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JFET I -V relationship
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In the linear region, i.e., VD < V sat
D ,

ID = G0

{
VD −

2

3
(Vbi − VP)

[(
VD + Vbi − VG

Vbi − VP

)3/2

−
(
Vbi − VG

Vbi − VP

)3/2
]}

, G0 =
(2aZ)

L
× (qµnNd ).

Pinch-off (saturation): VG − VD = VP → V sat
D = VG − VP .

Substituting in the ID equation, we get

I sat
D (VG ) = G0

{
(VG − VP)− 2

3
(Vbi − VP)

[
1−

(
Vbi − VG

Vbi − VP

)3/2
]}

.

Note that I sat
D depends on VG . For an n-channel JFET, I sat

D ↓ as VG ↓
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Comparison of JFET and BJT I -V relationships
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* Note the different nomenclature for linear and saturation regions.

* In a BJT, V sat
CE ≈ 0.2 V irrespective of IB .

In a JFET, V sat
D (= VG − VP) depends on VG .
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Example
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For an n-channel Si JFET with Nd = 1× 1017 cm−3, µn = 300 cm2/V-s, a= 0.2µm, L= 5µm,

Z = 10µm, Vbi = 0.9 V for the p+n gate-to-channel junction,

(a) What is the pinch-off voltage VP?

(b) Plot ID versus VG for −2.5 V < VG < 0 V and with (i) VD = 0.1 V and (ii) VD = 5 V.

(c) Plot ID versus VD for 0 V < VD < 5 V and VG =−1.5, −1, −0.5, 0 V. Mark the boundary

between the linear and saturation regions.
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V-sec
× 1
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=

A

V
= f.
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(b) For the transistor to be in the linear region, we need VG − VD > VP , i.e., VG > VP + VD .

(i) VD = 0.1 V, → VG > −2.2 + 0.1 = −2.1 V for linear region.

(ii) VD = 5 V, → VG > −2.2 + 5 = 2.8 V for linear region.

(Note: such a large VG is not realistic.)

The ID -VG plot can now be obtained using the appropriate ID expression.
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D . For example, with VG =−1.5 V, V sat
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We then use the appropriate ID expression to obtain the ID -VD plot for that particular VG .
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= G0

{
(VG − VP)− 2

3
(Vbi − VP)

[
1−

(
Vbi − VG

Vbi − VP

)3/2
]}

, VD > V sat
D

For each VG , we first find V sat
D . For example, with VG =−1.5 V, V sat

D = VG − VP = −1.5− (−2.2) = 0.7 V.

We then use the appropriate ID expression to obtain the ID -VD plot for that particular VG .
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JFET source/drain resistances
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intrinsic
device

* In a real JFET structure, the source and drain contacts are some distance away from the

active part of the device, adding resistances RS and RD in the current path.

* The intrinsic device model needs to be augmented to include these resistances.
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Simplified JFET model for circuit analysis
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* When a JFET is used for amplification, it is biased in the saturation region, and the

saturation current I sat
D at a given VG is of interest.

* I sat
D (VG ) = G0

{
(VG − VP)− 2

3
(Vbi − VP)

[
1−

(
Vbi − VG

Vbi − VP

)3/2
]}

.

* For circuit design, we can use a simplified empirical expression for I sat
D :

I sat
D (VG ) = IDSS [1− (VG/VP)]2, where IDSS = I sat

D

∣∣
VG =0 V

.

M. B. Patil, IIT Bombay



Simplified JFET model for circuit analysis

2a

Gate

VD

VG

GateVG

n-Si

0 V

p+

p+

L

S D

ID =G0VD

(IsatD ,Vsat
D )

VD (volts)

0 V

−0.5 V

−1V

VG =−1.5 V

I D
(m

A
)

0 1 2 3 4 5
0

0.1

0.2

analytical

Is
a
t

D
(m

A
)

VG (volts)

VP

0

0.1

0.2

−2 −1.5 −1 −0.5−2.5 0

approximate

* When a JFET is used for amplification, it is biased in the saturation region, and the

saturation current I sat
D at a given VG is of interest.

* I sat
D (VG ) = G0

{
(VG − VP)− 2

3
(Vbi − VP)

[
1−

(
Vbi − VG

Vbi − VP

)3/2
]}

.

* For circuit design, we can use a simplified empirical expression for I sat
D :

I sat
D (VG ) = IDSS [1− (VG/VP)]2, where IDSS = I sat

D

∣∣
VG =0 V

.

M. B. Patil, IIT Bombay



Simplified JFET model for circuit analysis

2a

Gate

VD

VG

GateVG

n-Si

0 V

p+

p+

L

S D

ID =G0VD

(IsatD ,Vsat
D )

VD (volts)

0 V

−0.5 V

−1V

VG =−1.5 V

I D
(m

A
)

0 1 2 3 4 5
0

0.1

0.2

analytical

Is
a
t

D
(m

A
)

VG (volts)

VP

0

0.1

0.2

−2 −1.5 −1 −0.5−2.5 0

approximate

* When a JFET is used for amplification, it is biased in the saturation region, and the

saturation current I sat
D at a given VG is of interest.

* I sat
D (VG ) = G0

{
(VG − VP)− 2

3
(Vbi − VP)

[
1−

(
Vbi − VG

Vbi − VP

)3/2
]}

.

* For circuit design, we can use a simplified empirical expression for I sat
D :

I sat
D (VG ) = IDSS [1− (VG/VP)]2, where IDSS = I sat

D

∣∣
VG =0 V

.

M. B. Patil, IIT Bombay



Simplified JFET model for circuit analysis

2a

Gate

VD

VG

GateVG

n-Si

0 V

p+

p+

L

S D

ID =G0VD

(IsatD ,Vsat
D )

VD (volts)

0 V

−0.5 V

−1V

VG =−1.5 V

I D
(m

A
)

0 1 2 3 4 5
0

0.1

0.2

analytical

Is
a
t

D
(m

A
)

VG (volts)

VP

0

0.1

0.2

−2 −1.5 −1 −0.5−2.5 0

approximate

* When a JFET is used for amplification, it is biased in the saturation region, and the

saturation current I sat
D at a given VG is of interest.

* I sat
D (VG ) = G0

{
(VG − VP)− 2

3
(Vbi − VP)

[
1−

(
Vbi − VG

Vbi − VP

)3/2
]}

.

* For circuit design, we can use a simplified empirical expression for I sat
D :

I sat
D (VG ) = IDSS [1− (VG/VP)]2, where IDSS = I sat

D

∣∣
VG =0 V

.

M. B. Patil, IIT Bombay



Simplified JFET model for circuit analysis

2a

Gate

VD

VG

GateVG

n-Si

0 V

p+

p+

L

S D

ID =G0VD

(IsatD ,Vsat
D )

VD (volts)

0 V

−0.5 V

−1V

VG =−1.5 V

I D
(m

A
)

0 1 2 3 4 5
0

0.1

0.2

analytical

Is
a
t

D
(m

A
)

VG (volts)

VP

0

0.1

0.2

−2 −1.5 −1 −0.5−2.5 0

approximate

* When a JFET is used for amplification, it is biased in the saturation region, and the

saturation current I sat
D at a given VG is of interest.

* I sat
D (VG ) = G0

{
(VG − VP)− 2

3
(Vbi − VP)

[
1−

(
Vbi − VG

Vbi − VP

)3/2
]}

.

* For circuit design, we can use a simplified empirical expression for I sat
D :

I sat
D (VG ) = IDSS [1− (VG/VP)]2, where IDSS = I sat

D

∣∣
VG =0 V

.

M. B. Patil, IIT Bombay



Simplified JFET model for circuit analysis

2a

Gate

VD

VG

GateVG

n-Si

0 V

p+

p+

L

S D

ID =G0VD

(IsatD ,Vsat
D )

VD (volts)

0 V

−0.5 V

−1V

VG =−1.5 V

I D
(m

A
)

0 1 2 3 4 5
0

0.1

0.2

analytical

Is
a
t

D
(m

A
)

VG (volts)

VP

0

0.1

0.2

−2 −1.5 −1 −0.5−2.5 0

approximate

* When a JFET is used for amplification, it is biased in the saturation region, and the

saturation current I sat
D at a given VG is of interest.

* I sat
D (VG ) = G0

{
(VG − VP)− 2

3
(Vbi − VP)

[
1−

(
Vbi − VG

Vbi − VP

)3/2
]}

.

* For circuit design, we can use a simplified empirical expression for I sat
D :

I sat
D (VG ) = IDSS [1− (VG/VP)]2, where IDSS = I sat

D

∣∣
VG =0 V

.

M. B. Patil, IIT Bombay



JFET small-signal model
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0

DG
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Small-signal model

id

vgs

is

gmvgs

In an amplifier, a JFET is biased in saturation, and we have

I sat
D = IDSS [1− (VG/VP)]2.

The small-signal model at low frequencies can be derived as follows (with source at 0 V).

∆ID =
∂ID

∂VG
∆VG +

∂ID

∂VD
∆VD .

→ id = gmvg , with gm =
∂ID

∂VG
= − 2IDSS

VP

(
1− VG

VP

)
.

(Note that there is a reverse biased pn junction between G and S and betweeen G and D. → ig = 0.)
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Small-signal model

Channel length modulation:

* In saturation, the actual channel length is

Leff = L−∆L.

VD ↑ → ∆L ↑ → Leff ↓

→ G0

(
=

(2aZ)

Leff
× (qµnNd )

)
↑ → ID ↑

* This “channel length modulation” is significant in

short-channel devices (L ∼ 1µm).
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JFET: small-signal model
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* At high frequencies, the device capacitances must be included in the small-signal model.

* The gate capacitance is essentially that of the gate-to-channel reverse-biased p+n junction, which gets

divided between Cgs and Cgd .
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JFET amplifiers
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* Qualitatively, the ID -VDS relationship of a JFET is similar to the IC -VCE relationship of a BJT.

* A JFET can be used for amplification, e.g., we can have a “common-source” amplifier which is similar to the

“common-emitter” amplifier.
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* For amplification, a JFET needs to be biased

in the saturation region, and the design goal

is to bias it at a certain Q-point, (ID ,VDS ).

* The drain current equation,

I satD (VG ) = IDSS [1− (VG/VP)]2,

implies that there is a unique ID for a given

VGS .

However, there is a device-to-device varation

in the ID -VGS curve, giving rise to some

deviation from the intended bias point.

* The voltage divider scheme (c) is superior

since it is least sensitive, i.e., the deviation in

ID is small compared to the other schemes.
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VGS

R2
RS

S

D ID

The JFET parameters are IDSS = 1 mA, VP =−2 V. For VDD = 12 V and RD = 15 kΩ, find

suitable values of R1, R2, RS to get a bias point of IQD = 0.4 mA and VQ
DS = 4 V.

Solution: The drain current in the saturation region is given by

I sat
D (VG ) = IDSS [1− (VGS/VP)]2.

Solving for I sat
D = IQD = 0.4 mA, we get VQ

GS = −0.735 V.

VD = VDD − IDRD = 12 V− 0.4 mA× 15 k = 6 V.

→ VS = VD − VQ
DS = 6 V− 4 V = 2 V → RS = VS/I

Q
D = 2 V/0.4 mA = 5 kΩ.

For VGS to be −0.735 V, we need VG = VS + VGS = 2 V + (−0.735 V) = 1.265 V.

Since VG =
R2

R1 + R2
VDD , we now need to choose suitable values of R1 and R2 to get

the above VG . R1 = 200 kΩ and R1 = 23.5 kΩ is one such choice.

Finally, we check whether the transistor is indeed biased in saturation.

For saturation, we need VGS − VDS < VP , i.e., −0.735− 4 < −2 V.
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Common-source amplifier

voRL

VDD

R1

R2

RD
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CG

CD

vs

RL
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vO

vs R′ RDG

D

S

S

G D

Ri Ro

vgs
gmvgs

ro

* AV ≡
vo

vs
= −gm(R′D ‖ RL), where R′D = RD ‖ ro ≈ RD if ro is large.

AVO = AV

∣∣∣∣
RL→∞

= −gmR′D .

* Ri = R′ = R1 ‖ R2, Ro = R′D .
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Common-source amplifier: Example
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For the common-source amplifier of the last example, find (a) gain with RL →∞ and (b) input resistance Ri .

Solution:

gm = 2 IDSS

(
1− VQ

GS

VP

)
×
(
− 1

VP

)
= 2 (1 mA)

(
1− −0.735 V

−2 V

)
×
(
− 1

−2 V

)
= 0.63 mS.

(a) AVO = −gmRD = −0.63 mS× 15 kΩ = −9.5, assuming ro to be large.

(b) Ri = R1 ‖ R2 = 200 kΩ ‖ 23.5 kΩ = 21 kΩ.
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n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)

W

L

semi-insulating GaAs

a

GateSource Drain

n+ n+

* In a MESFET, the channel conductance is modulated by a rectifying metal-semiconductor junction.

* The substrate is semi-insulating, with a resistivity of about 108 Ω-cm.

* On the substrate, an n-type channel region is deposited, and the n+ source/drain regions are created by

ion implantation.

* The S/D contacts are ohmic; gate contact is rectifying.
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n-channel Metal-Semiconductor Field-Effect Transistor (MESFET)
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* For MESFETs, GaAs is preferred over silicon because of its higher electron mobility

(typically a factor of 5 larger than µn in silicon).

* Small channel lengths (tenths of a micron) are often used to make the transistor faster,

by reducing the transit time from source to drain and also the gate capacitance.

* GaAs MESFETs are commonly used in high-frequency (a few GHz) applications.
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