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Bipolar junction transistors
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* A bipolar junction transistor (BJT) consists of two pn junction diodes connected back to back.

* A BJT is a three-terminal device; the terminals are called emitter, base, and collector.

* There are two types of BJTs: pnp and npn.

* The actual device construction is different than the above schematic diagram (to be discussed).

* For the device to work as a transistor (rather than two independent diodes), the two junctions must be
“close.”
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Basic operation
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* If V1 is varied, p(x) varies → Ip(W ) ∝
dp

dx
(W ) varies, i.e., by changing V1, I2 can be controlled. This is the basic transistor action.

* If the two junctions are not sufficiently close, the device behaves like two independent diodes connected back-to-back, and there is no
transistor action.
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pnp and npn transistors
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* In the “active” or “linear” mode, the

B-E junction is under forward bias, the

B-C junction is under reverse bias.

* The B-E voltage (magnitude) is

restricted to about 0.8 V in a

low-power silicon BJT, as in a

forward-biased diode.

* The B-C voltage (magnitude) can be

much larger than the B-E voltage and

is limited by breakdown phenomena.

* pnp transistor: Holes are injected

from the emitter. Most of them reach

the B-C depletion layer, get swept

away by the field there, and get

collected by the collector.

* npn transistor: Electrons are injected

from the emitter. Most of them reach

the B-C depletion layer, get swept

away by the field there, and get

collected by the collector.
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* The emitter arrow in the BJT symbol

indicates the direction of the emitter

current when the BJT is operating in

the active mode (for both pnp and

npn BJTs).

* The collector current IC is a fraction

of the emitter current: IC = αIE .

For a good transistor, α≈ 1.

* The three currents satisfy KCL, i.e.,

IE = IC + IB . Substituting for IC , we

get IB = (1− α) IE .

* Note that the diagrams are not drawn

to scale. In reality, for a silicon BJT,

the depletion regions would be

narrower.
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BJT in active mode

IB= (1− α) IE
IB= (1− α) IE

IB

IE IC IE IC

IB

IC=αIEIEIC=αIEIE

E C

B

E C

B

E CCE

VEB VBC
VBE VCB

B (base)

(emitter) (collector)

B (base)

(emitter) (collector)

* The “common-emitter current gain” β – a figure of merit of a BJT – is defined as β= IC/IB .

* β =
IC

IB
=

αIE

(1− α)IE
=

α

1− α .

* For a typical discrete low-power transistor such as BC107A, β is in the range of 100 to 200.

α 1− α β=α/(1− α)

0.9 0.1 9

0.95 0.05 19

0.99 0.01 99

0.995 0.005 199
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* For a typical discrete low-power transistor such as BC107A, β is in the range of 100 to 200.

α 1− α β=α/(1− α)

0.9 0.1 9

0.95 0.05 19

0.99 0.01 99

0.995 0.005 199
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BJT modes of operation

E
(Emitter)

B (Base)

C
(Collector)

E
(Emitter)

B (Base)

C
(Collector)

n pp n p n

Mode B-E junction B-C junction

Active (linear) forward reverse

Cutoff reverse reverse

Saturation forward forward

Inverse active reverse forward

* In analog circuits, BJTs are generally biased to operate in the active mode.

* BJT as a switch:

- Closed: saturation mode

- Open: cutoff mode
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Device structure (pnp transistor)

p+

p n+

p+
Rsub

n

p epi-layer

Emitter
Base

Collector

x
y

z

rb

insulator

(substrate)

* The substrate thickness is hundreds of microns whereas

the p epi-layer and the rest of the device structure is

confined to a few microns.

* The p+ substrate can be treated as a small resistance

Rsub.

* The “active” region of the device is only the top few

microns (the p epi-layer).

* The figure is not drawn to scale. Typically, the y and z

dimensions are much larger than the p epi thickness.

* Because the contact region dimensions are much larger

than the base width (∼ the width of the n base region),

the device can be considered to be one-dimensional in

nature.

* A “base resistance” rb exists between the base region and

the base contact. To keep rb small, the base contact is

made close to the emitter.
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Device structure (pnp transistor)
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NB
d
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* For simplicity, we will assume the doping densities to be constant in the emitter, base, and collector regions.

* The relationship NE
a > NB

d > NC
a , which is a consequence of the fabrication process, is also desirable from the

device performance angle.
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BJT structure in integrated circuits (npn transistor)

n+

p+

p+ substrate

n+ buried layer

substrate
contact

n+p+

epi-layer

insulator

p

n

contact
base
contact

emitter
contact

collector

∼ 5µm

> 250µm

(Not drawn to scale. Typically, the
horizontal dimensions are much larger
than the junction depths.)

* To make an integrated circuit (IC), a large number of transistors are fabricated on a single silicon piece

and interconnected as required.

* The BJTs are isolated from each other using reverse-biased pn junctions.

* Contacts (E, B, C) are made on the top surface for connecting to other transistors.

* An n+ buried layer is used to provide a low-resistance path for the electron current.
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Dependence of α on device parameters

x= 0 x=W

C-B
depletion
region

E-B
depletion
region

emitter
current

collector
current

E (p) B (n) C (p)

base

recombination

x= 0 x=W

C-B
depletion
region

E-B
depletion
region

emitter
current

collector
current

base

E (n) B (p) C (n)

recombination

Consider a pnp transistor.

* IE has a hole component and an electron component. Of these, only the hole component contributes to IC .

We define “emitter injection efficiency” (or simply “injection efficiency”) as γ =
IpE

IE
=

IpE

IpE + InE
.

* Some of the injected holes are lost due to recombination in the neutral base region (we will ignore G-R in the

B-C depletion regions).

We define “base transport factor” as αT =
IpC

IpE
.
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Dependence of α on device parameters
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Since the C-B junction is reverse biased, the pn junction current arising because of VCB is negligibly small.

→ IC is entirely due to the holes injected by the emitter which make it to the C-B depletion boundary (x =W ), i.e.,

IC ≈ IpC = αT IpE = αT (γ IE )→ α =
IC

IE
= γ αT .

→ For α≈ 1, both γ and αT must be close to 1.
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n(x)

W0

p(x)

n0E

xE

E-B
depletion
region

C-B
depletion
region

B (n) C (p)E (p)

We assume that the emitter width is greater than 5 Ln.

Neglecting the drift components for minority carriers in the emitter and base neutral regions, we get

DnE
d2∆n

dx2
− ∆n

τnE
= 0, x < xE , with

∆n(xE ) = n0E

[
exp

(
VEB

VT

)
− 1

]
,

∆n(−∞) = 0.

DpB
d2∆p

dx2
− ∆p

τpB
= 0, 0 < x <W , with

∆p(0) = p0B

[
exp

(
VEB

VT

)
− 1

]
,

∆p(W ) = p0B

[
exp

(
VCB

VT

)
− 1

]
.
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Dependence of α on device parameters
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Solution: ∆n(x) = ∆n(xE ) e−(xE−x)/LnE , x < xE ,
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InE = qADnE
dn

dx
(xE ) = qADnE

d∆n

dx
(xE )

=
qADnE

LnE
∆n(xE ) =

qADnE

LnE
n0E

(
eVEB/VT − 1

)
,

IpE = −qADpB
dp

dx
(0) = −qADpB

d∆p

dx
(0)

=
qADpB

LpB
p0B

(
eVEB/VT − 1

) cosh(W /LpB)

sinh(W /LpB)
.

γ =
IpE

IpE + InE
=

1

1 + (InE/IpE )

=
1

1 +

(
DnE

DpB

LpB

LnE

NdB

NaE

)
sinh(W /LB)

cosh(W /LB)

,

since
n0E

p0B
=

n2
i

NaE
× NdB

n2
i

=
NdB

NaE
.
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Base transport factor

x= 0 x=W

W/LpB = 0.5

x/W

∆
p(
x)
/∆

p(
0)

1

2

n(x)

p(x) emitter
current

collector
current

E (p) B (n) C (p)

base

B (n) C (p)E (p)

recombination

1

0
0 0.2 0.4 0.6 0.8 1

∆p(x) = ∆p(0)

sinh

(
W − x

LpB

)
sinh

(
W

LpB

) + ∆p(W )

sinh

(
x

LpB

)
sinh

(
W

LpB

) .

IC ≈ IpC = −qADpB
d∆p

dx
(W )

=
qADpB

LpB
p0B

(
eVEB/VT − 1

) 1

sinh(W /LB)
.

The base transport factor is (using IpE from the last slide),

αT =
IpC

IpE
=

1

cosh(W /LpB)
.
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αT with W � LpB
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sinh
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sinh

(
W

LpB
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αT =
IpC

IpE
=

1

cosh(W /LpB)
≈ 1

1 +
1

2

(
W

LpB

)2
.

Remark: αT → 1 if the base width W is made small compared to LpB .
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* γ → 1 if NaE � NdB .

* It is now clear why a higher doping density in the emitter region

(compared to the base doping density) is desirable.
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Example

x= 0 x=W

n(x)

p(x) emitter
current

collector
current

E (p) B (n) C (p)

base

B (n) C (p)E (p)

recombination

Consider a pnp BJT with NaE = 1018 cm−3, NdB = 5× 1016 cm−3, NaC = 1015 cm−3, and with

a base width W = 2µm (T = 300 K).

(a) Calculate αT , γ, α, and β, using the following parameters.

µnE = 250 cm2/V-s, µpB = 500 cm2/V-s, µnC = 1500 cm2/V-s,

τnE = 0.2µs, τpB = 1µs, τnC = 1µs.

(b) Repeat (a) for the BJT operating in the reverse active mode.
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Example

x= 0 x=W

n(x)

p(x) emitter
current

collector
current

E (p) B (n) C (p)

base

B (n) C (p)E (p)

recombination

Solution:

The minority carrier diffusion lengths are

LnE =
√
DnE τnE =

√
VTµnE τnE =

√
0.0258× 250× 0.2× 10−6 = 1.14× 10−3 cm = 11.4µm.

LpB =
√

DpBτpB =
√

VTµpBτpB =
√

0.0258× 500× 1× 10−6 = 3.59× 10−3 cm = 35.9µm.

LnC =
√
DnC τnC =

√
VTµnC τnC =

√
0.0258× 1500× 1× 10−6 = 6.22× 10−3 cm = 62.2µm.

Note that LpB �W (2µm).
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Example

x= 0 x=W

n(x)
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current

collector
current

E (p) B (n) C (p)

base

B (n) C (p)E (p)

recombination

(a)
DnE

DpB

W

LnE

NdB

NaE
=
µnE

µpB

W

LnE

NdB

NaE
=

250

500

2× 10−4

1.14× 10−3

5× 1016

1018
= 4.386× 10−3.

γ =
1

1 + 4.386× 10−3
= 0.9956.

αT =
1

1 + 1
2

(W /LpB)2
=

1

1 + 1
2

(2.0/35.9)2
= 0.9985.

α = γαT = 0.9940→ β =
α

1− α = 166.
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Example

x= 0 x=W

n(x)

p(x) emitter
current

collector
current

E (p) B (n) C (p)

base

B (n) C (p)E (p)

recombination

(b) With E ↔ C ,

DnE

DpB

W

LnE

NdB

NaE
→ DnC

DpB

W

LnC

NdB

NaC
=
µnC

µpB

W

LnC

NdB

NaC
=

1500

500

2× 10−4

6.22× 10−3

5× 1016

1015
= 4.823.

γ =
1

1 + 4.823
= 0.1717, αT =

1

1 + 1
2

(2/35.9)2
= 0.9985.

→ α = γ αT = 0.1714 → β = 0.2, a disaster.

Conclusion: NaE � NdB is crucial.

(Note that we have treated W as a constant, but it would vary with bias conditions.)
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γ with W << LpB

x= 0 x=WxEn
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collector
current

E (p) B (n) C (p)

base

B (n) C (p)E (p)

recombination

InE = −q ADnE
d

dx

[
n0E exp

(
VEB

VT

)
exp

(
− xEn − x

LnE

)]
at x = xEn

= q ADnE n0E exp

(
VEB

VT

)
× 1

LnE

IpE ≈ q ADpB p0B exp

(
VEB

VT

)
× 1

W

InE

IpE
≈ DnE

DpB

n0E

p0B

W

LnE
=

DnE

DpB

n2
i

NaE

NdB

n2
i

W

LnE
=

DnE

DpB

NdB
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W

LnE
.
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αT with W � LpB

x= 0 x=W

W/LpB = 0.5

x/W

∆
p(
x)
/∆

p(
0)

1

2

emitter
current

collector
current

E (p) B (n) C (p)

base

recombination

1

1

0
0 0.2 0.4 0.6 0.8

When W � LpB , ∆p(x) is linear.

αT =
IpC

IpE
=

IpC

IpC + IpB
=

1

1 +
IpB

IpC

.

IpC = −q ADpB
dp

dx
(W ) ≈ q ADpB

∆p(0)

W
.

IpB =
Qp

τpB
=

q A 1
2

∆p(0)W

τpB
→ αT ≈

1

1 +
1

2

(
W

LpB

)2
.
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