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RC circuits with DC sources
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VCVS, VCCS)
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RTh

≡ VTh

* If all sources are DC (constant), VTh = constant .

* KVL: VTh = RTh i + v → VTh = RThC
dv

dt
+ v → dv

dt
+

v

RThC
=

VTh

RThC
.

* Homogeneous solution:

dv

dt
+

1

τ
v = 0 , where τ = RTh C is the “time constant.”

(
V

Coul/sec
× Coul

V

)
→ dv

v
= − dt

τ
→ log v = − t

τ
+ K0 → v (h) = exp [(−t/τ) + K0] = K exp(−t/τ) .

* Particular solution is a specific function that satisfies the differential equation. We know that all time
derivatives will vanish as t →∞ , making i = 0, and we get v (p) = VTh as a particular solution (which
happens to be simply a constant).

* v = v (h) + v (p) = K exp(−t/τ) + VTh .

* In general, v(t) = A exp(−t/τ) + B , where A and B can be obtained from known conditions on v .
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RC circuits with DC sources (continued)
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current sources,
CCVS, CCCS,
VCVS, VCCS)

i

RTh

≡ VTh

* If all sources are DC (constant), we have
v(t) = A exp(−t/τ) + B , τ = RThC .

* i(t) = C
dv

dt
= C × A exp(−t/τ)

(
− 1

τ

)
≡ A′ exp(−t/τ) .

* As t →∞, i → 0, i.e., the capacitor behaves like an open circuit since all derivatives vanish.

* Since the circuit in the black box is linear, any variable (current or voltage) in the circuit can be
expressed as
x(t) = K1 exp(−t/τ) + K2 ,
where K1 and K2 can be obtained from suitable conditions on x(t).
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Plot of f (t)= e−t/τ

t/τ e−t/τ 1− e−t/τ

0.0 1.0 0.0

1.0 0.3679 0.6321

2.0 0.1353 0.8647

3.0 4.9787×10−2 0.9502

4.0 1.8315×10−2 0.9817

5.0 6.7379×10−3 0.9933

* For t/τ = 5, e−t/τ ' 0, 1− e−t/τ ' 1.

* We can say that the transient lasts for about 5 time constants.
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x= t/τ

exp(−x)

1− exp(−x)
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Plot of f (t)=Ae−t/τ + B

* At t = 0, f =A + B.

* As t →∞, f → B.

* The graph of f (t) lies between (A + B) and B.

Note: If A > 0, A + B > B. If A < 0, A + B < B.

* At t = 0,
df

dt
= Ae−t/τ

(
− 1

τ

)
= − A

τ
.

If A > 0, the derivative (slope) at t = 0 is negative; else, it is positive.

* As t →∞,
df

dt
→ 0, i.e., f becomes constant (equal to B).

0 5 τ t

A < 0

A+ B

B

 

0 5 τ t

A > 0

A+ B

B
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RL circuits with DC sources

v

Circuit
A

B

(resistors,
voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS)

i

L

i

v

A

B

L

RTh

≡ VTh

* If all sources are DC (constant), VTh = constant .

* KVL: VTh = RTh i + L
di

dt
.

* Homogeneous solution:

di

dt
+

1

τ
i = 0 , where τ = L/RTh

→ i (h) = K exp(−t/τ) .

* Particular solution is a specific function that satisfies the differential equation. We know that all time
derivatives will vanish as t →∞ , making v = 0, and we get i (p) = VTh/RTh as a particular solution
(which happens to be simply a constant).

* i = i (h) + i (p) = K exp(−t/τ) + VTh/RTh .

* In general, i(t) = A exp(−t/τ) + B , where A and B can be obtained from known conditions on i .
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RL circuits with DC sources (continued)

i
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A

B

(resistors,
voltage sources,
current sources,
CCVS, CCCS,
VCVS, VCCS)

i

L L

RTh

≡ VTh

* If all sources are DC (constant), we have
i(t) = A exp(−t/τ) + B , τ = L/RTh .

* v(t) = L
di

dt
= L× A exp(−t/τ)

(
− 1

τ

)
≡ A′ exp(−t/τ) .

* As t →∞, v → 0, i.e., the inductor behaves like a short circuit since all derivatives vanish.

* Since the circuit in the black box is linear, any variable (current or voltage) in the circuit can be
expressed as
x(t) = K1 exp(−t/τ) + K2 ,
where K1 and K2 can be obtained from suitable conditions on x(t).
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RC circuits: Can Vc change “suddenly?”

i

0 V t

5 V

Vs

Vs

C= 1µFVc

R= 1 k

Vc(0)= 0V

* Vs changes from 0V (at t = 0−), to 5V (at t = 0+). As a result of this change, Vc will rise. How fast
can Vc change?

* For example, what would happen if Vc changes by 1V in 1µs at a constant rate of 1V /1µs = 106 V /s?

* i = C
dVc

dt
= 1µF × 106 V

s
= 1A .

* With i = 1A, the voltage drop across R would be 1000V ! Not allowed by KVL.

* We conclude that Vc (0+) =Vc (0−)⇒ A capacitor does not allow abrupt changes in Vc if there is a finite
resistance in the circuit.

* Similarly, an inductor does not allow abrupt changes in iL.
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RC circuits: charging and discharging transients

t0 V

i

Cv

R

Vs

Vs

V0

(A)Let v(t) = A exp(−t/τ) + B, t > 0

(1)

(2)

Conditions on v(t):

v(0−) = Vs(0
−) = 0 V

v(0+) ≃ v(0−) = 0 V

Note that we need the condition at 0+ (and not at 0−)

because Eq. (A) applies only for t > 0.

As t → ∞ , i → 0 → v(∞) = Vs(∞) = V0

Imposing (1) and (2) on Eq. (A), we get

i.e., B = V0 ,A = −V0

t = 0+: 0 = A+ B ,

t → ∞: V0 = B .

v(t) = V0 [1− exp(−t/τ)]

0 V

i

t

Cv

R
Vs

Vs

V0
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Imposing (1) and (2) on Eq. (A), we get

t = 0+: V0 = A+ B ,

i.e., A = V0 ,B = 0
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v(t) = V0 exp(−t/τ)
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RC circuits: charging and discharging transients
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Analysis of RC/RL circuits with a piece-wise constant source

* Identify intervals in which the source voltages/currents are constant.
For example,

(1) t < t1

(3) t > t2

(2) t1 < t < t2

t1 t2

Vs

0 t

* For any current or voltage x(t), write general expressions such as,
x(t) = A1 exp(−t/τ) + B1 , t < t1 ,
x(t) = A2 exp(−t/τ) + B2 , t1 < t < t2 ,
x(t) = A3 exp(−t/τ) + B3 , t > t2 .

* Work out suitable conditions on x(t) at specific time points using

(a) If the source voltage/current has not changed for a “long” time
(long compared to τ), all derivatives are zero.

⇒ iC = C
dVc

dt
= 0 , and VL = L

diL

dt
= 0 .

(b) When a source voltage (or current) changes, say, at t = t0 ,
Vc (t) or iL(t) cannot change abruptly, i.e.,

Vc (t+
0 ) = Vc (t−0 ) , and iL(t+

0 ) = iL(t−0 ) .

* Compute A1, B1, · · · using the conditions on x(t).
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Vc (t) or iL(t) cannot change abruptly, i.e.,

Vc (t+
0 ) = Vc (t−0 ) , and iL(t+

0 ) = iL(t−0 ) .

* Compute A1, B1, · · · using the conditions on x(t).
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RL circuit: example

i

v

t

10 V

t0 t1

R2

R1

Vs

Vs

R1= 10Ω

R2= 40Ω

L= 0.8H

t0=0

t1=0.1 s

Find i(t).

(1) t < t0

(2) t0 < t < t1

(3) t > t1

There are three intervals of constant Vs:

R2

R1

Vs

RTh seen by L is the same in all intervals:

τ = L/RTh

= 0.1 s

= 0.8 H/8Ω

RTh = R1 ‖ R2 = 8Ω

⇒ i(t−0 ) = 0 A ⇒ i(t+0 ) = 0 A .

At t = t−0 , v = 0 V, Vs = 0 V .

10 V

t

v(∞) = 0 V, i(∞) = 10 V/10 Ω = 1 A .

If Vs did not change at t = t1,

we would have

t1t0

Vs

i(t), t > 0 (See next slide).

Using i(t+0 ) and i(∞), we can obtain
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RL circuit: example

i

v

t

10 V

 0  0.2  0.4  0.6  0.8

i 
(A

m
p
)

 1

 0

time (sec)

t1t0

R2

R1

Vs

Vs

R1 = 10Ω

R2 = 40Ω

L = 0.8H

t0 = 0

t1 = 0.1 s

and we need to work out the

solution for t > t1 separately.

In reality, Vs changes at t = t1,

Consider t > t1.

For t0 < t < t1, i(t) = 1− exp(−t/τ) Amp.

i(t+1 ) = i(t−1 ) = 1− e−1 = 0.632 A (Note: t1/τ = 1).

i(∞) = 0 A.

Let i(t) = A exp(−t/τ) + B.

It is convenient to rewrite i(t) as

i(t) = A′ exp[−(t− t1)/τ ] + B.

Using i(t+1 ) and i(∞), we get

i(t) = 0.632 exp[−(t− t1)/τ ] A.
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Combining the solutions for t0 < t < t1 and t > t1,

we get
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RC circuit: The switch has been closed for a long time and opens at t = 0.

t=0
i

5 k 1 k

6 V

R2R1

ic

R3=5k

vc
5 µF

AND

i i

5 k
1 k

5 k

5 k

5 k

6 V

ic

t < 0

ic

vc

t > 0

vc
5µF 5µF

t = 0−: capacitor is an open circuit ⇒ i(0−) = 6 V/(5 k+ 1 k) = 1 mA.

vc(0
−) = i(0−)R1 = 5V ⇒ vc(0

+) = 5V

⇒ i(0+) = 5 V/(5 k+ 5 k) = 0.5 mA.

Let i(t) = Aexp(-t/τ) + B for t > 0, with τ = 10 k× 5µF = 50 ms.

i(t) = 0.5 exp(-t/τ) mA.

Using i(0+) and i(∞) = 0 A, we get
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RC circuit: example
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0 < t < T1 Let V
(1)
C (t) = Ae−t/τ + B

V
(1)
C (0) = V1, V

(1)
C (∞) = V0

→ B = V0, A = V1 − V0.

V
(1)
C (t) = −(V0 − V1)e−t/τ + V0 (1)

T1 < t < T2 Let V
(2)
C (t) = A′ e−t/τ + B′

V
(2)
C (T1) = V2, V

(2)
C (∞) = 0

→ B′ = 0, A′ = V2 eT1/τ .

V
(2)
C (t) = V2e−(t−T1)/τ (2)

Now use the conditions:

V
(1)
C (T1) = V2, V

(2)
C (T1 + T2) = V1.

V2 = −(V0 − V1)e−T1/τ + V0 (3)

V1 = V2e−(T1+T2−T1)/τ = V2e−T2/τ (4)

Rewrite with a ≡ e−T1/τ , b ≡ e−T2/τ .

V2 = −(V0 − V1)a + V0 (5)

V1 = b V2 (6)

Solve to get

V1 = b V0
1− a

1− ab
, V2 = V0

1− a

1− ab
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V
(1)
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Method 2:
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STOP

M. B. Patil, IIT Bombay



RC circuit: example

VS

R

C Vc

iC

0

I1

−I2

iC

VC

VS

V0

V2

V1

0

T1 T2

T1 T2

V1 = b V0
1− a

1− ab
, V2 = V0

1− a

1− ab
, with a = e−T1/τ , b = e−T2/τ .

V
(1)
C (t) = −(V0 − V1)e−t/τ + V0, V

(2)
C (t) = V2e−(t−T1)/τ .

Current calculation:

Method 1:

iC (t) = C
dVC

dt
(home work)

Method 2:

Start from scratch!

STOP

M. B. Patil, IIT Bombay



RC circuit: example

VS

R

C Vc

iC

0

I1

−I2

iC

VC

VS

V0

V2

V1

0

T1 T2

T1 T2

V1 = b V0
1− a

1− ab
, V2 = V0

1− a

1− ab
, with a = e−T1/τ , b = e−T2/τ .

V
(1)
C (t) = −(V0 − V1)e−t/τ + V0, V

(2)
C (t) = V2e−(t−T1)/τ .

Current calculation:

Method 1:

iC (t) = C
dVC

dt
(home work)

Method 2:

Start from scratch!

STOP

M. B. Patil, IIT Bombay



RC circuit: example

VS

R

C Vc

iC

0

I1

−I2

iC

VC

VS

V0

V2

V1

0

T1 T2

T1 T2

V1 = b V0
1− a

1− ab
, V2 = V0

1− a

1− ab
, with a = e−T1/τ , b = e−T2/τ .

V
(1)
C (t) = −(V0 − V1)e−t/τ + V0, V

(2)
C (t) = V2e−(t−T1)/τ .

Current calculation:

Method 1:

iC (t) = C
dVC

dt
(home work)

Method 2:

Start from scratch!

STOP

M. B. Patil, IIT Bombay



RC circuit: example

VS

R

C Vc

iC

0

I1

−I2

iC

VC

VS

V0

V2

V1

0

T1 T2

T1 T2

V1 = b V0
1− a

1− ab
, V2 = V0

1− a

1− ab
, with a = e−T1/τ , b = e−T2/τ .

V
(1)
C (t) = −(V0 − V1)e−t/τ + V0, V

(2)
C (t) = V2e−(t−T1)/τ .

Current calculation:

Method 1:

iC (t) = C
dVC

dt
(home work)

Method 2:

Start from scratch!

STOP

M. B. Patil, IIT Bombay



RC circuit: example

VS

R

C Vc

iC

0

I1

−I2

iC

VC

VS

V0

V2

V1

0

T1 T2

T1 T2

V1 = b V0
1− a

1− ab
, V2 = V0

1− a

1− ab
, with a = e−T1/τ , b = e−T2/τ .

V
(1)
C (t) = −(V0 − V1)e−t/τ + V0, V

(2)
C (t) = V2e−(t−T1)/τ .

Current calculation:

Method 1:

iC (t) = C
dVC

dt
(home work)

Method 2:

Start from scratch!

STOP

M. B. Patil, IIT Bombay



RC circuit: example

VS

R

C Vc

iC

0

I1

−I2

iC
∆

VC

VS

V0

V2

V1

0
T1 T2

T1 T2

∆

0 < t < T1 Let i
(1)
C (t) = Ae−t/τ + B

i
(1)
C (0) = I1, i

(1)
C (∞) = 0

→ B = 0, A = I1.

i
(1)
C (t) = I1e−t/τ (1)

T1 < t < T2 Let i
(2)
C (t) = A′ e−t/τ + B′

i
(2)
C (T1) = −I2, i

(2)
C (∞) = 0

→ B′ = 0, A′ = −I2 eT1/τ .

i
(2)
C (t) = −I2e−(t−T1)/τ (2)

Now use the conditions:

i
(1)
C (T1)− i

(2)
C (T1) = ∆ = V0/R,

i
(1)
C (0)− i

(2)
C (T1 + T2) = ∆ = V0/R.

I1e−T1/τ − (−I2) = ∆ (3)

I1 − (−I2e−(T1+T2−T1)/τ ) = ∆ (4)

a I1 + I2 = ∆ (5)

I1 + b I2 = ∆ (6)

Solve to get

I1 = ∆
1− b

1− ab
, I2 = ∆

1− a

1− ab

(a = e−T1/τ , b = e−T2/τ )
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Charge conservation:

Periodic steady state: All quantities are periodic, i.e.,
x(t0 + T ) = x(t0)

Capacitor charge: Q(t0 + T ) = Q(t0)

iC =
dQ

dt
→ Q =

∫
iC dt.

Q(t0 + T ) = Q(t0)→ Q(t0 + T )− Q(t0) = 0
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iC dt.
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