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pn junction diode: AC and transient conditions

* We have looked at the DC behaviour of a pn junction diode so far. We now want to
consider Va (the applied voltage) varying with time.

* Two situations are of interest:

* Small-signal behaviour (AC): With Va(t) =VDC + Vm sinωt, how does the current

vary with time when Vm is “small?”

* Large-signal behaviour: The variation in the applied voltage is not small. In

particular, we are interested in the turn-off and turn-on transients.
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Small-signal behaviour
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* Let v(t) =VDC + Vm sinωt.

* If Vm is “small,” the current is also sinusoidal, i.e., i(t) = IDC + Im sin(ωt + φ).

* In small-signal analysis, we are interested in the relationship between the sinusoidal parts

of the current and voltage, in particular, the ratio of the current and voltage phasors,

Im∠φ/Vm∠0.
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Small-signal behaviour: reverse bias
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* A pn junction diode conducts negligibly small current with a DC

reverse bias.

* With a time-varying applied reverse bias, it can conduct an

appreciable current.

* Consider a pn junction with Va =−VR , i.e., a reverse bias of VR . If

VR is increased to VR + ∆VR , the depletion width must change

from W to W + ∆W .

* This change is made possible by removal of majority carriers.
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Small-signal behaviour: reverse bias

* Movement of majority carriers is relatively fast, and the time scale

involved is ∼ τ =
εs

qµnn
for electrons.

For n = 1016 cm−3, µn = 1000 cm2/V-s, εs = 11.7ε0, τ = 0.6 ps, which is

negligibly small for all practical purposes.

* The situation is similar to a parallel-plate capacitor.

* Va =VR : Q = Area×
∫ xn

xj

ρdx = Area× qNdWn.

* VR → VR + ∆VR ⇒ Q → Q + ∆Q.

Note: For simplicity, we have not shown Vbi in the figure; the drop across the

junction is actually Vbi + VR , as seen before.
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* In semiconductor devices, “capacitance” generally refers to the

differential capacitance Cd =
dQ

dV
(the subscript d is usually dropped).

* For a reverse-biased pn junction, C =
∆Q

∆VR
.
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Small-signal behaviour: reverse bias
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∫ x′n

x′p

(E ′(x)− E(x))dx = −
∫ x′n

x′p

∆E(x)dx

= ∆E0W as ∆VR → 0 V.

∆Q, the total charge in the Gaussian box between AA′D′D

and BB′C ′C , is given by

∆Q = εs

∮
E · dS = A εs∆E0.

→ CJ =
∆Q

∆VR

∣∣∣∣
∆VR→0

=
Aεs

W
.

CJ is called the “junction capacitance” or “depletion layer

capacitance.”
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Example

VR + Vmsinωt

p n

xj

IDC + Imsin (ωt+ α)

For an abrupt, uniformly doped silicon pn junction, with Na = 1017 cm−3 and Nd = 2× 1016 cm−3, and

area = 0.01 cm2, calculate the capacitance (i.e., the differential capacitance) for an applied reverse bias of

VR = 2 V (T = 300 K).

Solution: The built-in voltage is

Vbi =
kT

q
log

(
NaNd

n2
i

)
= 0.77 V .

The depletion width for VR = 2 V is W =

√
2ε

q

Na + Nd

NaNd
(Vbi + VR) = 0.464µm.

Capacitance CJ =
A εs

W
=

0.01 cm2 × 11.7× 8.85× 10−14 F/cm

0.464× 10−4 cm

= 2.23× 10−10 F

= 0.223 nF.
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VR + Vmsinωt

p n

xj

IDC + Imsin (ωt+ α)

Va (V)

C
J
(n
F
)
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(in 1019 F−2)
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Example

For a silicon n+p junction, Na = 1016 cm−3, and area = 0.01 cm2. Plot

CJ versus Va for −5 V < Va < −0.1 V. Also, plot 1/C2
J versus Va. What

information can one obtain from the second plot? Take Vbi≈ 0.9 V.

(T = 300 K)

Solution: The junction capacitance is given by

CJ =
Aεs

W
= Aεs

√
qNa

2εs(Vbi − Va)
.

1

C2
J

=
1

(Aεs)2

2εs(Vbi − Va)

qNa
=

2

qNaεsA2
(Vbi − Va).

→ 1/C2
J versus Va: Slope gives Na; x-intercept gives Vbi.
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What is meant by “small-signal” condition?

VACVDC

p n

t t

Vm Im

v i

VDC

i (t)

v(t)

IDC

Small signal → With a sinusoidal input, the output (voltage or current) should

also be sinusoidal, i.e., it should not be distorted.

For a reverse-biased pn junction, CJ =
dQ

dVa
=

Aεs

W (Va)
=

K√
Vbi − Va

, with K = Aεs

√
qNaNd

2εs(Na + Nd )
.

With Va(t) = −(VR + Vm sinωt), i(t) =
dQ

dt
=

dQ

dVa

dVa

dt
= CJ(Va)× (−ωVm cosωt).

→ i(t) is sinusoidal if CJ can be treated as a constant.
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What is meant by “small-signal” condition?

VACVDC

p n

t t

Vm Im

v i

VDC

i (t)

v(t)

IDC

va(t) =−(VR + Vm sinωt)→ −(VR + Vm) < va < −(VR − Vm).

Cmin
J =

K√
Vbi + VR + Vm

, Cmax
J =

K√
Vbi + VR − Vm

.

Consider one of these two extreme values,

Cmax
J =

K√
Vbi + VR − Vm

=
K√

Vbi + VR

× 1√
1− Vm

Vbi + VR

≈ K√
Vbi + VR

(
1 +

1

2

Vm

Vbi + VR

)
.

If
Vm

2 (Vbi + VR)
� 1, CJ can be treated as a constant.
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What is meant by “small-signal” condition?
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* Small-signal condition:
Vm

2 (Vbi + VR)
� 1.

* If the small-signal condition is not satisfied, i(t) shows distortion.
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Small-signal behaviour: reverse bias

VACVDC

Va (V)

p n

i (t)

v(t)

C
J
(n
F
)

0

0.1

0.2

0.3

0.4

0.5

0 1−5 −4 −3 −2 −1

* The voltage-dependent capacitance provided by a reverse-biased pn junction is useful in

practice.

* Specially designed diodes called “varactors” (variable reactors) are used in applications

such as voltage-variable tuning, mixing, detection, etc.

* In these devices, the doping density profiles are designed so as to get a large capacitance

change for a small change in reverse bias.
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pn junction under forward bias: small-signal model

v(t)

VACVDC

p n
i (t) p n

pn0np0

n
p

xnxp

* p(xn) = pn0

(
eVa/VT − 1

)
, n(xp) = np0

(
eVa/VT − 1

)
.

* If the applied voltage is increased from Va to (Va + ∆Va), the carrier densities would also

increase.

* At low frequencies, the minority carrier profiles change in synchronisation with Va(t).

→ The Shockley equation can be used, with Va → va(t), I → i(t),

i.e., i(t) = Is
[
eva(t)/VT − 1

]
≈ Is eva(t)/VT .
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pn junction under forward bias: small-signal model

v(t)

VACVDC

p n
i (t)

V

rdI

i(t) = Is exp

(
VDC + Vm sinωt

VT

)
=

[
Is exp

(
VDC

VT

)]
exp

(
Vm sinωt

VT

)
= IDC exp

(
Vm sinωt

VT

)
.

If Vm � VT , exp

(
Vm sinωt

VT

)
≈ 1 +

Vm sinωt

VT
,

i(t) = IDC +
IDC

VT
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Example

V

v(t)

VACVDC

p n
rdIi (t)

For a silicon pn diode, Is = 10−13 A. Consider Va(t) = 0.6 V + Vm sinωt. Assume that the frequency is low

enough so that the minority carrier profiles can follow Va(t).

Plot the diode current i(t) using (a) the Shockley equation, (b) the low-frequency small-signal model.

Consider two values of Vm: 2 mV and 10 mV (T = 300 K).

(a) i(t) ≈ Is exp

(
VDC + Vm sinωt

VT

)
.

(b) IDC ≈ Is exp

(
VDC

VT

)
,

rd =
VT

IDC
→ iac =

Vm sinωt

rd
,

i(t) = IDC + iac .
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Example

VACVDC 1.1

1.2

1.3

p n

i (t)

v(t)

IDC
i(
m
A
)

Shockley eq.

AC model

0 T 2T

Vm = 2mV

0.6

1.2

1.8

IDC

i(
m
A
)

0 T 2T

Vm = 10mV

If Vm is not small compared to VT ,

* The diode current waveform is significantly distorted.

* The small-signal model is not accurate.
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High-frequency small-signal model (forward bias)

v(t)

VACVDC

n

p

n

np0
pn0

p
p n

i (t)

v(t)

VACVDC

n

p

n

np0
pn0

p
p n

i (t)

2

1

0

×1014 cm−3

time (µsec)

x (µ
m)

20
40 −0.1

0

xj
0

n

* At high frequencies, the carrier profiles cannot

follow changes in the applied voltage, and the

minority-carrier continuity equation needs to be

solved to obtain

p(x , t) on the n-side and

n(x , t) on the p-side.

* Using the above solution, the small-signal model

can be derived.
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1M. Shur, Physics of Semiconductor Devices. New Delhi: Prentice-Hall India, 1990.
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High-frequency small-signal model (forward bias)

CJ

CD

GD

IDC + i (t)

VDC + va(t)

va(t)

i (t)

* CJ is the depletion capacitance.

* GD and CD arise from diffusion of minority carriers.

* For a p+n junction,

GD =
G0√

2

(√
1 + (ωτp)2 + 1

)1/2

, CD =
G0

ω
√

2

(√
1 + (ωτp)2 − 1

)1/2

,

where G0 =
Is

VT
exp

(
VDC

VT

)
is the low-frequency conductance seen earlier.
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Example

CJ

CD

GD

IDC + i (t)

VDC + va(t)

va(t)

i (t)

For a silicon p+n diode at 300 K, Vbi = 0.72 V, Is = 1× 10−13 A, and the junction capacitance

CJ = 340 pF at VDC = 0 V. Assume τp = 1.5µs.

(a) For f = 1 kHz, plot CJ and CD versus VDC for 0 V < VDC < 0.65 V. Also, show

(CJ + CD) on the same plot.

(b) For f = 1 kHz, plot GD versus VDC for 0 V < VDC < 0.65 V.

(c) Find GD0 and CD0, the values of GD and CD , respectively, as ω → 0.

(d) For VDC = 0.6 V, plot GD/GD0 and CD/CD0 versus f for 10 Hz < f < 1 MHz.

(e) For VDC = 0.6 V, plot GD and ω(CJ + CD) versus frequency for 10 Hz < f < 1 MHz.
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(a) f= 1 kHz (b) f= 1 kHz

(c) VDC= 0.6 V (d) VDC= 0.6 V

IDC + i (t)

VDC + va(t)

CJ

CD

GD

i (t)

va(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

* CJ =
Aεs

W
=

K√
Vbi − VDC

→ CJ(VDC )

CJ(0 V)
=

√
Vbi

Vbi − VDC
→ CJ ↑ as VDC ↑.
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→ Both GD and CD increase exponentially with VDC .
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* For VD = 0.6 V, the conductance GD dominates for this device.

Home work: Show that (a) For ωτp � 1,
GD

ωCD
=

2

ωτp
, (b) For ωτp � 1,

GD

ωCD
→ 1.
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pn junction diode: large-signal behaviour

0

2

4

6

8

10

0

2

4

6

8

10

p

xj

p

x (µm)

(in 1017 cm−3)

(in 1017 cm−3)

102

106

1014

1018

1010

102

106

1014

1018

1010

p+ n

Va

xj

p

p

x (µm)

(in cm−3)

(in cm−3)

Va = 0.6 V

Va =−5V

Va = 0.6 V

Va =−5V

19.96 19.98 20 20.02 20.04 20.06 20 40 60 80 100 120

* There are major differences between forward and

reverse bias:

- The depletion region is wider in reverse bias.

- The hole density at xn is much larger in forward

bias.

- The total minority carrier charge q

∫ ∞
xn

p(x) dx is

also much larger in forward bias.

* For the diode to change from f.b. to r.b.

(or vice versa), large changes within the device are

required. These transients are called

“large-signal” transients.

* We will consider a representative circuit and look

at the turn-on and turn-off transients.
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pn junction diode: large-signal behaviour

np+
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RR (t > 0)

R =

* Turn-off: switch changes from position 1 to 2.

* Turn-on: switch changes from position 2 to 1.
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Turn-off transient
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RF= 0.5 kΩ

RF= 0.5 kΩ
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RR= 3 kΩ

RR= 2 kΩ

RR= 3 kΩ

RR= 2 kΩ

0.40.20

Nd= 5× 1016 cm−3

µp= 500 cm2/V-s

τp = 0.1µs

A= 0.001 cm2

T= 300K

* There is an interval ts , known as the “storage time” or “storage delay time” during which the

diode current is approximately constant (−IR), and the diode voltage continues to be positive.
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* The total time trr = ts + tr that the diode takes to “recover” to the reverse-bias steady state

condition is called the “reverse recovery” time.

* If RF is reduced, ts increases.

* If RR is reduced, ts decreases.

M. B. Patil, IIT Bombay



Turn-off transient
vD(t)

i (t)

VF

−VR

p+ n

−6

0

6

0

10

−4

−6

0

6

IF

ts tr
trr

0
t−0.1 IR

−IR

i

v D
(V

)

Vs

i(
m
A
)

t (µs)

0

10

−4
i(
m
A
)

t (µs)
v D

(V
)

Vs

Vs

RF (t < 0)

RR (t > 0)

R =

Nd= 5× 1016 cm−3

µp= 500 cm2/V-s

τp = 0.1µs

A= 0.001 cm2

T= 300K

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

RF= 0.5 kΩ

RF= 0.5 kΩ

RR= 2 kΩ

RR= 3 kΩ

RR= 2 kΩ

RR= 3 kΩ

RR= 2 kΩ

RR= 2 kΩ

RF= 0.5 kΩ

RF= 0.8 kΩ

RF= 0.8 kΩ

RF= 0.5 kΩ

* The total time trr = ts + tr that the diode takes to “recover” to the reverse-bias steady state

condition is called the “reverse recovery” time.

* If RF is reduced, ts increases.

* If RR is reduced, ts decreases.

M. B. Patil, IIT Bombay



Turn-off transient
vD(t)

i (t)

VF

−VR

p+ n

−6

0

6

0

10

−4

−6

0

6

IF

ts tr
trr

0
t−0.1 IR

−IR

i

v D
(V

)

Vs

i(
m
A
)

t (µs)

0

10

−4
i(
m
A
)

t (µs)
v D

(V
)

Vs

Vs

RF (t < 0)

RR (t > 0)

R =

Nd= 5× 1016 cm−3

µp= 500 cm2/V-s

τp = 0.1µs

A= 0.001 cm2

T= 300K

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

RF= 0.5 kΩ

RF= 0.5 kΩ

RR= 2 kΩ

RR= 3 kΩ

RR= 2 kΩ

RR= 3 kΩ

RR= 2 kΩ

RR= 2 kΩ

RF= 0.5 kΩ

RF= 0.8 kΩ

RF= 0.8 kΩ

RF= 0.5 kΩ

* The total time trr = ts + tr that the diode takes to “recover” to the reverse-bias steady state

condition is called the “reverse recovery” time.

* If RF is reduced, ts increases.

* If RR is reduced, ts decreases.

M. B. Patil, IIT Bombay



Turn-off transient
vD(t)

i (t)

VF

−VR

p+ n

−6

0

6

0

10

−4

−6

0

6

IF

ts tr
trr

0
t−0.1 IR

−IR

i

v D
(V

)

Vs

i(
m
A
)

t (µs)

0

10

−4
i(
m
A
)

t (µs)
v D

(V
)

Vs

Vs

RF (t < 0)

RR (t > 0)

R =

Nd= 5× 1016 cm−3

µp= 500 cm2/V-s

τp = 0.1µs

A= 0.001 cm2

T= 300K

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

RF= 0.5 kΩ

RF= 0.5 kΩ

RR= 2 kΩ

RR= 3 kΩ

RR= 2 kΩ

RR= 3 kΩ

RR= 2 kΩ

RR= 2 kΩ

RF= 0.5 kΩ

RF= 0.8 kΩ

RF= 0.8 kΩ

RF= 0.5 kΩ

* The total time trr = ts + tr that the diode takes to “recover” to the reverse-bias steady state

condition is called the “reverse recovery” time.

* If RF is reduced, ts increases.

* If RR is reduced, ts decreases.

M. B. Patil, IIT Bombay



Turn-off transient: charge control approach

xnxjxp

vD(t)
i (t)

VF

−VR

p+ n

IF

ts tr
trr

0
t−0.1 IR

−IR

i

RF (t < 0)

RR (t > 0)

R =

Vs

np+

Continuity equation for holes in the neutral n region (x > xn):

∂p

dt
= − 1

q

∂Jp

∂x
− (R − G), (R − G) =

p − pn0

τp
.
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The first term on the right is A [Jp(xn)− Jp(∞)] = AJdiff
p (xn) = I diff

p (xn).

The quantity qA

∫ ∞
xn

∆pdx is the “excess hole charge” Qp in the neutral n region.

We can rewrite the continuity equation as

∂Qp

∂t
= I diff

p (xn)− Qp

τp
.

We can think of this equation as the continuity equation for the total excess hole charge in the neutral n region.
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∂Qp

∂t
= I diff

p (xn)− Qp

τp
.

For a p+n junction, J ≈ Jdiff
p (xn)→ I ≈ I diff

p (xn).

→ ∂Qp

∂t
= I − Qp

τp
.

At t = 0−, we have a steady-state situation, with I ≡ IF =
VF − Von

RF
, where Von is the voltage drop across the

diode when conducting. (Von≈ 0.7 V for a typical low-power silicon diode.)

→ 0 = IF −
Qp(0−)

τp
→ Qp(0−) = IF τp is the excess hole charge in the neutral n region at t = 0−.
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After the transient is over (t > trr ), we have a steady-state situation again, with I ≈ 0 A, V ≈−VR .

∂Qp

∂t
= I − Qp

τp
→ 0 = 0− Qp(∞)

τp
→ Qp(∞) = 0.

Starting from Qp(0−) = IF τp at t = 0−, the excess hole charge must become nearly zero at t = trr .

How does this happen?
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* The storage time ts (≈ t9 in the figure) can be estimated by observing that I ≈−IR for 0 < t < ts .

* Note that, in the interval 0 < t < ts , the slope
dp

dx
(xn) is positive, corresponding to a negative current.

* By t = ts , the hole charge Qp in the neutral n region has reduced substantially. As an approximation, we

may use Qp(ts) = 0.
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0 < t < ts :
dQp

dt
= −IR −

Qp

τp
, with Qp(0+) = IF τp and Qp(ts) ≈ 0.

→ Qp(t) = τp (IF + IR) e−t/τp − IRτp , 0 < t < ts .

We can now use Qp(ts)≈ 0 to estimate ts as

ts = τp log

(
1 +

IF

IR

)
.

A more accurate analysis yields erf

(√
ts

τp

)
=

1

1 +
IR

IF

.
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2R.F. Pierret, Semiconductor Device Fundamentals. New Delhi: Pearson Education, 1996.
M. B. Patil, IIT Bombay



Turn-off transient: charge control approach

xnxjxp

IF

ts tr
trr

0
t−0.1 IR

−IR

i

0.1

1

10

0.01

IR/IF

t s
/τ

p

0.01 0.1 1 10

1

2vD(t)
i (t)

VF

−VR

p+ n

RF (t < 0)

RR (t > 0)

R =

Vs

np+

(1) ts = τp log

(
1 +

IF

IR

)
(2) erf

(√
ts

τp

)
=

1

1 +
IR

IF

* If IF is increased, the initial charge Qp(0−) = IF τp is larger
→ ts increases.

* If IR is increased, the excess charge is removed at a higher rate
→ ts decreases.
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* In the ts phase, ∆p(xn) > 0 which is consistent with vD > 0 V during

this phase (since ∆p(xn) = pn0

(
evD/VT − 1

)
).

* If RF is reduced, IF increases, and the initial excess hole charge

Qp(0) = IF τp also increases. The increased charge takes a longer time

for removal, leading to a larger value of ts .
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* If RR is reduced, the reverse current (magnitude) IR increases. Since IR
is one of the factors responsible for removal of Qp , a larger value of IR
results in a smaller ts .

(The other factor is recombination in the neutral n region.)
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* If RR is reduced, the reverse current (magnitude) IR increases. Since IR
is one of the factors responsible for removal of Qp , a larger value of IR
results in a smaller ts .

(The other factor is recombination in the neutral n region.)
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.

* In practice, a smaller τp can be achieved by introducing effective

recombination centres (such as gold in silicon) with a trap level in the

middle of the energy gap.
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* The second part of the turn-off transient

(the interval tr ) is very complex because

several changes take place simultaneously.
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* The slope
dp

dx

∣∣∣∣
x=xn

decreases with time, and

therefore the diode current i(t)≈ I diff
p (xn, t)

decreases (in magnitude).
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* The depletion region expands as the reverse

voltage across the diode builds up. The

expansion of the depletion region is

indicated by the movement of the majority

carriers away from the junction.
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* The depletion region expands as the reverse

voltage across the diode builds up. The

expansion of the depletion region is
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carriers away from the junction.
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During turn-on,

- The diode current must change from nearly zero to a significant

forward current ID ≈
VF − Von

RF
.

- The diode voltage must change from −VR to the steady-state

forward bias value corresponding to the steady-state forward

current.
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* Phase 1: The depletion region shrinks.

During this phase, the minority carrier profile

does not change significantly.

* Phase 2: Some time between t3 and t4, the

pn junction enters the forward bias regime.

Beyond this point, the minority carrier

charge builds up relatively quickly.

* In practice, the turn-off transient is a matter

of greater concern since it is longer than the

turn-on transient.
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During this phase, the minority carrier profile

does not change significantly.

* Phase 2: Some time between t3 and t4, the

pn junction enters the forward bias regime.

Beyond this point, the minority carrier

charge builds up relatively quickly.

* In practice, the turn-off transient is a matter

of greater concern since it is longer than the

turn-on transient.
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