − 1

)
=

255

128

VR

R
→ Rmin =

5 V

10 mA
× 255

128
= 996 Ω .

(Ref.: K. Gopalan, Introduction to Digital Microelectronic Circuits, Tata McGraw-Hill, New Delhi, 1998)
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DAC using binary-weighted resistors: Example (from Gopalan)

VA
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R0= 27 R
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R1= 26 R
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* If Rf = R, what is the resolution (i.e., ∆VA corresponding to the input LSB changing from 0 to 1 with other input bits
constant)?

VA = −VR
Rf

2N−1R

[
S727 + · · · + S121 + S020

]
→ ∆VA =

VR

2N−1

Rf

R
=

5 V

28−1
× 1 =

5

128
= 0.0391 V.
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* If the resistors are specified to have a tolerance of 1 %, what is the range of |VA| corresponding to input 1111 1111?

|VA| is maximum when (a) currents I0, I1, etc. assume their maximum values, with Rk = R0
k × (1− 0.01) and (b)Rf is

maximum, Rf = R0
f × (1 + 0.01).

(The superscript ‘0’ denotes nominal value.)

→ |VA|max
11111111 = VR ×

255

128
× Rf

R

∣∣∣∣max

= 5× 255

128
× 1.01

0.99
= 10.162 V.

Similarly, |VA|min
11111111 = 5× 255

128
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1.01
= 9.764 V.
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DAC using binary-weighted resistors: Example (from Gopalan)
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* ∆VA for input 1111 1111 = 10.162− 9.764 ≈ 0.4 V which is larger than the resolution (0.039 V) of the DAC. This
situation is not acceptable.

* The output voltage variation can be reduced by using resistors with a smaller tolerance. However, it is difficult to
fabricate an IC with widely varying resistance values (from R to 2N−1R) and each with a small enough tolerance.
→ use R − 2R ladder network instead.
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R-2R ladder network

2R

MSBLSB

2R

R

2R

R

2R

R

2R

A0 A1 A2 A3

Node Ak is connected to VR if input bit Sk is 1;
else, it is connected to ground.

2R

The original network is equivalent to

2R

R

2R

R

2R

R

2R

S2VRS1VRS0VR S3VR
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R-2R ladder network: Thevenin resistance

R R R
2R2R2R2R2R

R R R
2R2R2RR

R R
2R2RR

R
2RR RTh = R
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R-2R ladder network:
VTh for S0 = 1

RR R
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2R 2R 2R 2R 2R
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2RR 2R 2R
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R

VR

8

2RR

VTh =
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R-2R ladder network: RTh and VTh

2R RTh

VTh

2R

R

2R

R

2R

R

2R

S0VR S1VR S2VR S3VR

* RTh = R .

* VTh = V
(S0)
Th + V

(S1)
Th + V

(S2)
Th + V

(S3)
Th

=
VR

16

[
S0 20 + S1 21 + S2 22 + S3 23

]
.

* We can use the R-2R ladder network and an op-amp
to make up a DAC → next slide.
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DAC with R-2R ladder

2R Vo VoVTh

RfRf

RTh

2R

R

2R

R

2R

R

2R

S0VR S2VRS1VR S3VR

* Vo = − Rf

RTh

VTh = − Rf

RTh

VR

16

[
S0 20 + S1 21 + S2 22 + S3 23

]
.

* For an N-bit DAC, Vo = − Rf
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N−1∑
0

Sk2k .

* 6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip).

* Bipolar, CMOS, or BiCMOS technology is used for these DACs.
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DAC: home work

Combination of weighted−resistor and R−2R ladder networks

r

Rf

Vo8R 4R 2R R 8R 4R 2R R

S0VR S1VR S2VR S3VR S5VRS4VR S7VRS6VR

* Find the value of r for the circuit to work as a regular (i.e., binary to analog) DAC.

* Find the value of r for the circuit to work as a BCD to analog DAC.
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DAC: settling time

D0

D1

D2

DN−1

VA

VR

N-bit
digital
input

analog
output

ground

value
initial

value
final

VA

t

* When there is a change in the input binary number, the output VA takes a finite time to settle to the new
value.

* The finite settling time arises because of stray capacitances and switching delays of the semiconductor
devices used within the DAC chip.

* Example: 500 ns to 0.2 % of full scale.
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ADC: introduction

3−bit ADC

111

110

101

100

011
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001
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ground

digital
output

analog
input

Vmax

V7
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V6
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V5
R

V4
R

V3
R

V2
R

V1
R

0

* If the input VA is in the range V k
R < VA < V k+1

R , the output is the binary number corresponding to the
integer k. For example, for VA =V ′A, the output is 100.

* We may think of each voltage interval (corresponding to 000, 001, etc.) as a “bin.” In the above example,
the input voltage V ′A falls in the 100 bin; therefore, the output of the ADC would be 100.

* Note that, for an N-bit ADC, there would be 2N bins.
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3−bit ADC
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* The basic idea behind an ADC is simple:

- Generate reference voltages V 1
R , V 2

R , etc.

- Compare the input VA with each of V i
R to figure out which bin it belongs to.

- If VA belongs to bin k (i.e., V k
R < VA < V k+1

R ), convert k to the binary format.

* A “parallel” ADC does exactly that → next slide.
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3-bit parallel (flash) ADC
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3-bit parallel (flash) ADC
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* Practical difficulty: As the input changes, the comparator outputs (C0, C1, etc.) may not settle to their new values at the
same time. → ADC output will depend on when we sample it.

* Add D flip-flops. Allow sufficient time (between the change in VA and the active clock edge) so that the comparator
outputs have already settled to their new values before they get latched in.
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Parallel (flash) ADC
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* In the parallel (flash) ADC, the conversion gets
done “in parallel,” since all comparators operate
on the same input voltage.

* Conversion time is governed only by the
comparator response time → fast conversion
(hence the name “flash” converter).

* Flash ADCs to handle 500 million analog samples
per second are commercially available.

* 2N comparators are required for N-bit ADC →
generally limited to 8 bits.
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ADC: sampling of input signal

S

Cbuffer

buffer

S

C

clock

clock

clock

Va Vs → to ADC

t

tVa

Vs
Tc

VsVa

* An ADC typically operates on a “sampled” input signal (Vs (t) in the figure) which is derived from the continuously
varying input signal (Va(t) in the figure) with a “sample-and-hold” (S/H) circuit.

* The S/H circuit samples the input signal Va(t) at uniform intervals of duration Tc , the clock period.

* When the clock goes high, switch S (e.g., a FET or a CMOS pass gate) is closed, and the capacitor C gets charged to the
signal voltage at that time. When the clock goes low, switch S is turned off, and C holds the voltage constant, as desired.

* Op-amp buffers can be used to minimise loading effects.
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signal voltage at that time. When the clock goes low, switch S is turned off, and C holds the voltage constant, as desired.

* Op-amp buffers can be used to minimise loading effects.
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Successive Approximation ADC

4−bit DAC

Comparator

VA

C
VDAC
o

D2D3 D0D1

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four

bits as follows.

- Start with D3D2D1D0 = 0000, I= 3.

- Set D[I] = 1 (keep other bits unchanged).

- If VDAC
o > VA (i.e., C = 0), set D[I] = 0; else, keep D[I] = 1.

- I← I− 1; go to step 1.

* At the end of four steps, the digital output is given by D3D2D1D0.
Example → next slide.
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Successive Approximation ADC

5−bit DAC

1 2 3 4 5 step

D4 = 1
D3 = 0
D2 = 1
D1 = 1
D0 = 1

→ reset D0

C = 0

D4 = 1
D3 = 0
D2 = 1
D1 = 1
D0 = 0

C = 1

D4 = 1
D3 = 1
D2 = 0
D1 = 0
D0 = 0

→ reset D3

C = 0

D4 = 1
D3 = 0
D2 = 0
D1 = 0
D0 = 0

C = 1

D4 = 1
D3 = 0
D2 = 1
D1 = 0
D0 = 0

C = 1

20 k

30 k

16 k

24 k

20 k

22 k

23 k

(Note: k ∝ VR)

VR

10 kVA

VDAC
o

C

VA
D2D4 D1D3 D0

VDAC
o

* At the end of the 5th step, we know that the input voltage corresponds to 10110.

* For the digital representation to be accurate up to ± 1
2 LSB, ∆V corresponding to 1

2 LSB is added to VA (see [Taub]).
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Successive Approximation ADC

digital

output

N−bit SAR

N−bit DAC

Successive

Approximation

Register

clock

logic
Control

5−bit DAC

Comparator

VR

S/H

VA

VDAC
o

C
VR

VDAC
o

V′
A(t)

VA

D2D4 D1D3 D0

* Each step (setting SAR bits, comparison of VA and VDAC
o ) is performed in one clock cycle → conversion

time is N cycles, irrespective of the input voltage value VA.

* S. A. ADCs with built-in or external S/H (sample-and-hold) are available for 8- to 16-bit resolution and
conversion times of a few µsec to tens of µsec.

* Useful for medium-speed applications such as speech transmission with PCM.
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Counting ADC (digital-ramp ADC)

digital

output

clock

N−bit Counter

Comparator

reset clock

N−bit DAC

start

conversion

S/H t
C

VDAC
o

Tc

VR

VA

Tc

VDAC
o

VA

* The “start conversion” signal clears the counter; counting begins, and VDAC
o increases with each clock cycle.

* When VDAC
o exceeds VA, C becomes 0, and counting stops.

* Simple scheme, but (a) conversion time depends on VA, (b) slow (takes (2N − 1) clock cycles in the worst case)
→ tracking ADC
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Tracking ADC

digital

output

clock
N−bit Counter

N−bit DAC

Comparator

Up/Down

S/H
C

VDAC
o

t

VR

Tc

VA

VDAC
o

Tc

VA

* The counter counts up if VDAC
o < VA; else, it counts down.

* If VA changes, the counter does not need to start from 000· · · 0, so the conversion time is less than that required by a
counting ADC.

* used in low-cost, low-speed applications, e.g., measuring output from a temperature sensor or a strain gauge
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Dual-slope ADC

slope=− VA

RC

slope=− VR

RC

0
T1 T2

−V1

R

C

Vo=− 1

RC

∫
Vi dt

t

Vi

S

VA

VR

* t = 0: reset integrator output Vo to 0 V by closing S momentarily.

* Integrate VA (voltage to be converted to digital format, assumed to be positive) for a fixed interval T1.

* At t = T1, integrator output reaches −V1 =−VA
T1

RC
.

* Now apply a reference voltage VR (assumed to be negative, with |VR | > VA), and integrate until Vo reaches 0 V.

* Since V1 = VA
T1

RC
= |VR |

T2

RC
, we have T2 = T1

VA

|VR |
→ T2 gives a measure of VA.

* In the dual-slope ADC, a counter output – which is proportional to T2 – provides the desired digital output.
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Dual-slope ADC

N−bit Counter

comparator

SPDT

A

integrator

overflow clock

clock

digital output

C

B

slope=− VA

RC

slope=− VR

RC

T2T1 = 2N Tc

R
Vo

Tc

0

t

−V1

VA

VR

reset

* Start: counter reset to 000· · · 0, SPDT in position A.
* Counter counts up to 2N at which point the overflow flag becomes 1, and SPDT switches to position B → T1 = 2N Tc

where Tc is the clock period.
* The counter starts counting again from 000· · · 0, and stops counting when Vo crosses 0 V. The counter output gives T2

in binary format.
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in binary format.
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