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Thevenin’s theorem
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How is V related to the circuit parameters?

Assign node voltages with respect to a reference node.

Let G1≡ 1/R1, etc. Write KCL equation at each node, taking current leaving the node as positive.

KCL at A : G1 (V1 − V3) + G2 (V1 − V2)− I0 = 0 ,
KCL at B : G2 (V2 − V1) + GL (V2 − 0) = 0 ,
KCL at C : G1 (V3 − V1) + G3V3 + I0 = 0 .

Write in a matrix form:  G1 + G2 −G2 −G1

−G2 G2 + GL 0
−G1 0 G1 + G3

  V1

V2

V3

 =

 I0
0
−I0

 ,

i.e., GV = Is . We can solve this matrix equation to get V2, i.e., the voltage across RL.
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V2 can be found using Cramer’s rule: V2 =

det

 G1 + G2 I0 −G1

−G2 0 0
−G1 −I0 G1 + G3


det(G)

≡
∆1

det(G)

det(G) = det

 G1 + G2 −G2 −G1

−G2 G2 + GL 0
−G1 0 G1 + G3


= det

 G1 + G2 −G2 −G1

−G2 G2 0
−G1 0 G1 + G3

 + det

 G1 + G2 0 −G1

−G2 GL 0
−G1 0 G1 + G3


= ∆ + GL∆2 where ∆2 = det

 G1 + G2 0 −G1

−G2 1 0
−G1 0 G1 + G3

 .

i.e., V2 =
∆1

det(G)
=

∆1

∆ + GL∆2
(Note: ∆, ∆1, and ∆2 are independent of GL).
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V2 =
∆1

det(G)
=

∆1

∆ + GL∆2
.

The “open-circuit” value of V2 is obtained by substituting RL =∞, i.e., GL = 0, leading to VOC
2 =

∆1

∆
.

We can now write V2 =
∆1/∆

1 + GL∆2/∆
=

VOC
2

1 +
∆2

RL∆

=
RL

RL +
∆2

∆

VOC
2 .

Note that ∆2/∆ has units of resistance. Define RTh = ∆2/∆ (Thevenin resistance). Then we have

V2 =
RL

RL + RTh

VOC
2 .

STOP
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V2 =
RL

RL + RTh

VOC
2 .

This is simply a voltage division formula, corresponding to the following “Thevenin equivalent circuit” (with VTh = VOC
2 ).

RTh

RL
V2VTh

This allows us to replace the original circuit with an equivalent, simpler circuit.

R1

R2

R3

RL

RTh

RLVThI0
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Circuit
(resistors,
voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS) B

A

A

B

RTh

VTh

* Since the two circuits are equivalent, the open-circuit voltage must be the same in both cases. Let Voc be
the open-circuit voltage for the left circuit. For the Thevenin equivalent circuit, the open-circuit voltage is
simply VTh since there is no voltage drop across RTh in this case.
→ VTh =Voc

* RTh can be found by different methods.
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Thevenin’s theorem: RTh

Method 1:

Circuit
(resistors,

A

voltage sources,

current sources,

CCVS, CCCS,

VCVS, VCCS) B

A

B

RTh

VTh

Circuit
(resistors,

voltage sources,

current sources,

CCVS, CCCS,

VCVS, VCCS)

A

B

A

B

RTh

A

B

Is

Vs

A

B

IsVs

* Deactivate all independent sources. This amounts to making VTh = 0 in the Thevenin equivalent circuit.

* Often, RTh can be found by inspection of the original circuit (with independent sources deactivated).

* RTh can also be found by connecting a test source to the original circuit (with independent sources
deactivated): RTh =Vs/Is .
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Thevenin’s theorem: RTh

Method 2:

Original

Circuit

A

B

Original

Circuit

A

B

A

B

A

B

RTh

RTh

VTh

VTh

Isc Isc

Voc Voc

* For the Thevenin equivalent circuit, Voc =VTh, Isc =
VTh

RTh
=

Voc

RTh
→ RTh =

Voc

Isc
.

* In the original circuit, find Voc and Isc → RTh =
Voc

Isc
.

* Note: We do not deactivate any sources in this case.

M. B. Patil, IIT Bombay



Thevenin’s theorem: RTh

Method 2:

Original

Circuit

A

B

Original

Circuit

A

B

A

B

A

B

RTh

RTh

VTh

VTh

Isc Isc

Voc Voc

* For the Thevenin equivalent circuit, Voc =VTh, Isc =
VTh

RTh
=

Voc

RTh
→ RTh =

Voc

Isc
.

* In the original circuit, find Voc and Isc → RTh =
Voc

Isc
.

* Note: We do not deactivate any sources in this case.

M. B. Patil, IIT Bombay



Thevenin’s theorem: RTh

Method 2:

Original

Circuit

A

B

Original

Circuit

A

B

A

B

A

B

RTh

RTh

VTh

VTh

Isc Isc

Voc Voc

* For the Thevenin equivalent circuit, Voc =VTh, Isc =
VTh

RTh
=

Voc

RTh
→ RTh =

Voc

Isc
.

* In the original circuit, find Voc and Isc → RTh =
Voc

Isc
.

* Note: We do not deactivate any sources in this case.

M. B. Patil, IIT Bombay



Thevenin’s theorem: example
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3V≡ RL

4Ω

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A

B

3Ω

R3

RL

R1

R2

6Ω 2Ω

9V

B

A

RL≡

RTh

VTh

A

B

2Ω

3Ω

6Ω

9V
Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3V

A

B

2Ω6Ω

3Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

3V≡ RL

4Ω A

B

3V≡ RL

4Ω

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A

B

3Ω

R3

RL

R1

R2

6Ω 2Ω

9V

B

A

RL≡

RTh

VTh

A

B

2Ω

3Ω

6Ω

9V
Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3V

A

B

2Ω6Ω

3Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

3V≡ RL

4Ω A

B

3V≡ RL

4Ω

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A

B

3Ω

R3

RL

R1

R2

6Ω 2Ω

9V

B

A

RL≡

RTh

VTh

A

B

2Ω

3Ω

6Ω

9V
Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3V

A

B

2Ω6Ω

3Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

3V≡ RL

4Ω A

B

3V≡ RL

4Ω

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A

B

3Ω

R3

RL

R1

R2

6Ω 2Ω

9V

B

A

RL≡

RTh

VTh

A

B

2Ω

3Ω

6Ω

9V
Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3V

A

B

2Ω6Ω

3Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

3V≡ RL

4Ω A

B

3V≡ RL

4Ω

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A

B

3Ω

R3

RL

R1

R2

6Ω 2Ω

9V

B

A

RL≡

RTh

VTh

A

B

2Ω

3Ω

6Ω

9V
Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3V

A

B

2Ω6Ω

3Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

3V≡ RL

4Ω A

B

3V≡ RL

4Ω

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A

B

3Ω

R3

RL

R1

R2

6Ω 2Ω

9V

B

A

RL≡

RTh

VTh

A

B

2Ω

3Ω

6Ω

9V
Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3V

A

B

2Ω6Ω

3Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

3V≡ RL

4Ω

A

B

3V≡ RL

4Ω

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A

B

3Ω

R3

RL

R1

R2

6Ω 2Ω

9V

B

A

RL≡

RTh

VTh

A

B

2Ω

3Ω

6Ω

9V
Voc

VTh :

Voc = 9 V× 3Ω

6Ω + 3Ω

= 9V× 1

3
= 3V

A

B

2Ω6Ω

3Ω

RTh :

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

3V≡ RL

4Ω A

B

3V≡ RL

4Ω

M. B. Patil, IIT Bombay



Thevenin’s theorem: example

A B

2Ω

4Ω4Ω

6 A
12Ω 12Ω

48 V

A B

C

RTh:

2Ω

4Ω 4Ω

12Ω 12Ω

A B

C

≡ 4Ω
3Ω

RTh = 7Ω⇒

A B

C

Voc

Voc:

2Ω

4Ω 4Ω

i

6 A12Ω
12Ω

48 V

VAB = VA − VB

= 24V+ 36V = 60 V

= VAC + VCB

= (VA − VC) + (VC − VB)

Note: i = 0 (since there is no return path).

VTh = 60V

RTh = 7Ω

A B

7Ω

60V
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Graphical method for finding VTh and RTh

RTh

V

I

I

V

VTh

VTh

VTh

RTh

I =
VTh − V

RTh
(Note: negative slope for I versus V plot)

I = 0 → V =VTh (same as Voc)

V = 0 → I =
VTh

RTh
(same as Isc)

i.e., a plot of I versus V can be used to find VTh and RTh.

(Instead of a voltage source, we could also connect a resistor load (R), vary R, and then plot I versus V .)
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Graphical method for finding VTh and RTh

SEQUEL file: ee101 thevenin 1.sqproj
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Connect a voltage source between A and B.

Plot i versus v.

Voc= intercept on the v-axis.

Isc= intercept on the i-axis.
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Thevenin’s theorem: example
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Thevenin’s theorem: example

A

B

4Ω

2Ω

R2

R1

2 I1

I1

RTh: Deactivate independent sources, connect a test source.

A

B

Is Vs
4Ω

2Ω

R2

R1

2 I1

I1Vs

0

2 Is We need to compute RTh =
Vs

Is
.

KCL: −Is +
Vs

R2

+
Vs − 2 Is

R1

= 0

→ Vs

(
1

R1

+
1

R2

)
= Is

(
1+

2

R1

)

→ RTh =
Vs

Is
=

8

3
Ω

A

B

0V

RTh

VTh

8/3Ω
A

B

8/3Ω
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2 Is We need to compute RTh =
Vs

Is
.

KCL: −Is +
Vs

R2

+
Vs − 2 Is

R1

= 0

→ Vs

(
1

R1

+
1

R2

)
= Is

(
1+

2

R1

)

→ RTh =
Vs

Is
=

8

3
Ω

A

B

0V

RTh

VTh
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B
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Norton equivalent circuit (source transformation)

A

B

VTh

RTh

A

B

RNIN

A A

B B

RNVTh Isc IscIN

RTh

* Consider the open circuit case.

Thevenin circuit: VAB = VTh .

Norton circuit: VAB = IN RN .

⇒ VTh = IN RN .

* Consider the short circuit case.

Thevenin circuit: Isc = VTh/RTh .

Norton circuit: Isc = IN .

⇒ VTh =
VTh

RTh
RN → RTh = RN .

RN = RTh, IN =
VTh

RTh
RTh = RN , VTh = INRN
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Source transformation: example

A

B

2A32V

16Ω 6Ω20Ω

12Ω

A

B

2A
2A16Ω

6Ω20Ω

12Ω

A

B

4A
16Ω

6Ω20Ω

12Ω

A

B

64V

16Ω 6Ω20Ω

12Ω

A

B

64V

36Ω 6Ω

12Ω

A

B

16

9
A

36Ω

6Ω

12Ω

A

B

16

9
A

6Ω

9Ω

A

B

16V

9Ω 6Ω

A

B

16V

15Ω
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Maximum power transfer

Circuit
(resistors,

voltage sources,

current sources,

CCVS, CCCS,

VCVS, VCCS)

A

B

RL

iL

A

B

iL

RLVTh

RTh

Pmax
L

PL

RL

RL=RTh

* Power “transferred” to load is, PL = i2L RL .

* For a given black box, what is the value of RL for
which PL is maximum?

* Replace the black box with its Thevenin
equivalent.

* iL =
VTh

RTh + RL
, PL = V 2

Th ×
RL

(RTh + RL)2
.

* For
dPL

dRL
= 0 , we need

(RTh + RL)2 − RL × 2 (RTh + RL)

(RTh + RL)4
= 0 ,

i.e., RTh + RL = 2RL ⇒ RL = RTh .
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A

B

12 V

Find RL for which PL is maximum.

R3

R2 RL

R1

2Ω3Ω

6Ω
2A

A

B

RTh:

R3

R2

R1

2Ω3Ω

6Ω

RTh = (R1 ‖ R2) + R3 = (3 ‖ 6) + 2

= 3×
(
1× 2

1 + 2

)
+ 2 = 4Ω

A

B

6Ω12 V

Voc:

R3

R2

R1

2Ω3Ω

2 A

A

B

A

B

12 V

R3 R3

R2 R2

R1 R1

2Ω 2Ω3Ω 3Ω

6Ω 6Ω
2 A

Use superposition to find Voc:

V(1)
oc = 12× 6

9
= 8 V V(2)

oc = 4Ω× 2A = 8V

Voc = V(1)
oc + V(2)

oc = 8+ 8 = 16V

A

B

iL

RL

Pmax
L = 22 × 4 = 16W .

PL is maximum when RL = RTh = 4Ω
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Maximum power transfer: simulation results

SEQUEL file: ee101 maxpwr 1.sqproj

A

B

B

A

iL

RLVTh

RTh

4Ω

16V
vL
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Maximum power transfer (sinusoidal steady state)

ZL

I

VTh

ZTh

Let ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =
1

2
I 2
mRL

=
1

2

∣∣∣∣ VTh

ZTh + ZL

∣∣∣∣2 RL

=
1

2

|VTh|2

(RTh + RL)2 + (XTh + XL)2
RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =
1

2

|VTh|2

(RTh + RL)2
RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗
Th.

M. B. Patil, IIT Bombay



Maximum power transfer (sinusoidal steady state)

ZL

I

VTh

ZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =
1

2
I 2
mRL

=
1

2

∣∣∣∣ VTh

ZTh + ZL

∣∣∣∣2 RL

=
1

2

|VTh|2

(RTh + RL)2 + (XTh + XL)2
RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =
1

2

|VTh|2

(RTh + RL)2
RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗
Th.

M. B. Patil, IIT Bombay



Maximum power transfer (sinusoidal steady state)

ZL

I

VTh

ZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =
1

2
I 2
mRL

=
1

2

∣∣∣∣ VTh

ZTh + ZL

∣∣∣∣2 RL

=
1

2

|VTh|2

(RTh + RL)2 + (XTh + XL)2
RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =
1

2

|VTh|2

(RTh + RL)2
RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗
Th.

M. B. Patil, IIT Bombay



Maximum power transfer (sinusoidal steady state)

ZL

I

VTh

ZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =
1

2
I 2
mRL

=
1

2

∣∣∣∣ VTh

ZTh + ZL

∣∣∣∣2 RL

=
1

2

|VTh|2

(RTh + RL)2 + (XTh + XL)2
RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =
1

2

|VTh|2

(RTh + RL)2
RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗
Th.

M. B. Patil, IIT Bombay



Maximum power transfer (sinusoidal steady state)

ZL

I

VTh

ZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =
1

2
I 2
mRL

=
1

2

∣∣∣∣ VTh

ZTh + ZL

∣∣∣∣2 RL

=
1

2

|VTh|2

(RTh + RL)2 + (XTh + XL)2
RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =
1

2

|VTh|2

(RTh + RL)2
RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗
Th.

M. B. Patil, IIT Bombay



Maximum power transfer (sinusoidal steady state)

ZL

I

VTh

ZThLet ZL = RL + jXL, ZTh = RTh + jXTh, and I = Im ∠φ .

The power absorbed by ZL is,

P =
1

2
I 2
mRL

=
1

2

∣∣∣∣ VTh

ZTh + ZL

∣∣∣∣2 RL

=
1

2

|VTh|2

(RTh + RL)2 + (XTh + XL)2
RL .

For P to be maximum, (XTh + XL) must be zero. ⇒ XL = −XTh.

With XL = −XTh, we have,

P =
1

2

|VTh|2

(RTh + RL)2
RL ,

which is maximum for RL = RTh.

Therefore, for maximum power transfer to the load ZL, we need,

RL = RTh, XL = −XTh, i.e., ZL = Z∗
Th.

M. B. Patil, IIT Bombay



Impedance matching

Input

signal

Audio

Amp

1 k

8Ω

N1 : N2

1 k

(
N1

N2

)2

× 8Ω

Calculate the turns ratio to provide maximum power transfer of the audio signal.

ZL = Z∗
Th →

(
N1

N2

)2

× 8 Ω = 1 kΩ →
N1

N2
=

√
1000

8
= 11.2

M. B. Patil, IIT Bombay



Impedance matching

Input

signal

Audio

Amp

1 k

8Ω

N1 : N2

1 k

(
N1

N2

)2

× 8Ω

Calculate the turns ratio to provide maximum power transfer of the audio signal.

ZL = Z∗
Th →

(
N1

N2

)2

× 8 Ω = 1 kΩ →
N1

N2
=

√
1000

8
= 11.2

M. B. Patil, IIT Bombay



Impedance matching

Input

signal

Audio

Amp

1 k

8Ω

N1 : N2

1 k

(
N1

N2

)2

× 8Ω

Calculate the turns ratio to provide maximum power transfer of the audio signal.

ZL = Z∗
Th →

(
N1

N2

)2

× 8 Ω = 1 kΩ →
N1

N2
=

√
1000

8
= 11.2

M. B. Patil, IIT Bombay



Impedance matching

Input

signal

Audio

Amp

1 k

8Ω

N1 : N2

1 k

(
N1

N2

)2

× 8Ω

Calculate the turns ratio to provide maximum power transfer of the audio signal.

ZL = Z∗
Th →

(
N1

N2

)2

× 8 Ω = 1 kΩ →
N1

N2
=

√
1000

8
= 11.2

M. B. Patil, IIT Bombay



Impedance matching

Input

signal

Audio

Amp

1 k

8Ω

N1 : N2

1 k

(
N1

N2

)2

× 8Ω

Calculate the turns ratio to provide maximum power transfer of the audio signal.

ZL = Z∗
Th

→
(
N1

N2

)2

× 8 Ω = 1 kΩ →
N1

N2
=

√
1000

8
= 11.2

M. B. Patil, IIT Bombay



Impedance matching

Input

signal

Audio

Amp

1 k

8Ω

N1 : N2

1 k

(
N1

N2

)2

× 8Ω

Calculate the turns ratio to provide maximum power transfer of the audio signal.

ZL = Z∗
Th →

(
N1

N2

)2

× 8 Ω = 1 kΩ

→
N1

N2
=

√
1000

8
= 11.2

M. B. Patil, IIT Bombay



Impedance matching

Input

signal

Audio

Amp

1 k

8Ω

N1 : N2

1 k

(
N1

N2

)2

× 8Ω

Calculate the turns ratio to provide maximum power transfer of the audio signal.

ZL = Z∗
Th →

(
N1

N2

)2

× 8 Ω = 1 kΩ →
N1

N2
=

√
1000

8
= 11.2

M. B. Patil, IIT Bombay


