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* A bipolar junction transistor (BJT) consists of two pn junction diodes connected back to back.
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Bipolar junction transistors
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* A bipolar junction transistor (BJT) consists of two pn junction diodes connected back to back.

* A BJT is a three-terminal device; the terminals are called emitter, base, and collector.
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Bipolar junction transistors
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* A bipolar junction transistor (BJT) consists of two pn junction diodes connected back to back.
* A BJT is a three-terminal device; the terminals are called emitter, base, and collector.

* There are two types of BJTs: pnp and npn.
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Bipolar junction transistors
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* A bipolar junction transistor (BJT) consists of two pn junction diodes connected back to back.
* A BJT is a three-terminal device; the terminals are called emitter, base, and collector.
* There are two types of BJTs: pnp and npn.

* The actual device construction is different than the above schematic diagram (to be discussed).
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Bipolar junction transistors

= B n p C E n p n C
(Emitter) (Collector) | (Emitter) (Collector)

TB (Base) l—l_EAB (Base)

* A bipolar junction transistor (BJT) consists of two pn junction diodes connected back to back.
* A BJT is a three-terminal device; the terminals are called emitter, base, and collector.

* There are two types of BJTs: pnp and npn.

* The actual device construction is different than the above schematic diagram (to be discussed).

* For the device to work as a transistor (rather than two independent diodes), the two junctions must be
“close.”
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X



PCx) P(x) Basic operation
,—Vi+AV, —Vi+AV,
Vi Vi
b o b ~—Pno [ e LSS ~—Pno
0 — W~ 0 w
E C E C
‘HIE b H :
CH f B f
x=0 x=W x=0 x=W
I ! II I ! I !
I" N I" I"
Vi=0.6V V,=5V V=06V Vo,=5V
N A\ 1
gl b —al 7l N
4>|1 2=al D, D,
I ! II I ! I !
I" N I" I"
Vi Vs, Vi Vs
d
* If Vq is varied, p(x) varies — I,(W) o d—p(W) varies, i.e., by changing V4, b can be controlled. This is the basic transistor action.
X

M. B. Patil, IIT Bombay



o o
,—Vi+AV, o Vi+ AV,
Vi Vi
[ o Bl ~—Pno B bt R ~—Pno
0 W — 0 W
E C E C
HIE b H : I
[ Bt ! B f
x=0 x=W x=0 x=W
II II II II
N 1" N N
V=06V V,=5V Vi=0.6V Vo=5V
N A\ N 1
1 b —al Izl N
T 2= Dy D>
II II II II
N 1" N N
Vi Vs, Vi Vs
dp

* If Vq is varied, p(x) varies — I,(W) o d—(W) varies, i.e., by changing V4, b can be controlled. This is the basic transistor action.

* If the two junctions are not sufficiently close, the device behaves like two independent diodes connected back-to-back, and there is no

transistor action.
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* In the "active” or “linear” mode, the \ [B _

B-E junction is under forward bias, the Ves R Vec
B-C junction is under reverse bias. )

* The B-E voltage (magnitude) is
restricted to about 0.8V in a
low-power silicon BJT, as in a
forward-biased diode.
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pnp and npn transistors|

* In the “active” or “linear” mode, the
B-E junction is under forward bias, the
B-C junction is under reverse bias.

* The B-E voltage (magnitude) is
restricted to about 0.8V in a
low-power silicon BJT, as in a
forward-biased diode.

* The B-C voltage (magnitude) can be
much larger than the B-E voltage and
is limited by breakdown phenomena.
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* In the "active” or “linear” mode, the \\\ -rB -
B-E junction is under forward bias, the Ves Ve

B-C junction is under reverse bias.

* The B-E voltage (magnitude) is
restricted to about 0.8V in a
low-power silicon BJT, as in a
forward-biased diode.

* The B-C voltage (magnitude) can be
much larger than the B-E voltage and
is limited by breakdown phenomena.

* pnp transistor: Holes are injected
from the emitter. Most of them reach
the B-C depletion layer, get swept
away by the field there, and get
collected by the collector.
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* In the “active” or “linear” mode, the \ -rB 7 \ -rB /
B-E junction is under forward bias, the Ves Vac Vae Ve
B-C junction is under reverse bias.

* The B-E voltage (magnitude) is
restricted to about 0.8V in a
low-power silicon BJT, as in a
forward-biased diode.

* The B-C voltage (magnitude) can be
much larger than the B-E voltage and
is limited by breakdown phenomena.

* pnp transistor: Holes are injected
from the emitter. Most of them reach
the B-C depletion layer, get swept
away by the field there, and get
collected by the collector.

* npn transistor: Electrons are injected
from the emitter. Most of them reach
the B-C depletion layer, get swept
away by the field there, and get B (base)
collected by the collector.
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pnp and npn transistors|

* The emitter arrow in the BJT symbol
indicates the direction of the emitter
current when the BJT is operating in
the active mode (for both pnp and
npn BJTs).
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pnp and npn transistors | 2 W 2 2 L 2
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* The emitter arrow in the BJT symbol \\\ -rB /// \\\ -rB ///
indicates the direction of the emitter Ve = Vac ' o Ves

current when the BJT is operating in
the active mode (for both pnp and
npn BJTs).

* The collector current /¢ is a fraction
of the emitter current: Ic = alg.
For a good transistor, av =~ 1.
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‘IB:(lfn')lE

B (base) l ls=(1-0a)l B (base)
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pnp and npn transistors|

* The emitter arrow in the BJT symbol
indicates the direction of the emitter
current when the BJT is operating in
the active mode (for both pnp and
npn BJTs).

* The collector current /¢ is a fraction
of the emitter current: Ic = alg.
For a good transistor, av =~ 1.

* The three currents satisfy KCL, i.e.,
Ie = Ic + Ig. Substituting for I¢, we
get Ig = (1 - Oz) Ig.
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pnp and npn transistors|

* The emitter arrow in the BJT symbol
indicates the direction of the emitter
current when the BJT is operating in
the active mode (for both pnp and
npn BJTs).

* The collector current /¢ is a fraction
of the emitter current: Ic = alg.
For a good transistor, av =~ 1.

* The three currents satisfy KCL, i.e.,
Ie = Ic + Ig. Substituting for I¢, we
get Ig = (1 - Oz) Ig.

* Note that the diagrams are not drawn
to scale. In reality, for a silicon BJT,
the depletion regions would be
narrower.
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BJT in active mode
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BJT in active mode
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* The “common-emitter current gain” 8 — a figure of merit of a BJT — is defined as B=1I¢/Ig.
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BJT in active mode
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* The “common-emitter current gain” 8 — a figure of merit of a BJT — is defined as B=1I¢/Ig.
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BJT in active mode

E— C E — C
+ j—; — & / +
Ves. +VBC VBE', Ve el l—a | B=a/(1-a)
B B
. . 09 |01 9
| lc =al | le = al 0.95 0.05 19
E c=0alg E c=alg
E '—{%%>—°C E '—K%HC>—°C 0.99 0.01 99
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* The “common-emitter current gain” 8 — a figure of merit of a BJT — is defined as B=1I¢/Ig.
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1-a)lg 1—o

*x 3=
Ig
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BJT in active mode

E— C E — C
+ j—; — &Z +
Ves. +VBC VBE', Ve el l—a | B=a/(1-a)
B B
. . 09 |01 9
| lc =al | le = al 0.95 0.05 19
E c=0alg E c=alg
E '—{%%>—°C E '—K%HC>—°C 0.99 0.01 99
(emitter) (collector) (emitter) (collector)
0.995 | 0.005 199
B (base) | 12~ (1~ e B (base) | |ls=(1- )l

* The “common-emitter current gain” 8 — a figure of merit of a BJT — is defined as B=1I¢/Ig.

Ic alg «

*x 3=

T g (1—a)le T1-a
* For a typical discrete low-power transistor such as BC107A, (3 is in the range of 100 to 200.
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E p n p C E
(Emitter) (Collector) | (Emitter)
l—l—‘B(Base)
Mode B-E junction | B-C junction
Active (linear) | forward reverse
Cutoff reverse reverse
Saturation forward forward
Inverse active reverse forward

l—J—‘B (Base)

C
(Collector)

BJT modes of operation
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BJT modes of operation

E P n P C E n P n]—{

(Emitter) (Collector) | (Emitter) (Collector)
l—l—‘B(Base) l—l—‘B(Base)
Mode B-E junction | B-C junction
Active (linear) | forward reverse
Cutoff reverse reverse
Saturation forward forward
Inverse active reverse forward

* In analog circuits, BJTs are generally biased to operate in the active mode.
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E p n p C E
(Emitter) (Collector) | (Emitter)
l—l—‘B(Base)
Mode B-E junction | B-C junction
Active (linear) | forward reverse
Cutoff reverse reverse
Saturation forward forward
Inverse active reverse forward

* BJT as a switch:

- Closed: saturation mode
- Open: cutoff mode

l—J—‘B (Base)

* In analog circuits, BJTs are generally biased to operate in the active mode.

C
(Collector)

BJT modes of operation
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Device structure (pnp transistor)
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Device structure (pnp transistor)

* The substrate thickness is hundreds of microns whereas
the p epi-layer and the rest of the device structure is
confined to a few microns.
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Device structure (pnp transistor)

* The substrate thickness is hundreds of microns whereas
the p epi-layer and the rest of the device structure is
confined to a few microns.

* The p" substrate can be treated as a small resistance
Rsub-
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Device structure (pnp transistor)

* The substrate thickness is hundreds of microns whereas
the p epi-layer and the rest of the device structure is
confined to a few microns.

* The p" substrate can be treated as a small resistance
Rsub-

* The “active” region of the device is only the top few
microns (the p epi-layer).
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Device structure (pnp transistor)

The substrate thickness is hundreds of microns whereas
the p epi-layer and the rest of the device structure is
confined to a few microns.

The p" substrate can be treated as a small resistance
Resub-

The “active” region of the device is only the top few
microns (the p epi-layer).

The figure is not drawn to scale. Typically, the y and z
dimensions are much larger than the p epi thickness.
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Device structure (pnp transistor)

The substrate thickness is hundreds of microns whereas
the p epi-layer and the rest of the device structure is
confined to a few microns.

The p" substrate can be treated as a small resistance
Rsub-

The “active” region of the device is only the top few
microns (the p epi-layer).

The figure is not drawn to scale. Typically, the y and z
dimensions are much larger than the p epi thickness.

Because the contact region dimensions are much larger
than the base width (~ the width of the n base region),
the device can be considered to be one-dimensional in
nature.

insulator

X

Emitter

Base

Rsub

(substrate)
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W‘\

}p epi-layer
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Device structure (pnp transistor)

The substrate thickness is hundreds of microns whereas
the p epi-layer and the rest of the device structure is )
confined to a few microns. Emitter

Base

The p" substrate can be treated as a small resistance

insulator
Rsub-

The “active” region of the device is only the top few z
microns (the p epi-layer). p epi-layer
The figure is not drawn to scale. Typically, the y and z
dimensions are much larger than the p epi thickness.

X

Because the contact region dimensions are much larger
than the base width (~ the width of the n base region),
the device can be considered to be one-dimensional in
nature. Raub

A "base resistance” r, exists between the base region and 1| (substrate)
the base contact. To keep r, small, the base contact is ,

made close to the emitter.
Collector /
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Device structure (pnp transistor)
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Device structure (pnp transistor)

Emitter
Base o 1020F
insulator i = Ng (B)
Z 108
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Device structure (pnp transistor)

Emitter
Base o 1020F
insulator i = Ng (B)
Z 108
2 20| N, (E)
y 0ep "1
X 3 H
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Device structure (pnp transistor)

Emitter
Base (T/-\ 1020F
insulator g + Nqg (B)
Z10%f
. 2| N, (E)
< N, (C
v @ 10 - ©
X g L
o 1014

)

))
«
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pt
(substrate)

W\

* For simplicity, we will assume the doping densities to be constant in the emitter, base, and collector regions.
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Device structure (pnp transistor)

Emitter

Base

1020 [
insulator

108 [

1010

Doping density (cm3)

1014

)

1020

))
«

Reub

. 1018 5
(substrate)

'
' ~
' ~N

«

106} NS

Collector / 101“O !

15 3
x (um)

Doping density (cm‘a)

* For simplicity, we will assume the doping densities to be constant in the emitter, base, and collector regions.
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Device structure (pnp transistor)

Emitter

Base

1020 [
insulator

108 [

1010

Doping density (cm3)

1014

)

1020

))
«

Reub

. 1018 5
(substrate)

'
' ~
' ~N

«

106} NS

Collector / 101“O !

15 3
x (um)

Doping density (cm )

* For simplicity, we will assume the doping densities to be constant in the emitter, base, and collector regions.

* The relationship NE > NF > NS, which is a consequence of the fabrication process, is also desirable from the
device performance angle.
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BJT structure in integrated circuits (npn transistor)

insulator

base

emitter

collector substrate

:contact :contact
1 [

contact / contact
1 [ 1 [

epi-layer

J

NI

) s

p

)

.

p" substrate

n* buried layer

~5um

> 250 um

(Not drawn to scale. Typically, the
horizontal dimensions are much larger
than the junction depths.)
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BJT structure in integrated circuits (npn transistor)

insulator base emitter collector substrate

:contact :contact contact contact

1 [ 1 [ I\—L‘I

NEARNEY) L .
p

p

epi-layer ~ 5um

( )

.

n* buried layer

p" substrate > 250 um

(Not drawn to scale. Typically, the
horizontal dimensions are much larger
than the junction depths.)

* To make an integrated circuit (IC), a large number of transistors are fabricated on a single silicon piece
and interconnected as required.
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BJT structure in integrated circuits (npn transistor)

insulator base emitter collector substrate

:contact :contact contact contact

1 [ 1 [ I\—L‘I

NEARNEY) L .
p

p

epi-layer ~ 5um

( )

.

n* buried layer

p" substrate > 250 um

(Not drawn to scale. Typically, the
horizontal dimensions are much larger
than the junction depths.)

* To make an integrated circuit (IC), a large number of transistors are fabricated on a single silicon piece
and interconnected as required.

* The BJTs are isolated from each other using reverse-biased pn junctions.
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BJT structure in integrated circuits (npn transistor)

insulator base emitter collector substrate

:contact :contact contact contact

1 [ 1 [ I\—L‘I

NEARNEY) L .
p

p

epi-layer ~ 5um

( )

.

n* buried layer

p" substrate > 250 um

(Not drawn to scale. Typically, the
horizontal dimensions are much larger
than the junction depths.)

* To make an integrated circuit (IC), a large number of transistors are fabricated on a single silicon piece
and interconnected as required.

* The BJTs are isolated from each other using reverse-biased pn junctions.

* Contacts (E, B, C) are made on the top surface for connecting to other transistors.
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BJT structure in integrated circuits (npn transistor)

insulator

base emitter collector substrate

:contact :contact contact jcontact
1 [ 1 [ 1 [

epi-layer

p

NN L s

( )

.

n* buried layer

p" substrate

~5um

> 250 um

(Not drawn to scale. Typically, the
horizontal dimensions are much larger
than the junction depths.)

To make an integrated circuit (IC), a large number of transistors are fabricated on a single silicon piece

and interconnected as required.

The BJTs are isolated from each other using reverse-biased pn junctions.

Contacts (E, B, C) are made on the top surface for connecting to other transistors.

An n' buried layer is used to provide a low-resistance path for the electron current.
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Dependence of o on device parameters

E-B C-B
depletion depletion
region region
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Dependence of o on device parameters

E-B C-B
depletion depletion
region region
E(p) B(n) C(p)
)
emitter collector
current current
= I

N rrecombinat\'on
\\]T
\

| —
base
x=0 X

Consider a pnp transistor.

* Ig has a hole component and an electron component. Of these, only the hole component contributes to /c.
. " . .. . .. . . . . .. " lpE lpE
We define “emitter injection efficiency” (or simply “injection efficiency”) as vy = — = ————.
Ig Ipe + Ine



Dependence of o on device parameters

E-B C-B
depletion depletion
region region
E(p) B(n) C(p)
)
emitter collector
current current
= I

N [44;c0n1inaﬁ0n
\skgj( 1 bi
\

base
x=0 X

Consider a pnp transistor.

* Ig has a hole component and an electron component. Of these, only the hole component contributes to /c.
e Ioe

We define “emitter injection efficiency” (or simply “injection efficiency”) as v = — = .
Ie le+ e

* Some of the injected holes are lost due to recombination in the neutral base region (we will ignore G-R in the
B-C depletion regions).
lc

We define “base transport factor” as a1 = .
pE



Dependence of o on device parameters
E-B C-B E-B C-B
depletion depletion depletion depletion
region region region
C(p) E(n) B(p) C(n)
\
\ | collector
/| current
———
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region
E(p) B(n)
)
emitter collector emitter
current current current
recombination 1 recombination
\ (
base
w x=0 X
* Ig has a hole component and an electron component. Of these, only the hole component contributes to /¢
e _ e
Ig Ipe + Ine

Consider a pnp transistor.
We define “emitter injection efficiency” (or simply “injection efficiency”) as v =
* Some of the injected holes are lost due to recombination in the neutral base region (we will ignore G-R in the

lc
Ioe

B-C depletion regions).
We define “base transport factor” as a1 =



Dependence of o on device parameters

E-B C-B
depletion depletion
region region
E(p) B(n) ()
)
emitter collector
current current
(—— 7j
AN \ ] r L
\ recombination
\
\ \ T
base
x=0 x=W

Since the C-B junction is reverse biased, the pn junction current arising because of Vg is negligibly small.
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Dependence of o on device parameters

E-B C-B
depletion depletion
region region
E(p) B(n) ()
)
emitter collector
current current
(—— N\ 7j
\ recombination
\
\ \ T
base
x=0 x=W

Since the C-B junction is reverse biased, the pn junction current arising because of Vg is negligibly small.

— I¢c is entirely due to the holes injected by the emitter which make it to the C-B depletion boundary (x = W), i.e.,

Ic
Ic = lhc =arlhe =ar(ylE) = a= . =yarT.
E
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Dependence of o on device parameters

E-B C-B
depletion depletion
region region
E(p) B(n) ()
)
emitter collector
current current
(—— N\ 7j
\ recombination
\
\ \ T
base
x=0 x=W

Since the C-B junction is reverse biased, the pn junction current arising because of Vg is negligibly small.

— I¢c is entirely due to the holes injected by the emitter which make it to the C-B depletion boundary (x = W), i.e.,
Ic

Ic = lhc =arlhe =ar(ylE) = a= . =yarT.
E

— For a~ 1, both v and ot must be close to 1.
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E-B C-B

depletion depletion
region region
—f [
E(p) B(n) C(p)
p(x)
n(x)
Nog — = ———————————rrrrerereneeeneerrrerenenrerereneeeeeeeeed ) ), N
J1 |
Xe© 0 W

We assume that the emitter width is greater than 5 L.

M. B. Patil, IIT Bombay



E-B C-B

depletion depletion
region region
— {
E(p) B(n) C(p)
p(x)
W

We assume that the emitter width is greater than 5 L.
Neglecting the drift components for minority carriers in the emitter and base neutral regions, we get

2A A
d"An n*O, x < xg, with

nE dX2 ThE
%
An(xg) = noe |:exp (LB) - 1],
Vr

An(—o0) =0.
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E-B C-B
depletion depletion
region region

E(p) B(n) C(p)

We assume that the emitter width is greater than 5 L.

Neglecting the drift components for minority carriers in the emitter and base neutral regions, we get

d?’An  An

nE =0,

dX2 ThE

An(xg) = noe {GXP (V

An(—o0) =0.

Vr

x < xg, with

)4

Php  Ap
dx? ToB -

Ap(0) = pos [eXP (‘C—Ef) - 1},

Ap(W) = pos {exp (VTCTB) - 1}

pB 0, 0<x< W, with
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Dependence of o on device parameters

E-B C-B
depletion depletion
region region
E(p) B(n) C(p)




Dependence of o on device parameters

E-B C-B
depletion depletion
region region
E(p) B(n) C(p)

X" 0 W
Solution:  An(x) = An(xg) e~ Ce=X)/Lne | x < xg,

Ap(x)=Ae*/tes 4 Bet/ls, 0 < x < W.



Dependence of o on device parameters

E-B C-B
depletion depletion
region region
E(p) B(n) C(p)

XE 0 W
Solution:  An(x) = An(xg) e~ Ce=X)/Lne | x < xg,
Ap(x)=Ae*/tes 4 Bet/ls, 0 < x < W.
Using the boundary conditions (last slide), we get

sinh (W_X) sinh <L>
Lpg Lys

+ Ap(W)

w W
sinh <—> sinh <—>
Lps Lps

Ap(x) = Ap(0)



Dependence of o on device parameters

E-B C-B

depletion depletion

region region

E(p) B(n) C(p)
g
=%
p(x) a4

=
=
Aa

XE 0 W
Solution:  An(x) = An(xg) e~ Ce=X)/Lne | x < xg,
Ap(x)=Ae*/tes 4 Bet/ls, 0 < x < W.
Using the boundary conditions (last slide), we get

sinh (W_X) sinh <L)
LpB LpB

+ Ap(W)

w w
sinh <—> sinh <—>
[ [ _
M. B. Patil, IIT Bombay

Ap(x) = Ap(0)



E-B C-B

depletion depletion
region region
— f d
E(p) B(n)
p(x)
n(x)
Noe —~
X
Xe© 0 w

dn dAn
Ine = qAD,e *(XE) = qAD,e 7(XE)

qADnE An(xg) = GADpe ok (eVEB/VT_]_)’
Lne Lne

Ap(x)/Ap(0)

M. B. Patil, IIT Bombay



E-B C-B

depletion depletion
region region
— f d
E(p) B(n) C(p)

5
o
P(x) a
S
=
<

dn dAn
= gADue *(XE) = qAD,e W(XE)

e
m
|

_ 9ADne An(xg) = qADg oE <eVEB/VT _ 1)’
LnE LnE

d
loe = ~aADys <2 (0) = ~aADs “22 (0)

9AD,s pos (eVEB/VT _ 1) cosh(W/Lyp)
Log sinh(W/Lyg)
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E-B C-B
depletion depletion
region region
— | |
E(p) B(n) C(p)
p(x) 4
a
W
dn dAn
Ing = aADne - (xe) = ADne =~ (xe) y = e _ 1
AD AD IpE+InE 1+(’nE/IpE)
_qL nEA( ) qL nEnE<eVEB/VT—1), B 1
nE o nE L (D,,E Los NdB) sinh(W/Lg) '
IpE = —qADpB a(o) = — ADpB 7(0) DpB L,,E NaE COSh(W/LB)
2 N N
_ qADps p (evEB/VT _ 1) cosh(W/Lpg) since 1°F — A’;—' # = N—dB
Lop 08 sinh(W/LpB) : PoB aE n; aE
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Base transport factor

(®) B ¢ E(p B(n) C(p)
\
p(x) emitter \ | collector
current /| current
— . o
&recombination
n(x) g
! 0
W — x=
sinh ( x sinh LX )
B B
Ap(x) = Ap(0) £ + Ap(W) =

Ap(x)/Ap(0)
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Base transport factor

¢ E(p B(n) )
\
p(x) emitter collector
current | current
— . o
&recombination
n(x) g
! 0
W — x=
sinh ( i x sinh (LX )
B B
Ap(x) = Bp(0) ————"—— + Ap(W) ‘:V :
sinh —) sinh ( ) =
pB LpB ,i]"
dA x
Ie ~ e = —qADpg —p(W) )

M. B. Patil, IIT Bombay



Base transport factor

E(p) B(n) C(p) E(p) B(n) C(p)
[ |
emitter collector
current current

R — Fi—lf

9AD,5 Ves/ VT 1
=1 pB 1)
, o8 (e ) sinh(W/Lg)
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Base transport factor

E(p) B(n) C(p) E(p) B(n) C(p)

N
emitter ‘ collector

current current

- -

»recombination

s
(=N
d
dA )
Ie ~ by :—qADB—p(W) =
- 9ADy5 Pos <eVEB/VT _ 1) ;
LpB smh(W/LB)

The base transport factor is (using /,¢ from the last slide),

e 1
"7 e cosh(W/Lys)
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ot with W < Lp

Ap(x) = Ap(0)

E(p) B(n) Cp)
emitter collector
current current

Al — 1
N L e
\\j\ recombination
il
base
x=0 x=W
W —
sinh < T X) sinh >
B
- + Ap(W) .

X
Lpg
w
sinh (—)
Lpg

Ap(x)/Ap(0)

1

0.5 1 15
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ot with W < Lp

Ap(x) = Ap(0)

Ipc

E(p) B(n) Cp)
emitter collector
current current

Al — 1
N L e
\\j\ recombination
il
base
x=0 x=W
W —
sinh < T X) sinh >
B
B L Ap(W) .

sinh

1

(z)

1

~
~

ar= I,TE o cosh(W/Lyg) 1/ W\2
142

Ly

X
Lpg
w
sinh (—)
Lpg

1

Ap(x)/Ap(0)

0 0.5 1 15
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ot with W < Lp

1
E(p) B(n) C(p)
} S
emitter collector T}]/
current current /;
/*fﬁ T =
=
‘\\ rrecombination E
\\\‘j\(
base 0
x=0 x=W
W —
sinh( T X) sinh (%)
B B
Bp() = Ap(0) ———L2 L ap(W) —— 2L
sinh (—) sinh (—)
LPB LpB
IpC 1 1
ar = -— = ~ .
Ie  cosh(W/Lyg) - 1 ( W )2
2 e I B

Remark: a1 — 1 if the base width W is made small compared to L,g.
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v with W < L

1
E(p) B(n) Clp)

f S
emitter collector }]
current current ~

X
¢ =
<

T \\ rrecombination K
\\\j\(

base 0
x=0 x=W
v = IPE = 1 = 1
Ipe + e 1+(’nE/’pE) 14 (DnE Lpog NdB) sinh(W/Lg)
Dpg Lne Nag ) cosh(W/Lg)

0 0.5 1 15
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v with W < L

1
E(p) B(n) Cp)
} S
emitter collector T}]/
current current /;
/F:ﬂﬁﬁ T 5
\ recombination
\\ﬂ
base 0
x=0 x=W
y = e _ 1 B 1
IpE+lnE 1+(’nE/’pE) 14 (DnE LpB NdB) sinh(W/Lg)
Dpg Lne Nag ) cosh(W/Lg)
- 1
14 (DnE Los /vd3> _ Wk
DpB LnE NaE 1+ %(W/LPB)2
O | |
0 0.5 1 15
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C(p)

collector
current

E(p) B(n)
)
emitter
current
Al | —
\hiﬁ
\\ rrecombination
\
\ ’>
‘:I
base
x=0 x=W

I 1

1

- Ipe + e - 14+ (Ihe/lpE) B 14 (DnE Lpp NdB) sinh(W/Lg)

Q

DpB LnE NaE
1

cosh(W/Lg)

v with W < L

14 (DnE Lpg NdB)

DpB LnE NaE

W/LpB

1+ %(W/LPB)2

0.5 1 15
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v with W < Lg

1
E(p) B(n) C(p)

f S
emitter collector }]
current current ~

X
— [ =
AN \ - <
\\ < ;recombination
\
\
\
| —
base 0
x=0 x=W
1
Y= .
14 (DnE w NdB)
DpB LnE NaE

0 0.5 1 15
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v with W < Lg

1
E(p) B(n) C(p)

f S
emitter collector }]
current current ~

X
— [ =
AN \ - <
\\ < ;recombination
\
\
\
| —
base 0
x=0 x=W
1
Y= .
14 (DnE w NdB)
DpB LnE NaE

* v — 1if Nug > Ngg.

0 0.5 1 15
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v with W < L

1

E(p) B(n) Clp)

f S
emitter collector }]
current current ~

X
=
<

T \\ rrecombination K
\\\j\(

base 0
x=0 x=W
- 1
“H(anﬂ/\/ds)'
DpB LnE NaE

* v — 1if Nug > Ngg.
* |t is now clear why a higher doping density in the emitter region
(compared to the base doping density) is desirable.

0 0.5 1 15
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N

p(x) emitter collector
current / current

D ombiation ||

recombination

| —
base T
x=0 x=W

Consider a pnp BJT with N, =108 cm—3, Nyg =5 x 100 cm—3, N,c =10 cm~—3, and with
a base width W =2um (T =300K).
(a) Calculate aT, 7, a, and S, using the following parameters.
pne =250cm?/V-s, upg =500cm?/V-s, w,c =1500cm?/V-s,
T =0.2us, Tpg=1us, T,c =1us.
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)
collector
current

p(x) emitter
current

L

Consider a pnp BJT with N, =108 cm—3, Nyg =5 x 100 cm—3, N,c =10 cm~—3, and with
a base width W =2um (T =300K).
(a) Calculate aT, 7, a, and S, using the following parameters.
pne =250cm?/V-s, upg =500cm?/V-s, w,c =1500cm?/V-s,
T =0.2us, Tpg=1us, T,c =1us.

(b) Repeat (a) for the BJT operating in the reverse active mode.
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. A

p(x) emitter collector
current current

-

Solution:

The minority carrier diffusion lengths are

Loe = V/DpeTnE = VT iineThE = v/0.0258 x 250 x 0.2 x 1070 = 1.14 x 10~3cm = 11.4 um.

Lpg = /Dpaps = /VThpeTps = v/0.0258 x 500 x 1 x 10~ = 3.59 x 103 cm = 35.9 um.

Loc = /Doctne = /VitincToc = v/0.0258 x 1500 x 1 x 10-6 = 6.22 x 10~3 cm = 62.2 um.

Note that L,g > W (2 um).
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— N
p(x) emitter \ | collector
current / current
B N 7
~recombination
n(x) )
,,,,,,,
T base T
x=0 x=W

—4 16
DnE w NdB HnE w NdB 250 2x 10 5 x 10 — 4.386 x 10_3.

Dps Lo Nae  fips Lpe Nog 500 114 x 103 1018
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\
collector
current

p(x) emitter )
current /

(S — —l’r"

-
\ .
‘>recomb|nat|on

-~

——
T base T
x=0 x=W

—4 16
DnE w NdB HnE w NdB 250 2x 10 5 x 10 — 4.386 x 10_3.

Dps Lo Nae  fips Lpe Nog 500 114 x 103 1018

= ——————— =0.9956.
1+4.386 x 103
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E(p) B(n) C(p) E(p) B (n) C(p)
— \
p(x) emitter collector
current / current
B B e N Y
~recombination
n(x) )
7777777 i base |
x=0 X=
(a) Dre W Nag _ poe W Ngg _ 250 2 X 10~ 5 x 10'° 4386 x 10-3
o8 Lne Nae e Lne Nae 500 1.14 x 10—3 1018 ' '
1
Y= —"——— =0.9956
1+ 4.386 x 10—3
1 1

ar

14+ L(W/Lpe)?

T 1+ 1(20/35.9)

= 0.9985.
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C(p)

E(p) B(n) C(p) E(p) B (n)
[

emitter collector
current / current

= F -

> ~recombination

r
J

D W N, W N, 2 2 x 104 1016
nE dB _ HnE ap _ 250 2x10 5x10% 4386 x 10-2.
Dpg Log Nae ppg Loe N,e 500 1.14 x 10—3 1018

(a)

1
Y=o = 0.9956.
1+4.386 x 103

1 1
5 = 0.9985.

ar = =
1+ L(W/Lg)? 1+ 1(20/35.9)

a=n~ar =0.9940 - f = —— = 166.
l1—«
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E) B(n) e E(p) B (n) C(p)
— N
p(x) emitter collector
current current

-

(b) With E <+ C,

Doe W Nog  Doc W Ngg _ pnc W Ngg _ 1500 2 x 10~* 5 x 10% 83
Dpg Loe Nag  Dpg Loc Nac ppg Lpc Noc 500 6.22 x 10-3 1015 7
1
Y= ———==0.1717, aT = = 0.9985.
1+4.823

1+ 1(2/35.9)2
— a=vyar =0.1714 — B = 0.2, a disaster.
Conclusion: N,g > Nyg is crucial.

(Note that we have treated W as a constant, but it would vary with bias conditions.)
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v with W << Lyp

E(p) B(n) C(p) E(p) B (n) C(p)
p(x) emitteT > Icollector
current current
n(x) \ }recom ination
”””” T hase !
= x=W
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v with W << Lyp

E(p) B(n) C(p) E(p) B (n) C(p)
|
p(x) emitter \ | collector
current / current
= —
) —\ }recombination
o S
xE x=0 x=W
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v with W << L

E(p) B(n) C(p) E(p) B (n) C(p)
o | —
p(x) emitter \ | collector
current / current
Ry [V

}recombination

f Thase !

x=0 xX=

f
X
d Veg Xf —x E
Ine :‘_qu)M537 Noe €Xp exp |\ — at x = x,
X

Vi 1
= qADg nog exp (LB) X
Vr
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v with W << L

E(p) B(n) C(p) E(p) B (n) C(p)
- N
p(x) emitter \ | collector
current current
v == N VT
»recombination
n(x) |
,,,,,,,
t base |
x=0 x=W

f
X
d Ve Xf — X E
Ine = —qADpe —— | noe exp exp |\ — at x = x;
dx Vr

Vi 1
= qADg nog exp (LB) X
Vr

Ve 1
Ioe = q A Dpg pog exp (TT) X
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v with W << L

E(p) B(n) C(p) E(p) B (n) C(p)
_— N
p(x) emitter \ | collector
current current
v == N VT
»recombination
n(x) |
,,,,,,,
t base |
x=0 x=W

f
X
d Ve x,’;: — X E
Ine = —qADpe —— | noe exp exp |\ — at x = x;
dx Vr

Vi 1
= qADg nog exp (LB) X
Vr

Ve 1

Ibe =~ q A Dpg pop exp (*) X
Vr
InE

_ Dne nog W
Ioe

Dpg pos Lne
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v with W << L

B(m ) E(p) B(n) <
_— N
p(x) emitter collector
current current
B B o R —l‘“‘ o
| recombination
n(x) |
o t base |
xE x=0 x=W
d Veg xE — x
Ine = —qADe — |npeexp | —— Jexp [ — = at x=xF
nE q nE dx |: 0E p(VT) P( Le n
Ves 1
=qADpengeexp | — | X
q nE NoE €Xp ( VT ) LnE
Ve 1
l,e =~ qAD, =2 ) x =
pE ~ 4 pBPOBeXP( Vr ) W
Ie . Dpe noe W :DnE n? Ngg W
e Dpg pog Loe  Dpp Nag 17 Lug
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v with W << L

E(p) B(n) C(p) E(p) B (n) C(p)
N
p(x) emitter collector
current current
o N VT
>< »recombination
J
,,,,,,,
t base |
x=0 x=W

!
x5
d Ve x,’;: — X E
lhe = —qADpe — |npeexp| — |exp | — at x =x,
dx VT

V, 1
= q A DyE nog exp (ﬂ) X
Vr

Ibe = q A Dpg pos exp (77) X

w
_ Due n? Ngg W Dpe Ngg W

Ine _ Dng nog W

I Dpg poB Loe  Dpg Nag n? Log  Dpg Nap Lpg
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v with W << Lyp

E(p) B(n) C(p) E(p) B (n) C(p)
p(x) emitteT > Icollector
current current
n(x) \ }recom ination
”””” T hase !
= x=W
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v with W << Lyp

E(p) B(n) C(p) E(p) B (n) C(p)
[ [\ o
p(x) emitter > collector
current / current
B Y o 7# o
) ‘\ }recombination
o t base |
XxE x=0 x=W
lhe  Dpe Ngg W
IpE DpB NaE LnE
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v with W << L

E(p) B(n) C(p) E(p) B (n) C(p)
[ N o
p(x) emitter \ | collector
current current
B Y o 77’/ o
}recombination
n(x)
7777777 t base |
£ x=0 x=W
lhe  Dpe Ngg W
IpE DpB NaE LnE
Sy = e !
’y_lpE"‘InE 1+If7i 1+(DnE )
IPE DpB LnE NaE
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ot with W < Lp

1
E(p) B(n) C(p)

’ g

emitter collector /Q‘-

current current ~

X

—— [ =

L 2

\ recombination
\\j
\\
[S— 0
base
x=0 x=W

When W < Lyg, Ap(x) is linear.

aT = IpiC = IPC = ! .
e loc + I 14 los
Irc
P
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ot with W < Lp

1
E(p) B(n) C(p)
’ g
i collector >
current current 3
T\, i 5
AN recombination
\
\\\T
base 0
x=0 x=W
When W < Lyg, Ap(x) is linear.
} [} 1
ap e e _ |
e loc + I 14 los
Ipc
dp Ap(0)
lhc =—qAD,g — (W)=~ qAD, .
pC q pB dX( ) q pB %
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ot with W < Lp

1
E(p) B(n) C(p)

’ g

emitter collector /Q‘-

current current ~

X

—— [ =

L 2

\ recombination
\\j
\\
[S— 0
base
x=0 x=W

When W < Lyg, Ap(x) is linear.

e e 1
ar = — = - I -
e loc + I 14 PB
Ipc
dp Ap(0)
IpczquDpB a(W)quDpB W .

Q qALApo)w

I =
TpB TpB
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ot with W < Lp

1
E(p) B(n) C(p)

’ g

emitter collector /Q‘-

current current ~

X

—— [ =

L 2

\ recombination
\\j
\\
[S— 0
base
x=0 x=W

When W < Lyg, Ap(x) is linear.

e Inc _ 1
ar = — = - I -
e loc + I 14 PB
Ioc
dp Ap(0)
l,bc =—qAD,g — (W)=~ qAD, .
pC q pB dX( ) q pB %
Q _ gA3Ap(0)W 1
IpB = —— = 2 a7 = "
TpB TpB 1 ( W)
1+ - -—
2 \ Lpg
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