
Digital Circuits: Part 5

M. B. Patil
mbpatil@ee.iitb.ac.in

www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

J KCLK

Rd

Sd

CLK

Rd

QJ

QK

Sd

Qn

Qn

0 0

0 1

1 0

1 1

X X X

X X X

X X X

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

invalid

0

1 operation
normal

0

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, Sd and Rd , (also
called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by Sd and Rd .

* The asynchronous inputs are convenient for starting up a circuit in a known state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

J KCLK

Rd

Sd

CLK

Rd

QJ

QK

Sd

Qn

Qn

0 0

0 1

1 0

1 1

X X X

X X X

X X X

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

invalid

0

1 operation
normal

0

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, Sd and Rd , (also
called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by Sd and Rd .

* The asynchronous inputs are convenient for starting up a circuit in a known state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

J KCLK

Rd

Sd

CLK

Rd

QJ

QK

Sd

Qn

Qn

0 0

0 1

1 0

1 1

X X X

X X X

X X X

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

invalid

0

1 operation
normal

0

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, Sd and Rd , (also
called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by Sd and Rd .

* The asynchronous inputs are convenient for starting up a circuit in a known state.

M. B. Patil, IIT Bombay

JK flip-flop: asynchronous inputs

J KCLK

Rd

Sd

CLK

Rd

QJ

QK

Sd

Qn

Qn

0 0

0 1

1 0

1 1

X X X

X X X

X X X

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

invalid

0

1 operation
normal

0

Qn+1

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, Sd and Rd , (also
called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

* The Sd and Rd inputs may be active low; in that case, they are denoted by Sd and Rd .

* The asynchronous inputs are convenient for starting up a circuit in a known state.

M. B. Patil, IIT Bombay

D flip-flop

J

K

J

K

D

CLK

D

CLK

CLK

CLK D

D

Q

CLK

D

Q

t

t

t

t

t

t

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

D
D

CLK

D

CLK

CLK

t5

t5

t4

t4

t3

t3

t2

t2

t1

t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

1

0

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.
* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

J

K

J

K

D

CLK

D

CLK

CLK

CLK D

D

Q

CLK

D

Q

t

t

t

t

t

t

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

D
D

CLK

D

CLK

CLK

t5

t5

t4

t4

t3

t3

t2

t2

t1

t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

1

0

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.
* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

J

K

J

K

D

CLK

D

CLK

CLK

CLK D

D

Q

CLK

D

Q

t

t

t

t

t

t

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

D
D

CLK

D

CLK

CLK

t5

t5

t4

t4

t3

t3

t2

t2

t1

t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

1

0

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.

* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, R = D.

M. B. Patil, IIT Bombay

D flip-flop

J

K

J

K

D

CLK

D

CLK

CLK

CLK D

D

Q

CLK

D

Q

t

t

t

t

t

t

positive edge−triggered D flip−flop

negative edge−triggered D flip−flop

D
D

CLK

D

CLK

CLK

t5

t5

t4

t4

t3

t3

t2

t2

t1

t1

Q

Q

Q

Q

Q

Q

Q

Q

0

1

0

1

0

1

1

0

Qn+1

Qn+1

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

* With J = D, K = D, we have either J = 0, K = 1 or J = 1, K = 0; the next Q is 0 in the first case, 1 in the second case.
* Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with S = D, R = D.

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 0

1 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 0

0 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 0

1 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 1

0 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 1

0 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 0

0 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 1

0 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 0

0 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Shift register

CLK D

CLK

0 0 0 0

Q4

Q3Q2Q1
D D D DD Q Q

Q Q QQ

QQ

0

1

0

1

Qn+1

CLK

D

Q1

Q2

Q3

Q4

1 0 0 01 1 0 00 1 1 01 0 1 10 1 0 10 0 1 00 0 0 10 0 0 00 0 0 0

SEQUEL file: ee101 shift reg 1.sqproj

M. B. Patil, IIT Bombay

Parallel transfer between shift registers

Register B

Register A

CLK

D D D

D D D

D

D

B1
B0B1B2B3B3

A3 A2 A1 A0

A3 A2 A1 A0

B2 B0

Q

Q

Q

Q

Q Q

Q

Q Q

Q Q

Q

Q

Q

QQ

* After the active clock edge, the contents of the A register (A3A2A1A0) are copied to the B register.

M. B. Patil, IIT Bombay

Parallel transfer between shift registers

Register B

Register A

CLK

D D D

D D D

D

D

B1
B0B1B2B3B3

A3 A2 A1 A0

A3 A2 A1 A0

B2 B0

Q

Q

Q

Q

Q Q

Q

Q Q

Q Q

Q

Q

Q

QQ

* After the active clock edge, the contents of the A register (A3A2A1A0) are copied to the B register.

M. B. Patil, IIT Bombay

Bidirectional shift register

DDD D

CLK

D3D2D1D0 Q1 Q2 Q3Q0

DL

DR

Q

M

Q

Q Q Q

Q

Q

Q

M

* When the mode input (M) is 1, we have
D0 =DR , D1 =Q0, D2 =Q1, D3 =Q2.

* When the mode input (M) is 0, we have
D0 =Q1, D1 =Q2, D2 =Q3, D3 =DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DDD D

CLK

D3D2D1D0 Q1 Q2 Q3Q0

DL

DR

Q

M

Q

Q Q Q

Q

Q

Q

M

* When the mode input (M) is 1, we have
D0 =DR , D1 =Q0, D2 =Q1, D3 =Q2.

* When the mode input (M) is 0, we have
D0 =Q1, D1 =Q2, D2 =Q3, D3 =DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DDD D

CLK

D3D2D1D0 Q1 Q2 Q3Q0

DL

DR

Q

M

Q

Q Q Q

Q

Q

Q

M

* When the mode input (M) is 1, we have
D0 =DR , D1 =Q0, D2 =Q1, D3 =Q2.

* When the mode input (M) is 0, we have
D0 =Q1, D1 =Q2, D2 =Q3, D3 =DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Bidirectional shift register

DDD D

CLK

D3D2D1D0 Q1 Q2 Q3Q0

DL

DR

Q

M

Q

Q Q Q

Q

Q

Q

M

* When the mode input (M) is 1, we have
D0 =DR , D1 =Q0, D2 =Q1, D3 =Q2.

* When the mode input (M) is 0, we have
D0 =Q1, D1 =Q2, D2 =Q3, D3 =DL.

* M = 1 → shift right operation.
M = 0 → shift left operation.

M. B. Patil, IIT Bombay

Shift left operation

0 1 0 110 0 0 0
original

number
dec. 13

2021222324252627

1 0 11 00 0 0

after

shift left
dec. 26

Shift left → × 2

M. B. Patil, IIT Bombay

Shift left operation

0 1 0 110 0 0 0
original

number
dec. 13

2021222324252627

1 0 11 00 0 0

after

shift left
dec. 26

Shift left → × 2

M. B. Patil, IIT Bombay

Shift left operation

0 1 0 110 0 0 0
original

number
dec. 13

2021222324252627

1 0 11 00 0 0

after

shift left
dec. 26

Shift left → × 2

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1

M. B. Patil, IIT Bombay

Multiplication using shift and add

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

1 1 10

0 0 00 Z

0

Z Z

1 1 1 1 10

ZZZ

11110001

B3B2B1B0

since B0 = 1

since B1 = 0

addition

since B2 = 1

addition

since B3 = 1

addition

Note that Z = 0. We use Z to denote 0s which are
independent of the numbers being multiplied.

(decimal 143)

(decimal 13)

A3A2A1A0 (decimal 11)

initializeZ Z Z Z Z Z Z Z

Register 2 Register 1

since B0 = 1
load 10111 0 1 1

add1 0 1 1 Z Z Z Z

shift1 0 1 1Z Z Z Z

since B1 = 0
load 00000 0 0 0

add0 1 0 1 1 Z Z Z

shiftZ 0 1 0 1 1 Z Z

since B2 = 1
load 10111 0 1 1

add1 1 0 1 1 1 Z Z

shift1 1 0 1 1 1 ZZ

since B3 = 1
load 10110 1 11

add1 0 0 0 1 1 1 1 Z

shiftZ 1 0 0 0 1 1 1 1
M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00

000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 00

0 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 0

0 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

K K K K

J0

1

J J J

CLK

Clear

t

t

t

Clear

Load

CLK

Load

RdRd

SdSd

Rd

Sd

Rd

Sd
Q3 Q0

Q0=A3

A3 A0A2 A1

Q0=A2

Q

Q0=A1Q0=A0

Q1
Q

QQ

Q2
Q

Q

Q

Q

00 000 0 00 0 0 0

* All flip-flops are cleared in the beginning (with Rd = Clear = 1, Sd = 0).

* When Load = 1, Sd = Ai , Rd = 0 → Ai gets loaded into the i th flip-flop.

* Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q0.
→ parallel in-serial out data movement

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters

Reset

State transition diagram General configuration

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

* A counter with k states is called a modulo-k (mod-k) counter.

* A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

* If there are N flip-flops in a counter, there are 2N possible states (since each flip-flop can have Q = 0 or
Q = 1). It is possible to exclude some of these states.
→ N flip-flops can be used to make a mod-k counter with k ≤ 2N .

* Typically, a reset facility is also provided, which can be used to force a certain state to initialize the
counter.

M. B. Patil, IIT Bombay

Counters: example

1

t

t

t

State transition diagram

k

1

2

3

4

CLK

CLK

t

state

0 1 1 0 1 0

0

01

01

11

110

0 0

0

1

0

1

0

1

t5t4t3t2t1

QJ

QK

QJ

QK

QJ

QK

Q0 Q1 Q2

01

2

3

4

5

1

Q0

Q1

Q2

1 1 0

1 1 1

0 1 1

1 0 1

0 0 0

0 0

Q1Q0 Q2

M. B. Patil, IIT Bombay

Counters

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK

X

8T

t

t

Reset

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using appropriate logic.
* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and 0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided by k. For this reason, a
mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

Counters

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK

X

8T

t

t

Reset

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using appropriate logic.

* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and 0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided by k. For this reason, a
mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

Counters

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1

CLK

X

8T

t

t

Reset

Clock Counter

Decoding
logic

k

1

2

3

4

Q0

Q1

Q2

QN−1

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q0, Q1, · · · QN−1) can be decoded using appropriate logic.
* In particular, it is possible to have a decoder output (say, X) which is 1 only for state i , and 0 otherwise.
→ For k clock pulses, we get a single pulse at X , i.e., the clock frequency has been divided by k. For this reason, a
mod-k counter is also called a divide-by-k counter.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.
* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal

flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.

* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.
* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal

flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.

* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.
* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal

flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.

* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal
flip-flip operation.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

CLK

J

FF0 FF1 FF2CLK

1

Q0

Q1 Q2Q0

Q1

Q2

Q Q

Q Q

Q

Q

0

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

00 repeats

Q2 Q1 Q0

* J = K = 1 for all flip-flops. Let Q0 = Q1 = Q2 = 0 initially.
* Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
* For FF1 and FF2, Q0 and Q1, respectively, provide the clock.
* Note that the direct inputs Sd and Rd (not shown) are assumed to be Sd = Rd = 0 for all flip-flops, allowing normal

flip-flip operation. M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8, respectively. For this counter,
therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8, respectively. For this counter,
therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8, respectively. For this counter,
therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops.

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* The counter has 8 states, Q2Q1Q0 = 000, 001, 010, 011, 100, 101, 110, 111.
→ it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

* If the clock frequency is fc , the frequency at the Q0, Q1, Q2 outputs is fc/2, fc/4, fc/8, respectively. For this counter,
therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.

* This type of counter is called a “ripple” counter since the clock transitions ripple through the flip-flops. M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

1

1

0

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* If positive edge-triggered flip-flops are used, we get a binary down counter (counting down from 111 to 000).

M. B. Patil, IIT Bombay

A binary ripple counter

K

J

K K

J

t

t

t

t

0

1

1

0

0

1

1

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

0

1

1

0

CLK

J

FF0 FF1 FF2CLK

1

00 repeats

Q2 Q1

Q0

Q1 Q2Q0

Q1

Q2

Q0

Q Q

Q Q

Q

Q

* If positive edge-triggered flip-flops are used, we get a binary down counter (counting down from 111 to 000).

M. B. Patil, IIT Bombay

Binary ripple counters

1

J

K

J

K

J

K K

J

KK

J J

1

FF0 FF1 FF2

FF0 FF1 FF2

CLK

CLK

Q0

Q0

Q1

Q1

Q2

Q2

Q

Q

Q

Q

Q

Q

Q

Q Q

Q

Q

Q

* Home work: Sketch the waveforms (CLK, Q0, Q1, Q2), and tabulate the counter states in each case.

M. B. Patil, IIT Bombay

Up-down binary ripple counters

CLK

K K

J

K

JJ

FF0 FF1 FF2CLK

1

t

t

t

t

CLK

t

t

t

t

M=1 M=0

Q0 Q1 Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q Q

Q Q

Q

Q

M

M

* When Mode (M) = 1, the counter counts up; else, it counts down. (SEQUEL file: ee101 counter 3.sqproj)

M. B. Patil, IIT Bombay

Up-down binary ripple counters

CLK

K K

J

K

JJ

FF0 FF1 FF2CLK

1

t

t

t

t

CLK

t

t

t

t

M=1 M=0

Q0 Q1 Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q Q

Q Q

Q

Q

M

M

* When Mode (M) = 1, the counter counts up; else, it counts down. (SEQUEL file: ee101 counter 3.sqproj)

M. B. Patil, IIT Bombay

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

K K

J J

K

J

K

0

J

FF0 FF1 FF2 FF3CLK

1

0 0 0 0 repeats

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (msec)

Q2Q3

Q3

Q2

Q1

Q0

Q1

Q3Q2Q1Q0

Q0

Q

Q

Q

Q

Q

Q Q

Q

Rd Rd

Sd Sd Sd

Rd Rd

Sd

SEQUEL file: ee101 counter 5.sqproj

Decade counter using direct inputs

* When the counter reaches
Q3Q2Q1Q0 = 1010 (i.e., decimal 10),
Q3Q1 = 1, and the flip-flops are
cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000
(decimal 0) to 1001 (decimal 9)
→ “decade counter.”

M. B. Patil, IIT Bombay

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

K K

J J

K

J

K

0

J

FF0 FF1 FF2 FF3CLK

1

0 0 0 0 repeats

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (msec)

Q2Q3

Q3

Q2

Q1

Q0

Q1

Q3Q2Q1Q0

Q0

Q

Q

Q

Q

Q

Q Q

Q

Rd Rd

Sd Sd Sd

Rd Rd

Sd

SEQUEL file: ee101 counter 5.sqproj

Decade counter using direct inputs

* When the counter reaches
Q3Q2Q1Q0 = 1010 (i.e., decimal 10),
Q3Q1 = 1, and the flip-flops are
cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000
(decimal 0) to 1001 (decimal 9)
→ “decade counter.”

M. B. Patil, IIT Bombay

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0 01 1

0

1

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

0

K K

J J

K

J

K

0

J

FF0 FF1 FF2 FF3CLK

1

0 0 0 0 repeats

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time (msec)

Q2Q3

Q3

Q2

Q1

Q0

Q1

Q3Q2Q1Q0

Q0

Q

Q

Q

Q

Q

Q Q

Q

Rd Rd

Sd Sd Sd

Rd Rd

Sd

SEQUEL file: ee101 counter 5.sqproj

Decade counter using direct inputs

* When the counter reaches
Q3Q2Q1Q0 = 1010 (i.e., decimal 10),
Q3Q1 = 1, and the flip-flops are
cleared to Q3Q2Q1Q0 = 0000.

* The counter counts from 0000
(decimal 0) to 1001 (decimal 9)
→ “decade counter.”

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)
* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.

* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)
* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.

* FF0 toggles after every active edge.
FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

A synchronous counter

K

J

K

J

K

J

K

1

t

t

t

t

t

J

FF0 FF1 FF2 FF3

CLK

CLK

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q

Q

Q

Q

Q

Q

Q

Q

* Since all flip-flops are driven by the same clock, the counter is called a “synchronous” counter.
* J0 = K0 = 1, J1 = K1 = Q0, J2 = K2 = Q1Q0, J3 = K3 = Q2Q1Q0.
* FF0 toggles after every active edge.

FF1 toggles if Q0 = 1 (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)
* From the waveforms, we see that it is a binary up counter.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1

KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.

→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10

1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01

X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1

X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

CLK J K

CLK

K

J Qn

Qn

Q

Q

0

0 1

1 0

1 1

0

0

1

Qn+1 KCLK JQn+1Qn

0 0 X0

10 1 X

01 X 1

1 1 X 0

* Consider the reverse problem: We are given Qn and the next desired state (Qn+1). What should J and K be in order to
make that happen?

* Qn = 0, Qn+1 = 0: We can either force Qn+1 = 0 with J = 0, K = 1, or let Qn+1 = Qn by making J = 0, K = 0.
→ J = 0, K = X (i.e., K can be 0 or 1).

* Similarly, work out the other entries in the table.

* The table for a negative edge-triggered flip-flop would be identical except for the active edge.

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

1

2

3

4

5

K K K

CLK

J

J Kstate

1 0 0 0
CLK

J J

repeats

Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn Qn+1

K2 K1 K0

J2 J1 J0
Q

Q2

Q

Q

Q

Q1
Q

Q

Q0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State 1 → State 2 means
Q2: 0→ 0,
Q1: 0→ 0,
Q0: 0→ 1.

* Refer to the right table. For Q2: 0→ 0, we must have J2 = 0, K2 = X , and so on.

* When we cover all transitions in the left table, we have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2.

* The last step is to come up with suitable functions for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. This can be done
with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn

0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn

0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X

0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X

1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X

1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X

X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X

X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0

1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X

X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1

X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1

0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X

0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

CLK J K

K0J0K1J1K2J2Q2 Q1 Q0

0 0

0

0

1

1

1 1

X

1 X

X 1

X 0

0

Qn+1Qn
0 X 0 X 1 X

0 X 1 X X 1

0 X X 0 1 X

1 X X 1 X 1

X 1 0 X 0 X

* We now have the truth tables for J0, K0, J1, K1, J2, K2 in terms of Q0, Q1, Q2. The next step is to find
logical functions for each of them.

* Note that we have not tabulated the J and K values for those combinations of Q0, Q1, Q2 which do not
occur in the state transition table (such as Q2Q1Q0 = 110). We treat these as don’t care conditions.

M. B. Patil, IIT Bombay

Design of synchronous counters

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

X0 0

0 11

0

00 01 11 10

0

1

X 0

1 X

00 01 11 10

0

1 X X

011

1

0

00 01 11 10

X X

1 1

X

0

1

X 0 X

X 1

00 01 11 10

00 01 11 10

0

1

X X 1

X X

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

0

Q2Q1 Q2Q1

Q0Q0

Q2Q1 Q2Q1

Q0Q0

Q2Q1

Q0

Q2Q1

Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2

Q2 Q1 Q0

X

X X

X

X X

X

X X X X

X

X X

X

X X

X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions. Since these are different
from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five
allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

X0 0

0 11

0

00 01 11 10

0

1

X 0

1 X

00 01 11 10

0

1 X X

011

1

0

00 01 11 10

X X

1 1

X

0

1

X 0 X

X 1

00 01 11 10

00 01 11 10

0

1

X X 1

X X

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

0

Q2Q1 Q2Q1

Q0Q0

Q2Q1 Q2Q1

Q0Q0

Q2Q1

Q0

Q2Q1

Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2

Q2 Q1 Q0

X

X X

X

X X

X

X X X X

X

X X

X

X X

X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions. Since these are different
from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five
allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

X0 0

0 11

0

00 01 11 10

0

1

X 0

1 X

00 01 11 10

0

1 X X

011

1

0

00 01 11 10

X X

1 1

X

0

1

X 0 X

X 1

00 01 11 10

00 01 11 10

0

1

X X 1

X X

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

0

Q2Q1 Q2Q1

Q0Q0

Q2Q1 Q2Q1

Q0Q0

Q2Q1

Q0

Q2Q1

Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2

Q2 Q1 Q0

X

X X

X

X X

X

X X X X

X

X X

X

X X

X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions. Since these are different
from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five
allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters

0 0X X X1

0 X 1 X X 1

0 X X 0 1 X

1 X X X1 1

1 0 X 0 XX

X0 0

0 11

0

00 01 11 10

0

1

X 0

1 X

00 01 11 10

0

1 X X

011

1

0

00 01 11 10

X X

1 1

X

0

1

X 0 X

X 1

00 01 11 10

00 01 11 10

0

1

X X 1

X X

00 01 11 10

state

0

12

3

4

5

1 0 0

00

0 1 0

0 1 1

1 0 0

1 0 0 0

0

Q2Q1 Q2Q1

Q0Q0

Q2Q1 Q2Q1

Q0Q0

Q2Q1

Q0

Q2Q1

Q0

K0

K0

J0

J0

K1

K1

J1

J1

K2

K2

J2

J2

Q2 Q1 Q0

X

X X

X

X X

X

X X X X

X

X X

X

X X

X

* We treat the unused states (Q2Q1Q0 = 101, 110, 111) as (additional) don’t care conditions. Since these are different
from the don’t care conditions arising from the state transition table, we mark them with a different colour.

* We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five
allowed states (say, Q2Q1Q0 = 000).

* From the K-maps, J2 = Q1Q0, K2 = 1, J1 = Q0, K1 = Q0, J0 = Q2, K0 = 1.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

K K K

J J J

CLK

1

CLK

 0.04 0.14 0.24 0.34

time (msec)

SEQUEL file: ee101 counter 6.sqproj

K2 K1 K0

J0
Q

Q Q

Q2
Q

Q1

Q

Q
Q0J2 J1

Q0

Q1

Q2

* J2 =Q1Q0,

K2 = 1,

J1 =Q0,

K1 =Q0,

J0 =Q2,

K0 = 1.

* Note that the design is independent
of whether positive or negative
edge-triggered flip-flops are used.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

K K K

J J J

CLK

1

CLK

 0.04 0.14 0.24 0.34

time (msec)

SEQUEL file: ee101 counter 6.sqproj

K2 K1 K0

J0
Q

Q Q

Q2
Q

Q1

Q

Q
Q0J2 J1

Q0

Q1

Q2

* J2 =Q1Q0,

K2 = 1,

J1 =Q0,

K1 =Q0,

J0 =Q2,

K0 = 1.

* Note that the design is independent
of whether positive or negative
edge-triggered flip-flops are used.

M. B. Patil, IIT Bombay

Design of synchronous counters: verification

K K K

J J J

CLK

1

CLK

 0.04 0.14 0.24 0.34

time (msec)

SEQUEL file: ee101 counter 6.sqproj

K2 K1 K0

J0
Q

Q Q

Q2
Q

Q1

Q

Q
Q0J2 J1

Q0

Q1

Q2

* J2 =Q1Q0,

K2 = 1,

J1 =Q0,

K1 =Q0,

J0 =Q2,

K0 = 1.

* Note that the design is independent
of whether positive or negative
edge-triggered flip-flops are used.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 1

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Decoding

Logic

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 1 2 3 1

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 1 1 1 2 2 2 2 3 3 3 3 1 1 1 1 2

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: example

K K K K

t t

CLK

t t

t

t

mod−2 counter mod−5 counter

J

CLK

1

CLK

1

J JJ

CLK

Q0 Q0

Q1

Q2

J0

K0

Q

Q
Q0 J2

K2

Q

Q Q

Q0
Q

K0

Q

Q
K1

Q2 J0Q1J1

M. B. Patil, IIT Bombay

Combination of counters: example

K K K
K

J

CLK

1

t

t

t

t

t

CLK

1

J JJ

51 2 3 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10

QA

Q0

Q1

Q2

SEQUEL file: ee101 counter 7.sqproj

JA

KA

Q

Q
QA

J2

K2

Q

Q Q

Q0
Q

K0

Q

Q
K1

Q2 J0Q1J1

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: Approach 2

Counter 1

Counter 2

A1

A2

AN1

B1

B2

BN2

mod-k1

mod-k2

Clock 1

Clock 2

k1=4

k2=3

Counter 1

mod-k1

Clock 1

Counter 1 state

Clock 1

4 2 3 41 2 3 41 2 3 41 2 3 41 1

Counter 2

mod-k2

Clock 2

Clock 2

Counter 2 state 13 2 13 3 3 3 31 1 1 12 2 2 2 2

Combined state
2 3 41 2 3 41 2 3 41 2 3 41 14

13 2 3 1 2 2 2 2 23 1 3 1 3 1 13

→ the combined counter is a mod-k1k2 counter.

M. B. Patil, IIT Bombay

Combination of counters: example (same as before)

K K K K

t t

CLK

t t

t

t

mod−2 counter mod−5 counter

J

CLK

1

CLK

1

J JJ

CLK

Q0 Q0

Q1

Q2

J0

K0

Q

Q
Q0 J2

K2

Q

Q Q

Q0
Q

K0

Q

Q
K1

Q2 J0Q1J1

M. B. Patil, IIT Bombay

Combination of counters: example

K K K

t

t

t

t

t

CLK

K

1

J JJ
J

1

CLK

51 2 3 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10

QA

Q0

Q1

Q2

SEQUEL file: ee101 counter 8.sqproj

J2

K2

Q

Q Q

Q0
Q

K0

Q

Q
K1

Q2 J0Q1J1JA

KA

Q

Q
QA

M. B. Patil, IIT Bombay

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common
applications.

* Monostable multivibrator

t

t

T

Vout

Vtrigger

* Astable multivibrator

t

T

Vout

M. B. Patil, IIT Bombay

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common
applications.

* Monostable multivibrator

t

t

T

Vout

Vtrigger

* Astable multivibrator

t

T

Vout

M. B. Patil, IIT Bombay

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common
applications.

* Monostable multivibrator

t

t

T

Vout

Vtrigger

* Astable multivibrator

t

T

Vout

M. B. Patil, IIT Bombay

555 timer

R S

Threshold

Trigger

Discharge

Out
buffer

Q

R

R

R

Q

Q

Q

R

S

1

1

0 0

0

0

1

1 0

0

previous

VCC

OutThreshold

Trigger

Discharge

2VCC

3

VCC

3

Q

Q

R

S

STOP

M. B. Patil, IIT Bombay

555 timer

R S

Threshold

Trigger

Discharge

Out
buffer

Q

R

R

R

Q

Q

Q

R

S

1

1

0 0

0

0

1

1 0

0

previous

VCC

OutThreshold

Trigger

Discharge

2VCC

3

VCC

3

Q

Q

R

S

STOP

M. B. Patil, IIT Bombay

555 timer

R S

Threshold

Trigger

Discharge

Out
buffer

Q

R

R

R

Q

Q

Q

R

S

1

1

0 0

0

0

1

1 0

0

previous

VCC

OutThreshold

Trigger

Discharge

2VCC

3

VCC

3

Q

Q

R

S

STOP

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

T

VC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

T

VC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

T

VC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

T

VC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

TVC (t) = VCC

(
1− e−t/τ

)

→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

TVC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)

→ e−T/τ =
1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

TVC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 monostable multivibrator

VC C

R

OutThreshold

Discharge

Trigger

2VCC

3

VCC

3

Q

Q

R

S

VCC

t

t

t

t

t

Trigger

S

R

Q

VC

to VCC

2VCC

3

TVC (t) = VCC

(
1− e−t/τ

)
→ 2VCC

3
= VCC

(
1− e−T/τ

)
→ e−T/τ =

1

3
→ T = τ log 3 ≈ 1.1 τ

SEQUEL file: ic555 mono 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3

2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Charging:

VC (0) =
VCC

3
, VC (∞) = VCC .

Let VC (t) = Ae−t/τ1 + B

→ B = VCC , A = −2VCC

3
2VCC

3
= −2VCC

3
e−TH/τ1 + VCC

→ TH = τ1 log 2, with τ1 = (Ra + Rb)C .

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

555 astable multivibrator

VC C

Ra

Rb

Out

Discharge

Trigger

Threshold

VCC

3

2VCC

3

Q

Q

R

S

VCC

t

t

t

t

TH TL

S

R

Q

VC

VCC

3

2VCC

3

VCC

0

Discharging: VC (0) =
2VCC

3
, VC (∞) = 0.

→ VC (t) =
2VCC

3
e−t/τ2

VCC

3
=

2VCC

3
e−TL/τ2

→ TL = τ2 log 2, with τ2 = RbC .

SEQUEL file: ic555 astable 1.sqproj

M. B. Patil, IIT Bombay

