
Semiconductor Devices

Carrier Transport: Part 1

M. B. Patil
mbpatil@ee.iitb.ac.in

www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

M. B. Patil, IIT Bombay



Carrier transport

* We have discussed equilibrium condition in a semiconductor
without any variations in space.

* We know how to obtain n and p, given the doping densities
(Nd and Na) and temperature.

* This background is useful even in non-equilibrium situations
because there are regions in a semiconductor device which are
almost in equilibrium.

* We now go one step further and develop an understanding of
current flow and carrier dynamics in a semiconductor, an essential
ingredient in any semiconductor device.
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Drift current

electron/hole hole electron

E = 0

E E

∆x ∆x

* The motion of carriers under the action of an electric field is known as “drift.”

* In a semiconductor, electrons and holes are continuously moving with large instantaneous
velocities. However, their trajectories are interrupted because of “scattering events.”

* With zero electric field, the average displacement of a carrier is zero.

* In the presence of an electric field, a carrier undergoes a net change ∆x in its position

over a time interval ∆t.
∆x

∆t
is called the “drift velocity” of the carrier.
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Scattering of carriers

* Phonons: Phonons can be thought of as quantum-mechanical “particles” representing
lattice vibrations. An electron or a hole can absorb or emit a phonon, gaining or losing
energy, accompanied by a change in its momentum.

* Impurity ions: An ionised donor or acceptor atom is a disruption in the periodic lattice
potential of a semiconductor and is therefore a cause for carrier scattering.

* Defects: A semiconductor crystal may have defects, i.e., departures from its periodic
structure. These deviations cause a change in the periodic lattice potential and therefore
lead to scattering.

vacancy

interstitial
defect

edge dislocation

* Note that the atoms of the semiconductor crystal do not cause scattering. They are
already accounted for in computing the band structure of the semiconductor.
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Drift current
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* At low fields (up to a few kV/cm), the drift velocity vd varies linearly with the electric field E. (Note that
a 10 x change in E causes a 10 x change in vd .)

* The low-field region is characterised by the “mobility” (µn for electrons, µp for holes), defined as µ =
vd

E .

* Units of µ:
cm

s
× 1

V/cm
→ cm2

V-s
.

* µ =
qτ

m∗ , where m∗ is the effective mass and τ is the momentum relaxation time, i.e., the average time

interval between successive scattering events (typically 10−14 to 10−12 sec, i.e., 0.01 ps to 1 ps).
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* The velocity-field relationship is related to the detailed band structure and scattering
mechanisms in the semiconductor.

As E is increased, vd saturates in silicon.

In GaAs, as E is increased, vd increases, reaches a peak, and then decreases to saturate
to a constant value.

* The mobility varies significantly with temperature and doping density.
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Drift current

electric field
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hole flux
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* The electric field shown in the figure causes holes to drift in the +x direction with a
velocity vp

d and electrons in the −x direction with a velocity −vn
d .

* “Flux” is defined as the number of carriers crossing a unit area in one second.

* Consider the box in the figure.

Fp =
number of holes in the box

time to traverse ∆x
× 1

A
=

p A∆x

∆x/vp
d

× 1

A
= p vp

d .

Similarly, Fn = −n vn
d .

* Current density J = Jp + Jn = (+q)×Fp + (−q)×Fn = q (p vp
d + n vn

d ).
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* Current density J = Jn + Jp = +qFp + (−q)Fp = q (p vp
d + n vn

d ).

* If the electric field is small, vp
d = µpE, vn

d = µnE.

→ J = q (µpp + µnn) E, i.e., σ = q (µpp + µnn).

* Check units: Coul× cm2

V-s
× 1

cm3
× V

cm
=

Amp

cm2
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Example

5V

L

x

For the rectangular silicon bar shown in the figure, L= 50µm, and the cross-sectional area is
20µm2. It is uniformly doped with Nd = 5× 1017 cm−3. At T = 300 K and with an applied
voltage of 5 V, find the following.

(a) electric field,

(b) current density,

(c) total current,

(d) resistance of the bar,

(e) conductivity and resistivity of the material.

Given: µn = 400 cm2/V-s for Nd = 5× 1017 cm−3 at T = 300 K.

(Note: Such a bar does not exist in isolation, but we can fabricate a region inside a silicon wafer which would

resemble this structure.)
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5V

L

x

L

Ec

Ev

5 eV

E

J

Assuming all donors to be ionised, n = p + N+
d ≈ Nd = 5× 1017 cm−3.

Assume that the metal-semiconductor contacts serve as a perfect source or sink for the carriers.

The applied voltage appears across the semiconductor, resulting in a uniform field and causing
a drift current.

E = − dV

dx
= − V0

L
= − 5 V

50× 10−4 cm
i.e., −1 kV/cm ≡ E0

→ 1

q

dEc

dx
= E0 →

∫ L

x=0
dEc = −q V0

L
L = −q V0 = −5 eV.

E0 is sufficiently low → we can use vd =µE.

J = Jn + Jp = q (n µn + p µp) E ≈ q Nd µn E

= 1.6× 10−19 C× 5× 1017 1

cm3
× 400

cm2

V-s
×
(
−103 V

cm

)
= −3.2× 104 A/cm2.
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5V

L

x

L

Ec

Ev

5 eV

E

J

I = J × A = 3.2× 104 A/cm2 × 20× 10−8 cm2 = 6.4 mA.

Resistance R =
V0

I
= 780 Ω.

J = σ E → σ =
J

E =
q n µnE
E = q n µn = 32 /Ω-cm.

(or compute σ directly from J and E.)

ρ =
1

σ
= 3.12× 10−2 Ω-cm.
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Example

(a) Calculate the conductivity and resistivity of intrinsic silicon at T = 300 K.

(b) How would σ change if the temperature increases by 10 ◦C?

Given: The electron and hole mobilities for undoped silicon (Nd → 0, Na → 0) are

µn = 1500 cm2/V-s, µp = 450 cm2/V-s at 300 K.

Solution:

(a) For intrinsic silicon, n = p = ni ≈ 1010 cm−3 at T = 300 K.

σ = q (µn ni + µp ni ) = 3.12× 10−6 /Ω-cm→ ρ= 1/σ= 3.2× 105 Ω-cm.

(b) ni for silicon nearly doubles every 10 ◦C near room temperature.

T (◦C) ni (cm−3)

25 8.1× 109

35 1.7× 1010

45 3.5× 1010

55 6.9× 1010

65 1.3× 1011

75 2.3× 1011

The mobilities µn and µp do not change significantly over this temperature range.

→ at T = 310 K, ni ≈ 2× 1010 cm−3, and σ will double.
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Effect of doping

Let us compare the two cases we have discussed.

(a) Silicon with Nd = 5× 1017 cm−3, T = 300 K: σ = 32 /Ω-cm.

(b) Intrinsic silicon, T = 300 K: σ = 3.12× 10−6 /Ω-cm.

By replacing 5× 1017 silicon atoms per cm3 with donor atoms,

i.e., one in nearly
5× 1022

5× 1017
= 105 atoms, we can change the conductivity

by a factor of 107.

A huge change!
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Diffusion

x0

t= t0

x

t= t1

0 x

t= t2

0

* Consider a group of particles confined to a narrow region at t = t0, with randomly
assigned initial velocities.

* The particles are subjected to random scattering events.

* As time advances, the distribution function becomes more uniform, i.e., its peak reduces,
and it spreads in space.

* The particles “diffuse” much like smoke emanating from a chimney.
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Diffusion

t= 0
0

t= 2∆t t= 5∆t t= 20∆t

Consider the “balls and bins” system in the figure, governed by the following rules.

* A ball can move from its present bin to an adjacent bin (but not beyond that) in each
time step ∆t.

* The probabilities of a ball staying in its current bin, moving to the left bin, and moving to
the right bin (in one time step) are 0.3, 0.35, and 0.35, respectively.

We can make the following observation.

* The driving force behind the process of diffusion is a concentration gradient.

* If all bins were equally populated, the number of balls going from bin k to an adjacent
bin (k − 1 or k + 1) would be equal to the number of balls coming from that bin. As a
result, the population of each bin would remain constant with time.
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Diffusion

* The process of diffusion is described by Fick’s law:

Fx = −D dη

dx
(F = −D∇η in three dimensions),

where Fx is the flux (number of particles crossing a unit area in a unit time), η is the
particle concentration, and D is the diffusion coefficient.

* In semiconductors, diffusion of electrons and holes is described by

Fn = −Dn
dn

dx
, Fp = −Dp

dp

dx
.

* Units of D: Dn ∼ Fn ×
1

dn

dx

→ 1

cm2-s

1
1

cm3

1

cm

→ cm2

s
.

* The negative sign implies that, if
dn

dx
is negative, electrons will diffuse in the +x direction

(and vice versa).

n (or p) n (or p)

xx

−→
F

−→
F
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Total electron and hole current densities

Drift

hole

electron

−→
E

hole

−→
E

electron

n (or p) n (or p)

xx

Diffusion

* Flux due to drift:

Fdrift
n = −nµnE,

Fdrift
p = +pµpE.

* Flux due to diffusion:

Fdiff
n = −Dn

dn

dx
,

Fdiff
p = −Dp

dp

dx
.

* Total flux [ (cm2-s)−1]:

Fn = Fdrift
n + Fdiff

n ,

Fp = Fdrift
p + Fdiff

p .

* Current density (A/cm2):

Jn = −qFn = qn µnE + qDn
dn

dx
,

Jp = +qFp = qp µpE − qDp
dp

dx
.
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Example of equilibrium conditions

EF

Ec

E
ne
rg
y,
(e
V
)

Ev

0

−0.8

n,
p
(c
m

−
3
)

x (µm)

p

n

0 1 1.50.5

1018

1014

106

1010

102

Consider a section of a silicon crystal in equilibrium, with the band
diagram shown in the figure.

* Note that EF is constant, a characteristic feature of the
equilibrium condition.

(For now, we are not concerned about why there is band
bending.)

* Since (Ec − EF ) and (EF − Ev ) are varying in space,

n =Nce−(Ec−EF )/kT and p =Nv e−(EF−Ev )/kT will also vary
in space.

* Since EF is close to Ec ; the electron density is much larger
than the hole density (notice the log scale).

* Note that np = n2
i in equilibrium for non-degenerate

conditions.
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Example of equilibrium conditions
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1
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Current directions:

* Jdrift
n : E =

1

q

dEc

dx
> 0 → Fdrift

n < 0 → Jdrift
n > 0.

(Electrons flow “downhill” due to electric field.)
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Detailed balance: At equilibrium, each elementary process should be equilibrated by its reverse process. (wiki)

* In equilibrium, Jtotal = Jn + Jp = 0.

* Also, Jn = 0 and Jp = 0 individually → Jdrift
n = −Jdiff

n , Jdrift
p = −Jdiff

p .
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* Also, Jn = 0 and Jp = 0 individually → Jdrift
n = −Jdiff

n , Jdrift
p = −Jdiff

p .
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Equilibrium conditions: implication of Jdrift
n = −Jdiff

n

In a non-degenerate semiconductor in equilibrium,

n = Nce−(Ec−EF )/kT ,

where EF is constant, and Ec may vary with x , as we saw in the last example.

Jdrift
n = q n µn E = q n µn

1

q

dEc

dx
= n µn

dEc

dx
.

Jdiff
n = q Dn

dn

dx
= q Dn Nce

−(Ec−EF )/kT

(
− 1

kT

dEc

dx

)
= − q

kT
Dn n

dEc

dx
.

Jdrift
n = −Jdiff

n → n µn
dEc

dx
=

q

kT
Dn n

dEc

dx

→ Dn

µn
=

kT

q
≡ VT (thermal voltage).

Similarly, → Dp

µp
=

kT

q
≡ VT .

This is known as Einstein’s relation.

Check units:
Dn

µn
:

cm2

s
× 1

cm2

V-s

→ V,
kT

q
:

eV

Coul
→ V
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