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Sinusoidal steady state

V,, coswt

R(CV)4+ Ve=Vycoswt, t>0. (1)
The solution V,(t) is made up of two components, Vc(t) = Vc(h)(t) + Vc(p)(t).

Véh)(t) satisfies the homogeneous differential equation,
RCV/+ V=0, (2
from which, V" (t) = A exp(—t/7), with 7 = RC .
Vc(p)(t) is a particular solution of (1). Since the forcing function is Vj, cos wt, we try
Vc(p)(t) = (; cos wt + G sin wt.
Substituting in (1), we get,

wR C (—Cy sin wt + G cos wt) + C; cos wt + G sin wt = Vi, cos wt.
C; and G, can be found by equating the coefficients of sin wt and cos wt on the left and right sides.
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* As t — 00, the exponential term becomes zero, and we are left with V(t) = C; cos wt + G, sin wt.
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* The complete solution is Vc(t) = A exp(—t/7) + G cos wt + C sin wt.
* As t — 00, the exponential term becomes zero, and we are left with V(t) = C; cos wt + G, sin wt.

* This is known as the “sinusoidal steady state” response since all quantities (currents and voltages) in the
circuit are sinusoidal in nature.
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V,, coswt

Vo =1V
f=1kHz

(SEQUEL file: eel01_rc5.sqproj) time (ms)

* The complete solution is Vc(t) = A exp(—t/7) + G cos wt + C sin wt.
* As t — 00, the exponential term becomes zero, and we are left with V(t) = C; cos wt + G, sin wt.

* This is known as the “sinusoidal steady state” response since all quantities (currents and voltages) in the
circuit are sinusoidal in nature.

* Any circuit containing resistors, capacitors, inductors, sinusoidal voltage and current sources (of the same
frequency), dependent (linear) sources behaves in a similar manner, viz., each current and voltage in the
circuit becomes purely sinusoidal as t — oo.
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Sinusoidal steady state: phasors

* In the sinusoidal steady state, “phasors” can be used to represent currents and voltages.
* A phasor is a complex number,
X = Xm0 = Xm exp(jO),
with the following interpretation in the time domain.
x(t) = Re [X &/#1]
— Re [Xp el? et]
= Re [Xm ej(’W'HQ)]
= Xm cos (wt + 0)
* Use of phasors substantially simplifies analysis of circuits in the sinusoidal steady state.
* Note that a phasor can be written in the polar form or rectangular form,
X =Xmn/0 = Xm exp(jO) = Xm cos 0 + j Xm sin 6.

The term wt is always implicit.

Im (X)
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Phasors: examples

Time domain Frequency domain
v1(t)=3.2 cos (wt+30°) V Vi =3.2/30° =32exp (jn/6)V
i(t) = —1.5cos (wt + 60°) A I =15/(-27/3)A

=15cos (wt+7/3—7m)A
= 1.5cos (wt — 27/3) A

vo(t) = —0.1cos (wt) V Vo, =01/7V
=0.1cos (wt+m) V

ia(t) = 0.18sin (wt) A I, =018/ (—m/2) A
= 0.18cos (wt — 7/2) A
i3(t) = V2 cos (wt + 45°) A ls=14+j1A
=V22/45° A
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Addition of phasors

Consider addition of two sinusoidal quantities:
v(t) = va(t) + va(t)

= Vi1 cos (wt + 01) + Vipa cos (wt + 62)
Now consider addition of the phasors corresponding to vi(t) and va(t).
V=V +V

= Vet + Vipei®

In the time domain, V corresponds to ¥(t), with
7(t) = Re [Velvt]

= Re [(Vm1&/% + Vipel®2) evt]
Re [Vim /@00 4 v, peilwir02)]
Vi1 cos (wt + 01) + Vo cos (wt + 62)

which is the same as v(t).
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Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.
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Addition of phasors

* Addition of sinusoidal quantities in the time domain can be replaced by addition
of the corresponding phasors in the sinusoidal steady state.

* The KCL and KVL equations,
> ik(t) =0 at a node, and
S vi(t) =0 in a loop,
amount to addition of sinusoidal quantities and can therefore be replaced by the
corresponding phasor equations,

> 1, =0 at a node, and
> Vi =0in a loop.
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Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
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Impedance of a resistor
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Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
Il =1nl8, V=RXIn L.
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Impedance of a resistor

+ v(t) — + Vv -
—AN— > T
i(t) R | z

Let i(t) = Im cos (wt + 6).
v(t) = Ri(t)
= R Iy cos (wt + 6)
= Vi cos (wt + 0).
The phasors corresponding to i(t) and v(t) are, respectively,
Il =1nl, V=RX Iy 2.
We have therefore the following relationship between V and I: V=R x I.
Thus, the impedance of a resistor, defined as, Z = V/I, is

Z=R+,0
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Impedance of a capacitor
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T = 5

Let v(t) = Vi cos (wt + 6).
d
i(t) = CF: = —Cw Vi sin (wt + 0).
Using the identity, cos (¢ + m/2) = —sin ¢, we get
i(t) = Cw Vi cos(wt + 0+ m/2).
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Let v(t) = Vi cos (wt + 6).
d
i(t) = Cd—: = —Cw Vi sin (wt + 0).
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Impedance of a capacitor

+ (1) — + v -

T = 5

Let v(t) = Vi cos (wt + 6).
d
i(t) = Cd—: = —Cw Vi sin (wt + 0).
Using the identity, cos (¢ + m/2) = —sin ¢, we get
i(t) = Cw Vi cos(wt + 0+ m/2).
In terms of phasors, V=V, 20, | = wCV,, A6+x/2),

| can be rewritten as,
| = wCVp &047/2) = 4 CVip e &7/2 = jwC (Vimel?) = jwCV

Thus, the impedance of a capacitor, Z=V/l,is| Z =1/(jwC) |,
and the admittance of a capacitor, Y =1/V, is .
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Impedance of an inductor
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Impedance of an inductor
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Let i(t) = Im cos (wt + 6).
di
v(t)=1L d—; = —Lwly sin(wt + 0).
Using the identity, cos (¢ + 7/2) = —sin ¢, we get
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Let i(t) = Im cos (wt + 6).
di
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Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z

Let i(t) = Im cos (wt + 6).

v(t) = L% = —Lwly sin(wt + 0).

Using the identity, cos (¢ + 7/2) = —sin ¢, we get

v(t) = Lwln cos(wt+ 6+ 7/2).

In terms of phasors, | = I, /0, V = wll, A0+7/2),

V can be rewritten as,
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Impedance of an inductor

+ o) — + v -
Ffms\_ —> ——
i(t L | z

Let i(t) = Im cos (wt + 6).

v(t) = L% = —Lwly sin(wt + 0).

Using the identity, cos (¢ + 7/2) = —sin ¢, we get
v(t) = Lwln cos(wt+ 6+ 7/2).

In terms of phasors, | = I, /0, V = wll, A0+7/2),
V can be rewritten as,

V = wlly &0/ = Ly & &™/2 = jwl (Inel?) = jwl]

Thus, the impedance of an indcutor, Z = V/I, is ,
and the admittance of an inductor, Y =1/V,is|Y = 1/(jwl) |.
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Sources

|s(t)<# —> (#ls vs(t)$ —> #VS
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Sources
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* An independent sinusoidal current source, is(t) = I cos (wt + @), can be represented by the phasor I, 20
(i.e., a constant complex number).
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Sources

|s(t)<# —> (#ls vs(t)$ —> #VS

* An independent sinusoidal current source, is(t) = I cos (wt + @), can be represented by the phasor I, 20
(i.e., a constant complex number).

* An independent sinusoidal voltage source, vs(t) = Vi, cos (wt + 6), can be represented by the phasor
Vin /0 (i.e., a constant complex number).
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Sources

|s(t)<# —> (#ls vs(t)$ —> #VS

* An independent sinusoidal current source, is(t) = I cos (wt + @), can be represented by the phasor I, 20
(i.e., a constant complex number).

* An independent sinusoidal voltage source, vs(t) = Vi, cos (wt + 6), can be represented by the phasor
Vin /0 (i.e., a constant complex number).

* Dependent (linear) sources can be treated in the sinusoidal steady state in the same manner as a resistor,
i.e., by the corresponding phasor relationship.
For example, for a CCVS, we have,
v(t) = ric(t) in the time domain.
V = rl¢ in the frequency domain.
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Use of phasors in circuit analysis
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t) translates to | = B¢ in the
frequency domain.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk(t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t) translates to | = B¢ in the
frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with
independent and dependent sources, and resistors.
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Use of phasors in circuit analysis

* The time-domain KCL and KVL equations > ik(t) = 0 and > vk (t) = 0 can be written as >_ I, = 0 and
>~V = 0 in the frequency domain.

* Resistors, capacitors, and inductors can be described by V = Z 1 in the frequency domain, which is similar
to V = R/ in DC conditions (except that we are dealing with complex numbers in the frequency domain).

* An independent sinusoidal source in the frequency domain behaves like a DC source, e.g., Vs = constant
(a complex number).

* For dependent sources, a time-domain relationship such as i(t) = Bic(t) translates to | = B¢ in the
frequency domain.

* Circuit analysis in the sinusoidal steady state using phasors is therefore very similar to DC circuits with
independent and dependent sources, and resistors.

* Series/parallel formulas for resistors, nodal analysis, mesh analysis, Thevenin's and Norton's theorems can
be directly applied to circuits in the sinusoidal steady state.
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Vs
= VmZ0 e,
R+ jwL
V,
where I, = o and 0 = tan"}(wL/R).

VR + w212’



V207 (X0 g jul

Vs
= VmZ0 e,
R+ jwL
V,
where I, = o and 0 = tan"}(wL/R).

VR + w212’
In the time domain, i(t) = I cos (wt — #), which lags the source voltage since the peak (or zero) of i(t) occurs
t = 6/w seconds after that of the source voltage.



V207 (X0 g jul

VinZ
= ’"7,0 = InZ(—0),
R+ jwL
Vv
where Iy = ———2— and 0 = tan"1(wL/R).
v/ R2 +w2L2

In the time domain, i(t) = I cos (wt — #), which lags the source voltage since the peak (or zero) of i(t) occurs
t = 6/w seconds after that of the source voltage.

For R=1Q, L=1.6mH, f =50Hz, § = 26.6°, tj;; = 1.48 ms.
(SEQUEL file: ee101_rl_ac_1.sqproj)



R=1Q
L=16mH

time (ms)
Vs
)
R+ jwL
V,
where Iy = ———2— and 0 = tan"1(wL/R).
v/ R2 +w2L2

In the time domain, i(t) = I cos (wt — #), which lags the source voltage since the peak (or zero) of i(t) occurs
t = 6/w seconds after that of the source voltage.

For R=1Q, L=1.6mH, f =50Hz, § = 26.6°, tj;; = 1.48 ms.
(SEQUEL file: ee101_rl_ac_1.sqproj)
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Vins
= "’7,0 = InZ(—9),
R+ jwlL
m

VR + w212’

where I, = and 0 = tan~Y(wL/R).



Vs
= VYm0 e,
R+ jwlL
where Iy = ——=—— and 0 = tan~(wL/R).
VR? F w212

VR =1 x R=RInZ(—0),
VL = I X jwl = wlnl £(—0 + 7/2) ,



Vs
= VYm0 e,
R+ jwlL
where Iy = ——=—— and 0 = tan~(wL/R).
VR? F w212

VR =1 x R=RInZ(—0),
VL = I X jwl = wlnl £(—0 + 7/2) ,

The KVL equation, Vs = Vg 4+ V|, can be represented in the complex plane by a “phasor diagram.”



Im (V)

Vs
= VYm0 e,
R+ jwlL
where Iy = ——=—— and 0 = tan~(wL/R).
VR? F w212

VR =1 x R=RInZ(—0),
VL = I X jwl = wlnl £(—0 + 7/2) ,

The KVL equation, Vs = Vg 4+ V|, can be represented in the complex plane by a “phasor diagram.’
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Im (V)

VinZ0

= ——— = InZ(-9),

R+jwLl " (=0)
where Iy = ——=—— and 0 = tan~(wL/R).

VR? F w212

VR =IXR=RInZ(-0),

VL =1l X jwl =wlnl Z(—0 4+ 7/2),

The KVL equation, Vs = Vg 4+ V|, can be represented in the complex plane by a “phasor diagram.”
, 0 =0, [VR| >~ |Vs| = V.

L0 = 7/2, VL] = V| = Vi,

If R>> |jwl
If R < |jwl
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R 1
A
Vint0° () == 1/jwC
v
=m0 e,
R+ 1/jwC
cv,
where I, = W Tm and § = 7/2 — tan~}(wRC).

1+ (wRC)?'



R 1
A
Vint0° () == 1/jwC
)
R+ 1/jwC
cv,
where I, = wim, and § = 7/2 — tan~}(wRC).

1+ (wRC)?2

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the peak (or zero) of i(t)
occurs t = 0 /w seconds before that of the source voltage.



R 1
A
Vint0° () == 1/jwC
v
- Ym0 e,
R+ 1/jwC
cv,
where I, = wim, and § = 7/2 — tan~}(wRC).

1+ (wRC)?2

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the peak (or zero) of i(t)
occurs t = 0 /w seconds before that of the source voltage.

For R=1Q, C =53mF, f =50Hz, 0 = 31°, tjeaq = 1.72 ms.
(SEQUEL file: ee101_rc_ac_1.sqproj)



R=1Q
C=53mF

time (ms)

VnZ0

= = [,/0,
R+1/jwC "

wCVpm
1+ (wRC)?2

where I, =

,and @ = 7/2 — tan~Y(wRC).

In the time domain, i(t) = Im cos (wt + 0), which leads the source voltage since the peak (or zero) of i(t)
occurs t = 0 /w seconds before that of the source voltage.

For R=1Q, C =53mF, f =50Hz, 0 = 31°, tjeaq = 1.72 ms.
(SEQUEL file: ee101_rc_ac_1.sqproj)
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+ Vr —
NN—
+ Ry
Vi 20° (") V —V)
<> ’ 1/jwC ¢
v
_ Ym0 e,
R+1/jwC
CcV,
where I, = wim, and § = 7/2 — tan~ 1 (wRC).

1+ (wRC)?2



Volr QI Vs il Ve

v
= mi,o = I;n 20,
R+1/jwC
wCVpm

where Iy = ———-"— ‘and § = 7/2 — tan"}(wRC).
1+ (wRC)?2

VR=IXR=RIn0,
Ve =1 % (1/jwC) = (Im/wC) £(6 — 7/2),



+ Vr —
AN—
+ Ry
Vin20°(09) Vs —_—V
<> 1/jwC ¢
_ M = 1,/6,
R+1/jwC
cv,
where I, = wim, and § = 7/2 — tan~ 1 (wRC).
1+ (wRC)?2

VR=IXR=RIn0,
Ve =1 % (1/jwC) = (Im/wC) £(6 — 7/2),

The KVL equation, Vs = Vg 4+ V¢, can be represented in the complex plane by a “phasor diagram.”



Ve —
+ Ve Im (V)
NN—
+ Ry
Vi 20° (N V, ) Re (V
Qv TV (V)
_ M = 1,/6,
R+1/jwC
CcV,
where I, = wim, and § = 7/2 — tan~ 1 (wRC).
1+ (wRC)?2

VR=IXR=RIn0,
Ve =1 % (1/jwC) = (Im/wC) £(6 — 7/2),

The KVL equation, Vs = Vg 4 V¢, can be represented in the complex plane by a “phasor diagram.’
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Ve —
+ Ve Im (V)
NN—
+ Ry
Vi 20° (N V, ) Re (V
Qv TV (V)
_ M = 1,/6,
R+1/jwC
CcV,
where I, = wim, and § = 7/2 — tan~ 1 (wRC).
1+ (wRC)?2

VR=IXR=RInZ0,
Ve =1X (1/jwC) = (Im/wC) £(0 — 7/2),
The KVL equation, Vs = Vg 4+ V¢, can be represented in the complex plane by a “phasor diagram.”

If R>> [1/jwC|, 0 — 0, |Vg| = |Vs| = Vin.
If R < [1/jwC|, 6 = 7/2, |Vc| ~ |Vs| = Vim.
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Series/parallel connections

025 Hg Z,

100 u

B
(w =100 rad/s)



Series/parallel connections

Z; =) x 100 x 0.25 =250

025 HZZ,
Z, = —j/(100 x 100 x 1076) = —j100 Q2
100u Z=2,+2,=—j75Q
B

(w =100 rad/s)



Series/parallel connections

A A
Zi=jx1 25 =250
025 HEZ, L =j % 100 x 0.25 = 25
—> z Z, = —j/(100 x 100 x 10~%) = —j 1002
100 uF Z, Z=27,+2,=—j75Q
B-——I B

(w =100 rad/s)

A A
0.25 H 100 4F
. jr— ::> z
Z Z,
B B

(w =100 rad/s)



Series/parallel connections

A A
Zi=jx1 25 =250
025 HEZ, L =j % 100 x 0.25 = 25
—> z Z, = —j/(100 x 100 x 10~%) = —j 1002
100 uF Z, Z=27,+2,=—j75Q
B-——I B

(w =100 rad/s)

A A 7. 4t
Z,+12,

100 4F (125) % (—j100)
0'25ZH = z T j25-100
' % 25100
575
—i3330

B B
(w =100 rad/s)
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Impedance example

Obtain Z in polar form.

102§ §J2120Q ::> z

B B
(w=100 rad/s)




Impedance example

Method 1:
. . 10 x j10  j10
Obtain Z in polar form. = 0510 = i
A ) w0 1
1+j 1-—j
10 +j10 .
10 Q EleQ:; z = ) =54+j5Q
Z1§ Z,
Convert to polar form — Z = 7.07 /45° Q)
B B

(w =100 rad/s)



Impedance example

Method 1:
10 x j1 j1
Obtain Z in polar form. - 1gij18 _ ffj
) A w0 1
1+) 1—j
10 +j10 .
10 Q EleQ ::> z = =5+j50Q
21§ Z, 2
Convert to polar form — Z = 7.07 £ 45° Q)
B B

Method 2:

_10xj10  100/7/2
©10+j10  10v2/7/4

=5v2/(n/2—n/4) =7.07/45°Q

(w=100 rad/s)

M. B. Patil, IIT Bombay



Circuit example

i 20 100
A — A

@30:[5%0:1/2 e F 15 mHg




Circuit example

i 20 100
A — A
jlc
w00V L
O T B '“H{é

|

Z,

Z,




Circuit example

i 20 100
A — A
jlc
w00V L
O T B '“H{é

|

Z,
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = w2 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = w2 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z,=j2r x50x15x 1073 =j47Q
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = w2 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z,=j2r x50x15x 1073 =j47Q

Zeg =21+ Z3 || (Z2+ Z4)
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Circuit example

i 20 100
A AW
i
000V
O 5 mE 15 mH
1
Z3

T jx 27 x50 x 2 x 10-3

li

= ev ]

Z,

=-j16Q

Z; =j2nx50x15x 1073 =47Q
Zeg =21+ Z3 || (Z2+ Z4)

=24 (—j16) | (10+j47) =2+

(—j1.6) x (10 +j4.7)
—j1.6+10+ 4.7
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = w2 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z; =j2nx50x15x 1073 =47Q

Zeg =21+ Z3 || (Z2+ Z4)

(—j1.6) x (10 +4.7)
—j16+10+j4.7

1.6 (—90°) x 11.05/ (25.2°) 17.7/ (—64.8°)

—> —2
+ 10,477 (17.2°) * 1047/ (17.20)

=24 (—j16) | (10+j47) =2+
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = w2 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z; =j2nx50x15x 1073 =47Q

Zeg =21+ Z3 || (Z2+ Z4)
(—j1.6) x (10 +4.7)
—j16+10+j4.7
., LBL(-90°) x11.052(252°) _,  17.7/(-648°)
10.47/ (17.2°) 10.47/ (17.2°)

=2+ 1.69/(—82°) =2+ (0.235 — j1.67)

=24 (—j16) | (10+j47) =2+
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Circuit example

s, 20 10Q . Z Z;
A A 1
Jic ie . |le in
OREL T wmE = w2 2] =
Z3 ! =—j16Q

T jx 27 x50 x 2 x 10-3
Z; =j2nx50x15x 1073 =47Q

Zeg =21+ Z3 || (Z2+ Z4)
(—j1.6) x (10 +4.7)
—j16+10+j4.7
., LBL(-90°) x11.052(252°) _,  17.7/(-648°)
10.47/ (17.2°) 10.47/ (17.2°)

=2+ 1.69/(—82°) =2+ (0.235 — j1.67)

=24 (—j16) | (10+j47) =2+

=2.235 —j1.67 = 2.79/(—36.8°) Q
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Circuit example (continued)

is. 20 1092
VW W%
lic Jic
O som: T BTHE T
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Circuit example (continued)

s, 20 100
A —W
Jic liL
10/0v L
Ohir TamF 1smHE )
Ve 10/(0°)

= =)  _358/(36.8°) A
Zeo 279 /(—36.8°)
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Circuit example (continued)

s, 20 100

A —W
Jic liL
10/00v L
i 50 1o Tome mHE )
Y 102 (0°
= Ve 10200 555,368 A

Zeg  2.79/(—36.8°)

(Z2 +Z4)

c= x ls = 3.79 £ (44.6°) A

Z3+ (22 + Zy)
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Circuit example (continued)

i 20

1092
AW —W
Jic l'L
10/0°V L
@f—SO He Tomp 2 ’“Hé —
v 10 £ (0°
o Vs o 102(0°) 3.58 £ (36.8°) A
Zeo 279 /(—36.8°)
Z,+2
=BT 570, (4a6%) A
Z3+ (22 + Zy)
z
I = &

O X 1,=0546/(—70.6°) A
Z3+(Z2+24) ( )

M. B. Patil, IIT Bombay



Circuit example (continued)

i 20 100
A — A
Jic i
10/0v L
@f—SO He Tomp 2 ’“Hé =
3
\ 10 £ (0° -
o Vs o 102(0°) 3.58 £(36.8°) A
Zrq 279 /(—36.8°) 2k
Z,+Z -
= \B2FZ) 379, (sa6% A _
Z3+ (22 + Zy) T r
Z [
L= > x1,=0.546/(—70.6°) A
Z3+(Z2 + Z4) oF
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