
 Abstract— Spectral transition segments serve as landmarks 
for the perception of consonants. In “clear speech” mode 
adopted by speakers to improve intelligibility in difficult 
communication environments, transition segments are of 
increased duration and intensity. Modification of conversational 
speech to have acoustic properties of clear speech has been 
reported to improve its intelligibility. This paper presents an 
automated method for locating spectral transition segments in 
speech, and to produce natural quality resynthesized speech with 
intensity and time-scale modified spectral transition segments. 
The boundaries of spectral transition segments are located using 
an index derived from the rate of variation of energy and 
centroid frequency in five non-overlapping spectral bands. 
Time-scale modification is performed using harmonic plus noise 
model (HNM) based analysis-synthesis. The overall speech 
duration is kept unaltered by appropriately compressing the 
steady state segments. Transition segments are intensity scaled 
by 6 dB. The effectiveness of the method was evaluated by 
conducting listening tests on normal hearing subjects using VCV 
syllables as the test material. 
 Index Terms- Transition segment detection, Clear speech, 
CVR modification, Time-scale modification, Harmonic plus 
noise model. 

I.  INTRODUCTION 
 

 The important regions in speech containing information for 
the correct phoneme identification are called ‘landmarks,’ and 
these are generally characterized by spectral transitions. This 
may be due to the ability of the human auditory system to 
predict spectral targets based on the transitional information 
[1]. It is possible to make speech more robust and intelligible 
by enhancing these regions by natural or synthetic methods. 
In “clear speech” mode, a talker attempts to make speech 
more intelligible (during communication with a hearing 
impaired listener, in a noisy environment, etc.). Clear speech 
is reported to be about 17 % more intelligible than convers-
ational speech of the same speaker [2], [3].  
 Acoustic characteristics of clear and conversational speech 
show differences at global, phonological, and phonetic levels. 
Speaking rate in clear speech mode is nearly half of that in 
conversational mode. This reduction is mainly due to more 
frequent and lengthy pauses, and increased duration of 
acoustic segments. At the phonetic level, consonant segments 
are of increased duration and intensity. The durations of 

transition segments, which include voice onset time (VOT), 
formant transition duration, burst duration, and stop closure 
duration, are comparatively higher in clear speech than 
corresponding durations in the conversational speech. 
Consonant vowel intensity ratio (CVR), the ratio of consonant 
intensity relative to the neighboring vowel intensity is found 
to be higher in clear speech than in conversational speech [4], 
[5]. Krause and Braida [5] reported that trained speakers 
could produce highly intelligible speech at their normal 
speaking rates. Certain inherent characteristics like increased 
spectral energy in the 1-3 kHz region, intensity envelope with 
higher modulation index, changes in VOT and frequency of 
stop burst releases were identified as the contributors for 
improved intelligibility. Liu and Zeng [6] reported that at 
lower SNRs temporal fine structure (0.5-10 kHz) contributed 
more towards intelligibility, whereas at quiet and positive 
SNRs, temporal envelope (2-50 Hz) was more important.  
 Gordon-Salant [7] reported 16 % improvement in recogni-
tion of consonants by normal and hearing impaired listeners 
using intensity and duration altered consonant-vowel (CV) 
syllables as the test material. Consonant intensity was 
enhanced by 10 dB and duration was uniformly increased by 
100 %. Hazan and Simpson [8] reported intelligibility 
enhancement strategies using vowel-consonant-vowel (VCV) 
syllables and semantically unpredictable sentences as test 
material. Intensity modification of frication segments (+6 dB) 
and burst segments (+12 dB) was reported to be effective in 
improving intelligibility. Thomas and Pandey [9], [10] 
evaluated improvement in speech perception by CVR 
modification (3-12 dB) and consonant duration modification 
(50 %, 100 %) using synthetic syllables. CVR enhancement 
was found to be more effective in reducing the effect of 
forward masking in the VC context. CVR enhancement up to 
10 dB improved identification of stop consonants. Expansion 
of formant transition duration and burst duration by 50 % 
improved consonant identification at lower SNR levels, 
whereas VOT modification resulted in degraded performance. 
  In all the above investigations, modifications were 
performed on manually annotated speech material. Manual 
methods for segmentation are most accurate, but they are time 
consuming and tedious, particularly at the phoneme level. 
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Further, they obviously can not be used in automated 
intelligibility enhancement techniques based on the properties 
of clear speech.  
 Glass and Zue [11] reported a segmentation scheme based 
on the critical band filtering property of the human auditory 
system. Responses from the auditory nerve fibers were 
simulated using outputs from a set of 40 filters processed by a 
transduction stage. These responses were computed every 5 
ms, to get a 40-dimensional feature vector, for each frame. 
Euclidean distances between frames were used to measure 
their acoustic similarity. This method detected 90 % of the 
boundaries with 20 ms accuracy, when tested using 500 
sentences from TIMIT database [21].  
 Sarkar and Sreenivas [12] reported a segmentation method 
based on average level crossing rate (ALCR), defined as the 
rate of crossing of certain predefined levels by the normalized 
speech waveform. ALCR responds to amplitude and 
frequency variations in the speech signal and has valleys at 
locations corresponding to points of phoneme transition. The 
level allocation was based on an adaptive scheme using signal 
pdf and SNR. This method detected 78.6 % of manually 
located boundaries with a temporal resolution of 20 ms, when 
tested using 100 sentences from TIMIT database.  
 Alani and Deriche [13] reported a segmentation technique, 
capable of tracking fast and slow transitions using wavelet 
decomposition of the signal. Dyadic wavelet decomposition 
was used to split speech signal into 6 bands (0-0.25, 0.25-0.5, 
0.5-1.0, 1.0-2.0, 2.0-4.0, 4.0-6.0 kHz). Short-time energy 
variations were computed for each band, using a 256 point 
Hamming window, with 25 % overlap. The strength of 
transition was measured by a Euclidean distance function 
evaluated over four consecutive bands. It was compared with 
an empirically selected threshold to locate the segment 
boundaries. This method detected 90.9 % of the manually 
located landmarks when evaluated using 11 speech files from 
TIMIT database.  
 These techniques for automated segmentation aim at 
detecting boundaries of all classes of phonemes, and are 
computation intensive. For the application of intelligibility 
enhancement, we need to detect the consonant transitions for 
time-scale and intensity modification. Rather than using a 
segmentation approach, we have used a landmark detection 
approach in the present investigation. 
  Liu [14] reported an algorithm for detecting acoustically 
abrupt landmarks in speech using energy variations in six 
frequency bands (0-0.4, 0.8-1.5, 1.2-2.0, 2.0-3.5, 3.5-5.0, 5.0-
8.0 kHz). The algorithm was capable of locating glottal, 
sonorant, and burst onsets and offsets. Short-time spectral 
analysis was carried out and variations in the largest spectral 
component in each of the six bands were used to form energy 
contours. Rate-of-rise contours (ROR’s) were computed by 
taking the derivative of energy contours, and peaks in the 
ROR contours were used to locate the landmarks. A two-pass 
strategy was used, a coarser pass to locate the vicinity of a 
spectral change and a finer pass to time-localize the land-
marks. The algorithm detected 88 % of the total landmarks 

with a temporal resolution of 30 ms, when evaluated using 
manually annotated sentences from TIMIT database. 
 Automated intelligibility enhancement can be carried out 
by modification of the signal in regions where it displays 
certain peculiar characteristics like fast spectral transitions. In 
many applications, speech is divided into segments with 
boundaries placed at the time instances of major spectral 
changes, which correspond to major changes in the vocal tract 
configuration. These regions correspond approximately to the 
landmark regions introduced by Liu [14], where acoustic cues 
are concentrated [15]. 
 Colotte and Laprie [15] reported an intelligibility enhance-
ment technique using a spectral variation function for locating 
the regions for modification. The spectral variation function 
detected 82 % of manually located landmarks with an 
accuracy of 20 ms. Stop bursts and unvoiced fricatives were 
amplified by 4 dB and time-scale modified by factors in the 
range of 1.8 to 2.0. Listening tests were conducted on normal 
hearing listeners and they were asked to complete missing 
words in the sentences, with and without enhancement. 
Results of the listening tests showed significant improvement 
in missing word identification in the modified sentences.  
 Skowronski and Harris [16] reported a technique based on 
boosting of energy in the regions critical to intelligibility. A 
measure of spectral flatness defined as the ratio of geometric 
mean to arithmetic mean of the spectrum of the speech signal 
was used for locating the regions for modification. Listening 
tests were conducted on 25 subjects using isolated utterances 
of confusable words from 16 speakers. The enhancement 
improved intelligibility for 9 speakers without degrading 
intelligibility for the remaining speakers.  
 This paper presents an automated method for improving 
speech intelligibility, utilizing the acoustic properties of clear 
speech. Figure 1 shows block diagram representation of the 
method. The regions for modification are located by a land-
mark detector, which detects boundaries of transition 
segments. The detected transition segments are time-
expanded using a harmonic plus noise model (HNM) based 
time-scale modification stage [17], [18]. The overall duration 
is kept unaltered by appropriately compressing the steady 
state vowel segments [20]. Intensity scaling stage performs 
intensity medication of transition segments. Evaluation has 
been carried out using VCV syllables with vowel /a/ and stop 
consonants /p, b, t, d, k, g/, with listening tests involving 
normal hearing subjects with simulated hearing loss. 
 

 

Fig. 1. Automated landmark detection and speech modification system. 
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II AUTOMATED DETECTION OF TRANSITION SEGMENTS 
 

 Landmarks are information rich areas in an utterance and 
the speech perception process focuses on landmarks to get the 
acoustic cues necessary for correct phoneme identification. 
Landmarks are classified into abrupt, non-abrupt and vocalic. 
An estimate of phonetically balanced sentences in the TIMIT 
database has been reported to have 68 % acoustically abrupt 
landmarks, 29 % vocalic landmarks and 3 % non-abrupt 
landmarks [14]. Acoustically abrupt landmarks are associated 
with consonants, which involve formation of a tight constric-
tion and a release in the vocal tract, by movement of a 
primary articulator. For semivowels, narrowing of the con-
striction and its gradual release, result in non-abrupt 
landmarks. 
 In addition to energy variations, our method uses variation 
of centroid frequencies in the spectral bands, which contain 
information regarding the formant transitions. By combining 
the ROR functions of energy and centroid frequency, it is 
possible to track the energy and formant frequency variations 
in spectral bands. The combined ROR contours were added to 
get a single parameter called transition index, as an indication 
of the overall spectral variation.  
 
A. Transition Segment Detection Technique 
 

 Short-time magnitude spectra are computed using 512-
point FFT on 6 ms segments selected using Hanning window. 
The input speech is zero padded before FFT computation to 
get a spectral resolution of 20 Hz for a sampling rate of 10 k 
Sa/s. The short analysis window length gives a spectral 
envelope with the effect of harmonics suppressed, and frames 
are taken every 1 ms to permit tracking of any abrupt 
variations in the spectrum. The spectrum is divided into five 
non-overlapping bands: 0–0.4, 0.4–1.2, 1.2–2.0, 2.0–3.5, 3.5–
5.0 kHz. Band 1 primarily monitors glottal vibrations, bands 2 
-5 detect closures and releases of consonants, and onsets and 
offsets of aspiration and frication noise associated with stops, 
fricatives, and affricates [14]. Our method is based on the 
assumption that a significant spectral transition results in a 
noticeable change in energy and centroid frequency in at least 
one of these bands.  
 A 20-point moving average is used for getting smoothened 
spectral components ( )X kn , from which the peak energy 

pE  and centroid frequency cf  contours are computed. Peak 

of log energy values in ( )nX k  in each band b is taken, with 

n spaced every 1ms, to form an energy contour for band b for 
frame n, and is given by 

  ( )10 1 2
2

( , ) 10 log max ( ) ,E b n Xp n k k k k= ≤ ≤� �� �  (1) 

where 1k  and 2k  are the lower and upper frequency indices 

for the band b. Centroid frequency of a spectral band b, for 
frame n is calculated as  
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where sf  is the sampling frequency, and N  is the number of 

points in FFT computation.  
 ROR’s of pE  and cf  contours are obtained by taking their 

first difference, every 1 ms, using a 50 ms time-step. Energy 
and centroid frequency ROR’s for a band b and frame n are 
defined by  
 ( )' , ( , ) ( , )E b n E b n K E b n Kp p p= + − −  (3) 

 ' ( , ) ( , ) ( , )f b n f b n K f b n Kc c c= + − −  (4) 
 

where K = 25, corresponding to a 50 ms time-step. These 
ROR functions are normalized to the 0-1 range by shifting 
and scaling as ' ( , )E b npn  and ' ( , )f b ncn . To locate the 

simultaneous variation of energy and frequency in a band, the 
absolute ROR’s ' ( , )E b npn  and ' ( , )f b ncn are multiplied, and 

these product ROR’s are averaged across bands to get the 
transition index 

 
5 ' '

( ) (1 5) ( , ) ( , )
1

T n E b n f b nr pn cn
b

= �
=

 (5) 

Transition segment boundaries are located by comparing this 
index with an empirically selected threshold. 
 
B. Results of Transition Segment Detection 
 

 Figure 2(a) shows the speech waveform x(n) for syllable 
/aka/ with pE  and cf  contours in the five bands. ROR 

contours 'E pn  and 'f cn  are shown in Fig. 3. Figure 4(a) 

shows the waveform x(n) for syllable /aka/, with the 
smoothened spectrogram (from ( )X kn ) in Fig. 4(b), transi-

tion index ( )T nr  in Fig. 4(c), and the located boundaries of 

transition segments in Fig. 4(d). The transitions 
corresponding to the onset and offset of vowel segment /a/ 
and the release burst of the consonant /k/ result in peaks in the 
transition index contour, and these are indicated by impulses 
in Fig. 4(c). Transition start and end points marked as 
negative and positive impulses in Fig. 4(d). The labels in Fig. 
4(c) and 4 (d) indicate the locations of landmarks in seconds. 
 
C. Results of Evaluation of Landmark Detector 
 

 The method of landmark detection was evaluated in terms 
of detection rates and temporal resolution using 50 manually 
annotated sentences (5 speakers ×  10 sentences) from TIMIT 
database. Figure 5 shows the waveform of a portion of a 
sentence, manually annotated landmarks, and the detected 
landmarks. Segment boundaries involving abrupt transitions 
are detected accurately with good temporal resolution. Non-
abrupt transitions involving semivowel to vowel transition (/l/ 
to /a/) got deleted and it is labeled as a single segment (label 
14). The detection rates of the algorithm for different classes 
of phonemes are listed in Table 1, with the number of tokens 
for each class given in brackets. It is seen that detection rates 
for abrupt landmarks (stops and fricatives) is high (94-95 %) 
for 30 ms time resolution. 
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TABLE I 
DETECTION RATES FOR TIMIT SENTENCES 

 

30 ms 20 ms 10 ms  
Phoneme class Det. 

 (%) 
Det.  
(%) 

Det.  
(%) 

Stop (548) 94 75 62 
Fricative (266) 95 85 76 
Nasal (154) 79 66 53 
Vowel (614) 77 66 58 
Sem. vowel (213) 42 33 26 
Overall det. (%) 81.2 73.2 57.6  

 
III  TIME-SCALE AND INTENSITY MODIFICATION  

 

 Speech signal was digitized with sampling rate of 10 k sa/s 
and 16-bit quantization. The processing involved an analysis-
modification-resynthesis stage based on HNM, and an 
intensity modification stage. The boundaries of segments for 
enhancement, detected by the landmark detection stage were 
used for time and intensity scaling. 
 
A. HNM based Time-Scale Modification 
 

 In HNM based analysis-synthesis of speech, harmonic part 
and noise part are modeled separately and it allows time-scale 
modification of speech by modification of a small parameter 
set. Even for large time-scaling factors, the synthesized 
speech sounds natural, without tonal artifacts [17].  
 Block diagram of HNM analysis stage is shown in Fig. 6. 
Fundamental frequency 0F  is estimated by the pitch detector 
using a normalized spectral cross-correlation function [18]. 
Speech segments are classified as voiced or unvoiced (V/UV) 
based on their harmonic structure, by the voicing detector. 
Analysis time instants are located pitch synchronously during 
voiced segments and at a constant separation of 10 ms during 
unvoiced segments. Voiced segments are modeled by both 
harmonic part and noise part, whereas unvoiced segments are 
simulated by noise part alone. Parameters are estimated for 

Fig. 4. (a) Signal waveform for VCV syllable /aka/ (b) 

Spectrogram, (c) Transition index ( )T nr , and (d) transition 

boundaries detected. 

Fig. 2. Signal waveform for VCV syllable /aka/ and corresponding 

Ep (solid) and fc  (dotted) contours. 

Fig. 3. ROR contours of 'E pn  (solid) and 'f cn (dotted). 

Fig. 5. (a) Waveform of a portion of the sentence ‘put the butcher 
block table’, (b) manually annotated (TIMIT) landmarks, and (c) 
automatically detected landmarks. Manual annotation: “bcl”- /b/ 
closure onset, “b”- /b/ release burst, etc. Automatic detection: 
landmarks numbered as 5, 6,..etc. 
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each frame i  extending from 1i
at −  to 1i

at +  and centered at i
at . 

Maximum voiced frequency mF , separating the harmonic 
part from the noise part is located by conducting a harmonic 
test at each prominent peak in the magnitude spectrum. 
Amplitudes and phases ( , )a φ  of harmonics of 0F  up to mF  
are obtained by a least-squares minimization technique. 
Harmonic part ( )hs n  is synthesized by summation of the 

harmonics with estimated amplitudes and phases. Noise part 
( )ns n  is obtained by subtracting the synthesized harmonic 

part ( )h ns  from the signal ( )s n . For both voiced and 
unvoiced segments, noise part is modeled with its spectral 
structure represented by LPC coefficients and temporal 
structure by its energy envelope [18], [19]. 
 Time-scale modification is performed using a time-warping 
function, specified by an array of scaling factors (β), mapping 
the analysis time instants to synthesis time instants, maintain-
ing the original pitch contour. The β values are estimated 
automatically, so as to have the required expansion ( 1)β >  

during transition segments and compression ( 1)β <  during 
steady state segments so as to maintain the overall speech 
duration unaltered. Steady state segment boundaries are 
located on either side of the transition segments with 
transition index below the threshold value for a minimum 
duration of 60 ms. For a time-scale expansion factor trβ  and 

transition segment boundaries ( , )t ts e , the compression 

factor stβ  required for the steady state segment with 

boundaries ( , )s ss e was calculated as 
 

 1 ( 1)( ) /( )t t s se s e sst trβ β= − − − −� �� �    (6) 
 

 HNM parameters in the time-warped scale are used for 
synthesizing the time-scale modified speech, as shown in Fig. 
7. The harmonic part is obtained by overlap-adding a stream 
of short-time signals with estimated amplitudes and phases in 
a pitch-synchronous manner. The noise part is synthesized by 
filtering unit-variance Gaussian noise through a time-varying 
filter, formed by the LPC coefficients. The time-domain 
energy envelope function is applied to the synthesized noise 
part to make its temporal structure same as that of the original 
noise part. For voiced segments, frequency components 
below mF  are removed from the noise part using a high pass 
filter. The resynthesized speech is produced by addition of 
harmonic part with the noise part. 
 
B. Intensity Enhancement of Transition Segments 
 

 Speech segment starting from the onset of VC transition to 
the end of CV transition, as located by the automated 
transition boundary detection, was selected for intensity 
enhancement. Gain factors were given a trapezoidal envelope 
with rise and fall times of 10 ms to eliminate occurrence of 
audible clicks due to sudden change in amplitude during 
intensity enhancement.  
 

C. Results of Experimental Evaluation 
 

 Experimental evaluation has been carried out using VCV 
syllables with vowel /a/ and stop consonants /p, b, t, d, k, g/. 
Listening tests were conducted on normal hearing subjects 
with hearing loss simulated by adding broadband noise at 6 
different SNR levels ( ∞ , 0, -3, -6, -9, and -12 dB). For time-
scaling factors above 2.0, expansion of stops and too much 
compression of the vowel segments resulted in perceptual 
artifacts. Five time-scaling factors (ts-x with x = 1.0, 1.2, 1.5, 
1.8, and 2.0) were selected for evaluation. Based on informal 
listening tests with CVR enhancement of 3, 6, and 9 dB, 
consonant intensity enhancement by 6 dB was selected for 
evaluation. 

 

 

 
 There were a total of 12 processing conditions for each 
VCV syllable: unprocessed (up), enhanced CVR without 
time-scaling (e), time-scaled with scaling factor x (ts-x), and 
enhanced CVR with time scaling (ets-x). This resulted in 72 
test conditions (12 processing conditions ×  6 SNRs). Tests 
were conducted in a sound proof room using a computerized 
setup for presenting stimuli binaurally through headphones. 
The subjects were asked to click on one out of the six options 
on the computer screen. Each test had 60 presentations, with 
each stimulus randomly presented 10 times. Consecutive 

φφφφ

Fig. 6. HNM based analysis stage, adapted from [19]. 

�

Fig.7. HNM based time-scale modification stage. 
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presentations of the same stimulus were limited to a maxi-
mum of 3. The order in which tests were conducted was 
randomized, with a total of 5 tests for each condition.  
 Figure 8 shows the percentage recognition scores at 
different SNR levels for one subject. In case of time-scaling, 
recognition scores improved with the effect being more 
visible at lower SNR levels. Scaling factor of 1.5 was found 
to be most effective. At -9 dB SNR level, the recognition 
score for the unprocessed syllables decreased to 60 %. Time-
scaling improved the score substantially, with transition 
scaling factor of 1.2-1.8 appearing to be the optimal range. 
The scores for intensity enhanced stimuli were comparable to 
the scores for time-scaling followed by intensity enhance-
ment, indicating the importance of CVR enhancement in 
consonant identification. 

 
IV. CONCLUSIONS 

 
 An automated method is presented for detection of 
landmarks characterized by spectral transitions, and 
enhancement of these segments by intensity and time-scale 
modification, without increasing the overall speaking rate. 
The transition segment boundaries are located using the rate 
of variation of energy and centroid frequency in five non-
overlapping spectral bands. Time-scaling and CVR enhance-
ment is performed using HNM based approach which 
introduces less perceptual artifacts. Listening tests with 
normal hearing subjects and broadband noise added to speech 
showed that under poor SNR conditions, processing improved 
recognition scores. Further experiments are to be conducted 
to find the optimum scaling factors and the extent of 
intelligibility improvement for different test materials and to 
investigate the effectiveness of the technique for subjects with 
moderate sensorineural loss. Combination of this technique 
with other speech processing schemes for improving speech 
perception for the hearing impaired listeners also needs to be 
investigated.  
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Fig. 8. Percentage recognition scores for different processing conditions. 
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