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Semiconductor

* The flow of carriers (electrons or holes) from the “source” to the “drain” is modulated by
changing the electric field perpendicular to the direction of current flow.

* The change in field is brought about by a voltage applied to the “gate” terminal.
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* The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector
current is controlled by the base voltage.
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* However, there are some fundamental differences between the two devices.
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In a FET, either electrons or holes participate, depending on the type of the device
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* The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector

current is controlled by the base voltage.

* However, there are some fundamental differences between the two devices.

- In a BJT, both types of carriers — electrons and holes — participate in conduction (hence “bipolar”).
In a FET, either electrons or holes participate, depending on the type of the device

— FET is a “unipolar” device.

- In a BJT, Vg controls the collector current by changing the number of carriers injected by the emitter

into the base.
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* The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector
current is controlled by the base voltage.

* However, there are some fundamental differences between the two devices.

- In a BJT, both types of carriers — electrons and holes — participate in conduction (hence “bipolar”)

In a FET, either electrons or holes participate, depending on the type of the device
— FET is a “unipolar” device.

- In a BJT, Vg controls the collector current by changing the number of carriers injected by the emitter
into the base.

In a FET, Vs controls the drain current by modulating the resistance between the source and the drain
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* As the name implies, the operation of a junction field-effect transistor (JFET) depends on “junctions,” in
particular, on pn junctions.

* An n-channel JFET structure consists of an n-type semiconductor “channel” between two ohmic
contacts — source and drain.
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* As the name implies, the operation of a junction field-effect transistor (JFET) depends on “junctions,” in
particular, on pn junctions.

* An n-channel JFET structure consists of an n-type semiconductor “channel” between two ohmic
contacts — source and drain.

* The top and bottom regions of the semiconductor are doped p* and are connected together as the gate
terminal.
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* A positive drain voltage Vp causes an electron flow from source to drain (i.e., a current
Ip in the opposite direction).

M. B. Patil, IIT Bombay



Junction field-effect transistors

GIVG pt
= ‘ a n-Si I
- o s e sl T 3
Sourcelf 2a Drain ov a electron flow Vp
| i : : l N
= —— 7 G* Ve PP
‘ P L
Gate Simplified structure
L
L/

* A positive drain voltage Vp causes an electron flow from source to drain (i.e., a current
Ip in the opposite direction).

* A negative gate voltage V; causes the p™n junctions to be reverse biased, and through
this “field effect,” the conductance of the channel is modulated.
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* A positive drain voltage Vp causes an electron flow from source to drain (i.e., a current
Ip in the opposite direction).

* A negative gate voltage V; causes the p™n junctions to be reverse biased, and through
this “field effect,” the conductance of the channel is modulated.

* This mechanism leads to a change Alp in the drain current when a change A Vg is
applied in the gate voltage.
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Consider Vp=Vs=0V, and Vi < 0V (reverse bias).

* Since the doping density in the pT region is much larger than that in the n region, the
depletion region extends mostly on the n-side.
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(a) Vg=0V (b) Vg=-1V

Consider Vp=Vs=0V, and Vi < 0V (reverse bias).

* Since the doping density in the pT region is much larger than that in the n region, the
depletion region extends mostly on the n-side.

* As the gate reverse bias is increased, the depletion width (W) increases, and the width of
the neutral region (2h) decreases, since h=a — W.
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* The resistance offered by the n region (the “channel”) is Ry, = — =

o Area  gNgun(2hZ)’
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* R o T — Ry T as h |, i.e., as Vs is made more negative.
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* Th ist ffered by th ion (the “ch ") is Repy = — ="
e resistance offered by the n region (the “channel”) is R o Area  aNgan(2h2)

1
* R o % — Ry T as h |, i.e., as Vs is made more negative.

* When W =a (i.e.,, h=0), R, — oo, and the channel is said to be “pinched off.”

The corresponding gate voltage Vj is known as the “pinch-off’ voltage Vp.
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Consider an n-channel Si JFET with Ng=2 x 101%cm—3, 11, = 1000 cm2/V—s, a=15pum,
L=10pum, Z=50um. Let the built-in voltage for the p™n (gate-to-channel) junction be 0.8 V.

(a) Find the pinch-off voltage Vp.
(b) Compute the device resistance for Vg =0V, —1V, —2V.
(c) Plot the Ip—Vp characteristics for Vg =0V, —1V, =2V, for 0 < Vp < 50mV.
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(a) For a pTn junction, W = 1/76(%; — V) where V=V; — 0=V, since Vs=Vp=0V.
qiNg
. 2¢ qNg
At pinch-off, Vg =Vp,and W=a — a=,/— (Wi — Vp) = Vp =V — 2.
qNg 2¢

1.6 x 10719 x 2 x 101®
2 x 11.7 x 8.85 x 10—14

— Vp=08— (15x107%)2 =08 —-3.48 ~ —2.7V.
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(b) The channel resistance is Ry, = — = ——, h=a—-W=a-— i(vbi — Ve).
o Area qNgpn 2hZ qNy
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(c) Since Vp is small (< 50mV), h can be assumed to be constant from the source end to the drain end.
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(c) Since Vp is small (< 50mV), h can be assumed to be constant from the source end to the drain end.
The device behaves like a gate-controlled resistor, with
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(c) Since Vp is small (< 50mV), h can be assumed to be constant from the source end to the drain end.

The device behaves like a gate-controlled resistor, with
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2
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qNy
Vv,
— ID = 7D
Rch(VG)
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JFET [-V relationship

Consider a rectangular bar of n-type silicon with a uniform doping
density Ny.
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JFET [-V relationship

Consider a rectangular bar of n-type silicon with a uniform doping
density Ny.
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JFET [-V relationship

Consider a rectangular bar of n-type silicon with a uniform doping
density Ny.

* Ip = Area x |J|
= (2aZ) x o|&(x)|
— (2aZ) X quaNglE(X)].

2a lo
S e I <D
ov x Vp
n-silicon
L

M. B. Patil, IIT Bombay



JFET [-V relationship

Consider a rectangular bar of n-type silicon with a uniform doping
density Ny.

* Ip = Area x |J|
= (2aZ) x o|&E(x)|
— (2aZ) x quaNalE(2)].
* Since the conductivity o is independent of x, £ is also

independent of x, say & — ™ = constant.
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JFET [-V relationship

Consider a rectangular bar of n-type silicon with a uniform doping
density Ny.
* Ip = Area X |J| 2 lo
e T e D
= (2aZ) x o|&E(x)| oV Vp
— (2aZ) x quaNglE(x)]- )
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* Since the conductivity o is independent of x, £ is also .

independent of x, say & — ™ = constant.
X
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JFET [-V relationship

Consider a rectangular bar of n-type silicon with a uniform doping
density Ny.
* Ip = Area X |J| 2 lo
e T e D
= (2aZ) x o|&E(x)| oV Vp
— (2aZ) x quaNglE(x)]- )
n-silicon
* Since the conductivity o is independent of x, £ is also .

independent of x, say & — ™ = constant.

X
L L
:—/ E dx
0 0

v
= V(L) = V(0) = —&L — & = — TD

dv
* E=—— =2V
dx
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JFET [-V relationship
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JFET [-V relationship
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JFET [-V relationship
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JFET [-V relationship

lo = 2aZ x quaNg x |E(x)]
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We can also view the structure as a series of resistances, each

V
= 2aZ X qunNg X TD

corresponding to a length /.

Rl

T 1 /
o Area qunNg 2aZ’

Vp 1
o qunNg

L
X ——.
2aZ

R’ R’ R’ R’ R’
NN AN AN AN

2a lo
S ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, D
ov x Vp
nﬁﬁsilicon
| | |
L
V i
Vp
0To Lo

M. B. Patil, IIT Bombay



JFET [-V relationship

lo = 2aZ x quaNg x |E(x)]

V
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The bar behaves like a resistance R= —
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JFET [-V relationship

lo = 2aZ x quaNg x |E(x)]
V|
=2aZ X qunNg X TD-

The bar behaves like a resistance R = ﬁ = ! X L
b qualNg 2aZ

We can also view the structure as a series of resistances, each
corresponding to a length /.

T 1 /

o Area qunNg 2aZ’

Rl

Since there are L// resistors,
Vb Vb
Np E_1 1
i I qunNg 2aZ

We will find this picture useful in understanding the functioning of
the JFET.

o = (same as before).
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JFET I-V relationship
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Consider an n-channel JFET with a drain voltage Vp.
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Consider an n-channel JFET with a drain voltage Vp.

* We expect the potential to rise from 0V at the source end to Vp at the drain end.
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Consider an n-channel JFET with a drain voltage Vp.

* We expect the potential to rise from 0V at the source end to Vp at the drain end.
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JFET /-V relationship
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Consider an n-channel JFET with a drain voltage Vp.

* We expect the potential to rise from 0V at the source end to Vp at the drain end.

* As a result, the reverse bias Vg across the p'n junction becomes a function of x, increasing from Vs — V; at the source

end to Vp — Vi at the drain end.
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JFET /-V relationship
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Consider an n-channel JFET with a drain voltage Vp.

* We expect the potential to rise from 0V at the source end to Vp at the drain end.

* As a result, the reverse bias Vg across the p'n junction becomes a function of x, increasing from Vs — V; at the source

end to Vp — Vi at the drain end.
* Vg increases with x — W (o< vV + VR) T — h |
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| JFET: a discretised view |
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* A JFET can be thought of as a

*

series of resistances.

Ry x —— —
2hZ

Rs > Ry > R3 > Ry > Ry.

| JFET: a discretised view |
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* A JFET can be thought of as a
series of resistances.

* Ry o ——= —
2hZ

Rs > Ry > R3 > Ry > Ry.

. . S
* Since the current is the same for gy

all resistors,
Rs >Ry >R3> Ry >R —
AVs > AV, > AV > AVy > AV,

| JFET: a discretised view |
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| JFET: a discretised view |
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* A JFET can be thought of as a
series of resistances.

* Ry o ——= —
2hZ

Rs > Ry > R3 > Ry > Ry.

-—

. . S
* Since the current is the same for gy
all resistors,

Rs >Ry >R3> Ry >R —
AVs > AV, > AVs > AV, > AV,
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| JFET: a discretised view |

Ry R» R3 Ry Rs

R’ R’ R’ R’ R’ i | :
A JFET can be thought of as a —/\/\/\,+/\/\/\,+/\/\/\,+r\/\/\,+/\/\/\,— depletllon y IVG : pT
i . region L
series of resistances. ! ‘ ‘ ‘ \ ‘
Ry x —— —
2heZ
Rs >Ry > Ry > Ry > Ry lo 2h,
. . S D 2a| S
Since the current is the same for (v Vp oV X
all resistors, | | | |
Rs >Ry >R3> Ry, >Ry — n4silicon n—isilicon
AVs > AV > AV > AV, > AV } ; | | l |
| | | | | : Ve!
N AV | L | | : T
|£(x)|~TTasxT | | I 3 3
) Y
L « Vp e
| AVs
i , AV,
JFET : resistor :
| \ AV; |
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- B TD JFET AV, 3
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JFET [-V relationship

depletion

Ve region p*
l a
W(x)
S h(x) D 2h
ov Vp
n-silicon
Ly,
L

‘A

- Area =2hZ

M. B. Patil, IIT Bombay



JFET [-V relationship

depletion

]\/G region bt
s
W(x)
S h(x) D 2h
ov Vp
n-silicon
Ly,
L

* Gradual channel approximation:

‘)

- Area=2hZ
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JFET /-V relationship depletion

y ]VG region pt
. Wk
S L .2 L
ov | X Vb

n-silicon

H VG H
| : |

* Gradual channel approximation:

|~ Area=2hZ

The potential in the channel is two-dimensional in nature, i.e., it varies with both x and y.
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JFET /-V relationship depletion

y ]VG region p*
R W(x) Area =2hZ
S | L D__2h |
oV % Vp

n-silicon

: Ve ;
| L |

* Gradual channel approximation:
The potential in the channel is two-dimensional in nature, i.e., it varies with both x and y.
Poisson’s equation should now be written in the 2D form:
0Ex 08, p

ox dy €
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JFET /-V relationship depletion

y ]VG region ¢
. WK
2 I 0 D 2h | 7
(A% X Vb
n-silicon ‘
Z
1 Ve ;
| : |

Gradual channel approximation:
The potential in the channel is two-dimensional in nature, i.e., it varies with both x and y.

Poisson’s equation should now be written in the 2D form:

Area =2hZ

0Ex 0Oy, p
+ = =-.
Ox dy € e e
If L > a, the “gradual channel approximation,” viz., 3 ) 87}’ can be made, and the equation
X y
reduces to the 1D form, Y =L
dy €
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JFET /-V relationship depletion

y ]VG region pt
a| WK . Area=2hZ
S MO D 2h |
ov X Vp
n-silicon ‘
7777777777777777777 7
| Vg : |
| L |

Gradual channel approximation:
The potential in the channel is two-dimensional in nature, i.e., it varies with both x and y.

Poisson’s equation should now be written in the 2D form:

OEx " oy _r
Ox dy € e e
If L > a, the “gradual channel approximation,” viz., 3 X< a—y can be made, and the equation
X y
reduces to the 1D form, —% = Z.
dy €
2e . . .
— W(x) = T(Vbi — V(x)), as in a 1D pn junction.
qiNg
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JFET [-V relationship

depletion

y ]\/G region bt
£
R
S h(x) D 2h
ov | * Vo
n-silicon
Vg
L

‘)

In the neutral channel region, V(x,y)~ V(x) — J¥f has only x-component.

A Area =2hZ

M. B. Patil, IIT Bombay



JFET /-V relationship depletion

y ]VG region pt
2| WK | Area=2hZ
I . L I D .2 |
oV % Vp

n-silicon

: Ve ;
| L |

In the neutral channel region, V(x,y)~ V(x) — J¥f has only x-component.
dv

E'

where we have neglected J,‘fifr, a second-order effect.

- J"(X’Y) = —qunNg
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JFET /-V relationship depletion

y ]VG region Pt
2l WK
2 I | ) D _2h||.
oV % Vo
n-silicon
| VG |
| L |

In the neutral channel region, V(x,y)~ V(x) — J¥f has only x-component.
dv

Ev

where we have neglected J,‘fifr, a second-order effect.

- J"(X’Y) = —qunNg

Since the same current flows throughout the device,

dv
Ip ://J,,(x,y) dy dz = —qunNy //Edydz.

Area =2hZ
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JFET /-V relationship depletion

y ]VG region pt
a| WK . Area=2hZ
S MO D 2h |
ov X Vp
n-silicon ‘
7777777777777777777 7
| Vg : |
| L |

In the neutral channel region, V(x,y)~ V(x) — J¥f has only x-component.
dv

Ev

where we have neglected J,‘fifr, a second-order effect.

- J"(X’Y) = —qunNg

Since the same current flows throughout the device,

dv
Ip ://J,,(x,y) dy dz = —qunNy //Edydz.

dv
With L > a, we can say that ™ depends only on x.
/x

dv
— Ip = —qunNd (2/72)3
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JFET /-V relationship depletion

y V, region pt
[ /
<
& W9 1~ Area=2hZ
S h(x) D 2h
ov x VS
n-silicon ‘
dv ’
Ip = ~aunNg (2h2) S Ly, 7
x L
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JFET [-V relationship

depletion

region
,

0

S ,,,,,,,
v

n-silicon

dVv
Ip = —qunNg (2’72)3- |

Vg

|
Integrating from x =0 to x=1L,

L Vb Vb w
/ IDdX:fq,unNd(2Z)/ thﬁIDL:fq,unNd(2Z)a/ (17—) dV - h=a— W=a (
0 0 0

|~ Area=2hZ
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JFET [-V relationship

depletion

0

S ,,,,,,,
v

region pt

n-silicon

dVv
Ip = —qunNg (2’72)3- |

Vg

|
Integrating from x =0 to x=1L,

L Vp Vb
/ Ip dx = —qunNy (22)/ hdV — IpL = —qunNy (2Z)a/ (
0 0 0

The depletion width W is W(V) = \/

2¢
qNg

[Vbi — (V6 — V).

Area =2hZ
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depletion

JFET [-V relationship

y ]VG region bt
& W) | _~Area=2hZ

R I ho)

ov X
n-silicon ‘

dv : o —7
Io = —auunNg (2h2) . i Ly, | |
L

Integrating from x =0 to x=1L,

L Vp Vb w w
/ Ip dx = fq,unNd(2Z)/ hdV — IpL = —qunNy (2Z)a/ (17 —) dV - h=a— W=a (17 —)
0 0 0 a a

2¢
qNg

Vb + Vi — Vi 3/2_ Vii — Ve \*/?
Vbi — Vi Vbi — VP '

The depletion width W is W(V) = \/ [Vbi — (V6 — V).

2
—>/D—G0{VD—3(Vbi—VP)
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JFET /-V relationship ?:g?ils;ion

Area =2hZ

n-silicon

dv : o ’
Ip = —qunNg (2hZ)—. : lVG 3 4
dx } . }

Integrating from x =0 to x=1L,

L Vp Vp w w
/ Ip dx = fq,unNd(2Z)/ hdV — IpL = —qunNy (22)3/ (17 —) dV - h=a— W=a (17 —)
0 0 0 a

2¢
qNg

Vb + Vi — Vi 3/2_ Vii — Ve \*/?
Vbi — Vi Vbi — VP '

2aZ
where Gy = (LL) X (qunNg) is the conductance of the channel if there was no depletion, i.e., h=a throughout.

The depletion width W is W(V) = \/ [Vbi — (V6 — V).

2
—>/D—G0{VD—3(Vbi—VP)
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Z=50pm " v
Vi =0.8V 0 ] D
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depletion

JFET [-V relationship y Ve region
] s

Vg=-05V /
a=15um R W(x)
L=1 —

0 um 5 h(x) D
Z=50pim VR .
Vi =0.8V 0 . 1 P
Ng =2 x 10 cm3 »
1t = 1000 cm?/V-s sllicen

| Ve |
\ L \

2 Vo + Vo — Ve \*/? ([ Vhi— V6 \*/? (2a2)
Ip =Gy Vp — = (Wi — V, _ - — , Go=
b 0{ D 3(b P)[( Vo Vo ) Vo Ve 0 L

X (qpnNg).



depletion

JFET /-V relationship y ]Vc ;egion/er
Ve=-05V /
a=15um R W(x)
ES \
L=10pm S h(x) b
Z=50m VI S v
Vi =0.8V 0 . 1 P
Ng=2 x 10 cm~3 »
11 = 1000 cm? /V-s a=llcon
3 Ve ;
| L |
2 Vo + Vo — Ve \*/? ([ Vhi— V6 \*/? (2a2)
Ip=God Vp—=(Wi—V, “b T *hi 76 — (e , Go= x Ny).
D 0{ D 3 (Vb P) [( Vo — Vp Vo — Vp 0 L (qunNg)

* The first term Gy Vp represents the maximum current that we can get from the JFET structure without

any channel depletion.



depletion

JFET [-V relationship y Ve region -+
] s
Vg=-05V V
a=15pum a W(x)

ES \
L=10pm S h(x) b
Z=50pim v v
Vi =0.8V . 1 P
Ng=2 x 10 cm~3 »

11 = 1000 cm? /V-s m-silicem
i Ve i
\ L \

2 Vp + Vi — Ve \ ¥/? Vi — Vg 32 (2aZ)
Ip=God Vp— = (Vi — V, ZD T Thi Y6 (e , Go= 220 % (qunNg).
b 0{ D 3( b P) [( Vo Vo ) Vo Ve 0 T (qunNg)

* The first term Gy Vp represents the maximum current that we can get from the JFET structure without
any channel depletion.

* The second term represents reduction of the current due to channel depletion.



. i depletion Vit
JFET [-V relationship y Ve region -+
] / / | sat
Ve=—-05V ~ TS
a=15um R W(x)
ES \
L=10pm S h(x) b
Z=50m VI v
Vpi =0.8V vy - W
Ng=2 x 10 cm~3 »
Jin = 1000 cm?/V-s a=llcon /n ]
. l ; 0 I I I
: Ve § 0 1 2 3 4
Vp (V
} L } o (V)
2 Vo + Vo — Ve \*/? ([ Vhi— V6 \*/? (2a2)
Ip=Go{ Vp — = (Vi — V, _ - == . Go= X N,).
D 0{ D 3 (Vhi P) [( Vo — Vp Vo — Vp 0 L (qrnNg)

* The first term Gy Vp represents the maximum current that we can get from the JFET structure without

any channel depletion.

* The second term represents reduction of the current due to channel depletion.
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. . depletion Vit
JFET [-V relationship y Ve region .+
] . / 0.2 R I A kalsat
Ve=-05V % P D E 10
a=15um a W(x) ]
= |
L=10pum S h(x) D
Z =50 pm °V——>X '''''''''''''''''''''''''''''''' _V. .
Vi =0.8V ovyp - ¢ Vo
Ng=2 x 10% em—3 . ; o I = GoVp ]
4w = 1000 cm?/V-s n-silicon n ]
: : 0 L L L
§ lvG | 0 1 2 3 4
} L } Vo (V)
2 Vo + Vo — Ve \*/? ([ Vhi— V6 \*/? (2a2)
Ip =Gy Vp — = (Wi — V, _— - — , Gp=——= X Ng).
D 0{ D 3 (Vb P) [( Vo — Vp Vo — Vp 0 L (qunNg)

* The first term Gy Vp represents the maximum current that we can get from the JFET structure without
any channel depletion.

* The second term represents reduction of the current due to channel depletion.

* Consider low values of Vp (Vp~0V).

dip (2ho2) , 2¢
—_— — X Ny), thhg=a— 4/ — (W — Vg).
dvp L (qunNg), with ho = a oy (Vi G)

— A
=G =
Vp—0
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JFET /-V relationship y v region _+
[« .7
0'2‘,"“"H“H““H‘fklsat
Veg=-05V P4 H . D| b b
a=15pum a W(x) i
- — i
L=10pm S h(x) b :
Z=50pum oV X . ;
Vi =0.8V I S o .;' p
Ng=2 x 10 cm~3 H -
2 n-silicon H Io=GoVo
Jin =1000cm?/V-s /n ]
! i 0 Il Il Il
: Ve § 0 1 2 3 4
| L | Vo (V)

2 Vo + Vo — Ve \*/? ([ Vhi— V6 \*/? (2a2)
Ip=Go{ Vp — = (Vi — V, —_ - —— ., Gp=—""2 X% Ny).
D 0{ D 3 (Vb P) [( Vo — Vp Vo — Vp 0 L (qunNg)
* The first term Gy Vp represents the maximum current that we can get from the JFET structure without
any channel depletion.

* The second term represents reduction of the current due to channel depletion.
* Consider low values of Vp (Vp~0V).

dip (2ho2) , 2
—_— — X Ny), th hg=a— 4/ — (W — V¢).
v (qunNg), with ho = a o, (Vi — Vi)

— A
=G = L
Vp—0

- Note that Gé is smaller than Gg, the channel conductance with no depletion.
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JFET [-V relationship

dVv
Ip = —qunNg (2/72)3-

Ve=-05V
a=15um
L=10pm
Z=50pm

Vi =0.8V

Ng=2 x 10" cm3

Jtn =1000cm?/V-s

Ip (mA)

V (volts)

& (kV/cm)
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JFET [-V relationship

Ve=-05V
a=15um
L=10pm
Z=50pm
Vi =0.8V
dv Ng=2 x 10 cm 3
ID = _q'u‘nNd (ZhZ)E ftn = 1000 cm?/V-s

* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width
becomes larger at the drain end, causing the
conduction channel to shrink.

Ip (mA)

V (volts)

& (kV/cm)




JFET [-V relationship

Ve=-05V
a=15um
L=10pm
Z=50pm
Vi =0.8V
dv Ng=2 x 10 cm 3
ID = _q'u‘nNd (2/72)3 ftn = 1000 cm?/V-s

* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width
becomes larger at the drain end, causing the
conduction channel to shrink.

Ip (mA)

V (volts)

& (kV/cm)




JFET [-V relationship

Ve=-05V
a=15um
L=10pm -
Z=50pm E
Vi =0.8V -
dv Ng=2 x 10 cm 3
ID = _q'u‘nNd (2/72)3 ftn = 1000 cm?/V-s

* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width

becomes larger at the drain end, causing the 20k
conduction channel to shrink. 1sh
1
2 1ok
>
05F B
0
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JFET [-V relationship

Ve=-05V
a=15um
L=10pm
Z=50pm
Vi =0.8V
dv Ng=2 x 10 cm 3
ID = _q'u‘nNd (2/72)3 ftn = 1000 cm?/V-s

*

When Vp is increased, the reverse bias at the
drain end increases, and the depletion width

becomes larger at the drain end, causing the
conduction channel to shrink.

dv
Since the current, which is proportional to h o
X

is independent of x, a narrower channel at the
drain end is accompanied by a larger electric field.

Ip (mA)

2.0

1.0

V (volts)

05
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Ve=-05V
a=15um
L=10pm
Z=50pm
Vi =0.8V
dv Ng=2 x 10 cm 3
ID = _q'u‘nNd (2/72)3 ftn = 1000 cm?/V-s

*

When Vp is increased, the reverse bias at the
drain end increases, and the depletion width

becomes larger at the drain end, causing the
conduction channel to shrink.

dv
Since the current, which is proportional to h o
X

is independent of x, a narrower channel at the
drain end is accompanied by a larger electric field.

Ip (mA)

2.0

1.0

V (volts)

05

& (kV/cm)
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Ve=-05V
a=15um
L=10pm
Z=50pm
Vi =0.8V
dv Ng=2 x 10 cm 3
ID = _q'u‘nNd (2/72)3 ftn = 1000 cm?/V-s

*

When Vp is increased, the reverse bias at the
drain end increases, and the depletion width

becomes larger at the drain end, causing the
conduction channel to shrink.

dv
Since the current, which is proportional to h o
X

is independent of x, a narrower channel at the
drain end is accompanied by a larger electric field.

Ip (mA)

2.0

1.0

V (volts)

05

& (kV/cm)
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Ve=—05V
a=15um
L=10pm
Z=50pm
Vi =08V
dv Ng=2 x 10 cm 3
Ip = —qunNg (2/72)3- 1o = 1000 cm?/V-s
* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width
becomes larger at the drain end, causing the
conduction channel to shrink.
. L . dVv
* Since the current, which is proportional to h d—
X

is independent of x, a narrower channel at the
drain end is accompanied by a larger electric field.

Ip (mA)
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JFET [-V relationship

Ve=—05V
a=15um
L=10pm
Z=50pm
Vi =08V
dv Ng=2 x 10 cm 3
Ip = —qunNg (2/72)3- 1o = 1000 cm?/V-s
* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width
becomes larger at the drain end, causing the
conduction channel to shrink.
. L . dVv
* Since the current, which is proportional to h d—
X

is independent of x, a narrower channel at the
drain end is accompanied by a larger electric field.

Ip (mA)
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JFET [-V relationship

Ve=—05V
a=15um
L=10pm
Z=50pm
Vi =08V
dv Ng=2 x 10 cm 3
Ip = —qunNg (2/72)3- 1o = 1000 cm?/V-s
* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width
becomes larger at the drain end, causing the
conduction channel to shrink.
. L . dVv
* Since the current, which is proportional to h d—
X

is independent of x, a narrower channel at the
drain end is accompanied by a larger electric field.

Ip (mA)

2.0

1.0

V (volts)

05

& (kV/cm)

E 5 -
E C
3 B —
A S D
i T T T OV/// Vb




JFET [-V relationship

dv
ID = —q,unNd (2/72)3

Ve=-05V
a=15um
L=10pm
Z=50pm

Vi =0.8V

Ng=2 x 10%cm3

Jtn =1000cm?/V-s

* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width
becomes larger at the drain end, causing the

conduction channel to shrink.

dv
* Since the current, which is proportional to h o
X

is independent of x, a narrower channel at the

drain end is accompanied by a larger electric field.

Ip (mA)

V (volts)
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JFET [-V relationship

Ve=-05V
a=15um
L=10pm -
Z=50pm E
Vi =0.8V -
dv Ng=2 x 10 cm 3
ID = _q'u‘nNd (2/72)3 ftn = 1000 cm?/V-s

* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width

becomes larger at the drain end, causing the 20k
conduction channel to shrink. 1sh
T D
. L . d £ C
* Since the current, which is proportional to h o 210 C
X >

is independent of x, a narrower channel at the

. . . s D
drain end is accompanied by a larger electric field. 0 Vo
0
2
54
26
'S)
-8
D
-10 Vo
-12 I I I 1
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JFET [-V relationship

Ve=-05V
a=15um
L=10pm -
Z=50pm E
Vi =0.8V =
dv Ng=2 x 10 cm 3
ID = _q'u‘nNd (2/72)3 ftn = 1000 cm?/V-s

* When Vp is increased, the reverse bias at the
drain end increases, and the depletion width
becomes larger at the drain end, causing the

conduction channel to shrink.

V (volts)

dv
* Since the current, which is proportional to h o
X

is independent of x, a narrower channel at the

drain end is accompanied by a larger electric field.

* At point D, as the current reaches its maximum
value, the channel at the drain end is almost
pinched off because the voltage across the ptn
junction at that point has become equal to the

& (kV/cm)

pinch-off voltage Vp, i.e., Vg — Vp = Vp.
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JFET [-V relationship
What happens beyond punch-off?

* Our /-V equation is not valid beyond pinch-off.

M. B. Patil, IIT Bombay




JFET [-V relationship
What happens beyond punch-off?

* Our /-V equation is not valid beyond pinch-off.

* What actually happens is that a narrow high-field
region develops near the drain end, and the
“excess” voltage (over and above Vp at point D)
drops across this high-field region, leaving the
conditions in the rest of the channel virtually the

same as those at point D.
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JFET [-V relationship
What happens beyond punch-off?

* Our /-V equation is not valid beyond pinch-off.

* What actually happens is that a narrow high-field

region develops near the drain end, and the

“excess” voltage (over and above Vp at point D)

drops across this high-field region, leaving the

conditions in the rest of the channel virtually the
same as those at point D.

* Since the potential profile in most of the channel
remains the same (as point D), W(x), h(x), £(x)
also remain the same, and so does the current

— the drain current saturates at IEat.
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JFET [-V relationship
What happens beyond punch-off?
* Our /-V equation is not valid beyond pinch-off.

* What actually happens is that a narrow high-field
region develops near the drain end, and the
“excess” voltage (over and above Vp at point D)
drops across this high-field region, leaving the
conditions in the rest of the channel virtually the
same as those at point D.

* Since the potential profile in most of the channel
remains the same (as point D), W(x), h(x), £(x)
also remain the same, and so does the current
— the drain current saturates at /3"

* The corresponding Vp is called the “drain
saturation voltage” V3*.
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What happens beyond punch-off?

*

*

Our [-V equation is not valid beyond pinch-off.

What actually happens is that a narrow high-field
region develops near the drain end, and the
“excess” voltage (over and above Vp at point D)
drops across this high-field region, leaving the
conditions in the rest of the channel virtually the
same as those at point D.

Since the potential profile in most of the channel
remains the same (as point D), W(x), h(x), £(x)
also remain the same, and so does the current

— the drain current saturates at IEat.

The corresponding Vp is called the “drain
saturation voltage” V3*.

Ve — VE = Vp = VE' = Vi — Vp. For
example, if Vp=—-25V, V;=-1V, the drain
current will saturate at
VEt=—-1—-(-25)=15V.

. B. Patil, IIT Bombay
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JFET [I-V relationship

0.2

* In the region near the drain end (between x = x2
and x = L), the electric field is larger than the rest
of the channel. The “excess” voltage, Vp — VB“,
drops across this region.
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JFET [I-V relationship

0.2

* In the region near the drain end (between x = x2
and x = L), the electric field is larger than the rest
of the channel. The “excess” voltage, Vp — VB“,
drops across this region.

* Any further increase in Vp causes a larger field in
this high-field region, and the voltage drop across
that region increases accordingly.
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* In the region near the drain end (between x = x2
and x = L), the electric field is larger than the rest
of the channel. The “excess” voltage, Vp — VBat,
drops across this region.

* Any further increase in Vp causes a larger field in
this high-field region, and the voltage drop across
that region increases accordingly.

* The rest of the channel, “shielded” by the
high-field region, does not experience any change
as Vp is increased.
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* At x = x1 in the figure, for example, the channel
potential as well as its derivative ﬂ remain
unaffected by the excess Vp, and tI'ferefore the
current at xi, which depends on h(V) and Z—Z

remains constant. Since the current is the same
throughout the device, Ip, the drain terminal
current, remains constant.
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JFET [-V relationship |

0.2 v T T

* At x = x1 in the figure, for example, the channel
potential as well as its derivative ﬂ remain
unaffected by the excess Vp, and tI'ferefore the
current at xi, which depends on h(V) and ﬂ
remains constant. Since the current is the same

throughout the device, Ip, the drain terminal
current, remains constant.

*

Note that the high-field region near the drain is
not completely devoid of electrons (otherwise, the
current would be zero).
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* The channel is
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uniform from S to D at low V| and becomes narrower at the drain end at high Vp.

V (volts)
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* An increase in Vp is accompanied by a decrease in n and an increase in £.
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* The channel is uniform from S to D at low Vp and becomes narrower at the drain end at high Vp.
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* Beyond saturation (Vp ~ 3.6V), V(x)

AN x Vp=0.4V

is almost constant except in the region close to the drain.
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* Note that the Ip versus Vp curve has a non-zero slope beyond saturation (to be discussed).
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* Beyond saturation (Vp ~ 3.6V), V(x) is almost constant except in the region close to the drain.
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