
 
ABSTRACT 

Perception of speech under adverse listening conditions may be 
improved by processing it to incorporate properties of clear speech. 
It needs automated detection of stop landmarks and enhancement 
of bursts and transition segments. A technique for accurate 
detection of stop landmarks in continuous speech based on 
parameters derived from Gaussian mixture modeling of log 
magnitude spectrum, a voicing onset-offset detector, and a spectral 
flatness measure is presented. Applying the technique on sentences 
from the TIMIT database resulted in burst detection rates of 98, 97, 
95, 90, and 73 % at temporal accuracies of 30, 20, 15, 10, and 5 ms 
respectively. 
 Index Terms  Speech enhancement, acoustic landmark 
detection, Gaussian mixture modeling. 

 
 

1.  INTRODUCTION 
 
The acoustic landmarks in speech signal are characterized by a 
concentration of cues important for speech perception. A stop 
consonant typically has three landmarks: closure of the vocal tract, 
closure release burst, and onset of voicing [1], [2]. Depending on 
the phonetic context, all the three landmarks may or may not be 
present. As the stops are transient sounds with low energy, their 
perception gets severely affected due to masking by background 
noise, or increased spectral and temporal masking associated with 
sensorineural hearing impairment [3], [4]. Under adverse listening 
conditions, speakers naturally adopt a speaking style called "clear 
speech", which is reported to be about 17 % more intelligible than 
conversational speech [5], [6]. Several intelligibility enhancement 
techniques utilizing properties of clear speech, based on detection 
and enhancement of frication bursts and transition segments have 
been reported [7]–[10]. Detection of landmarks with good temporal 
accuracy (alignment with actual landmarks) and without insertions 
(false detections) is critical for these techniques. 
 Rate-of-rise measures based on the first difference of parameters 
obtained from a set of fixed bands (e.g. band energy, spectral 
centroid, spectral peak, etc.) have been used to locate landmarks, 
[1], [2], [11], [12]. These methods provide good detection rates 
(~90 %) with moderate temporal accuracies (20-30 ms), but 
detection rates fall below 50 % for temporal accuracies of the order 
of 5 ms. Use of distance measures with time-steps adapted to the 
type of landmark being detected and use of optimum filtering have 

been reported to improve the temporal accuracy for stop landmarks 
[2], [12]. However, use of fixed bands severely constrains the 
extracted parameters. In case of more than one spectral prominence 
in a band or a spectral prominence spread across bands, band 
parameters may not meaningfully represent the spectral variations. 
Further, the use of fixed bands may introduce speaker dependent 
variability in the performance of the landmark detector [11]. Using 
a spectral modeling approach which can adapt to the dynamic 
nature of the spectrum, and using the variations in more than one 
parameter derived from the model, detection rate and temporal 
accuracy of a landmark detector may be improved.  
 A Gaussian mixture model (GMM) of the short-time speech 
spectrum provides a parametric representation of the spectral 
envelope using a weighted sum of Gaussian functions. An approxi-
mation with a small error can be obtained, for all classes of sounds, 
using a small number of Gaussian components in the mixture 
model. Zolfaghari and Robinson [13] used a GMM based para-
metric scheme for extracting formant-like features. GMM para-
meters have been used for improving speech recognition in noisy 
environments and for performing spectral modifications [14]–[17]. 
We applied GMM parameters for landmark detection in VCV 
utterances [18]. The detection rates for stop release bursts in VCV 
utterances from 3 male and 3 female speakers were 94%, 80%, and 
60% for temporal accuracies of 30 ms, 10 ms, and 5 ms 
respectively. No speaker dependence in the performance was 
observed, but the detection rates decreased for conversational 
speech. 
 This paper presents a technique, based on Gaussian mixture 
modeling of the short-time speech spectrum, for detection of stop 
landmarks in continuous speech. The objective is to improve the 
temporal accuracy and to reduce the number of insertions, so that 
the technique can be used for enhancing the burst and transition 
segments to improve speech intelligibility under adverse listening 
conditions. The technique is evaluated by comparing the detected 
landmarks with the manually marked ones in VCV utterances and 
TIMIT sentences.  
 

2.  GAUSSIAN MIXTURE MODELING OF  
SHORT-TIME SPEECH SPECTRUM 

 
Our technique for detection of stop landmarks uses parameters 
obtained by Gaussian mixture modeling of short-time log 
magnitude spectrum. The approximation errors in modeling the log 
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magnitude spectra are smaller than those in modeling the squared 
magnitude or the magnitude spectra. Further, the first difference of 
the log magnitudes involves relative values and gain normalization 
across the utterances is not necessary. 
  The log magnitude spectrum is computed, for speech signal 
acquired at 10 kHz, using 512-point DFT on 6 ms Hanning 
windowed frames, every 1 ms. The short length window 
suppresses the pitch harmonics which may cause the Gaussian 
components to track non-formant peaks [13], [16]. The high frame 
rate helps in tracking fast spectral variations. The magnitude 
spectrum is smoothed by a 50-point median filter, along the 
frequency index k. The smoothed log magnitude spectrum Sn(k) is 
approximated by a weighted sum of M Gaussian functions as  
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where wgn, μgn, and σgn
2 represent the weight, mean, and variance 

respectively of the g th Gaussian in the mixture model for frame n.  

 The GMM parameters are estimated using expectation maximi-
zation (EM) algorithm [15], [19]. With a given initialization, the 
EM algorithm iteratively computes the maximum likelihood 
estimates of the model parameters from the magnitude spectrum. 
The smoothed log magnitude spectrum is viewed as a histogram 
with rectangular bins placed at each frequency index k. Iterations 
are started with an initial set of parameters. The probability 

( | )p g k that frequency measurement k comes from the Gaussian 
component g, is evaluated as  
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The new mixture weights, means, and variances are calculated as  
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These parameters are used in the next iteration. Here N denotes 
number of points in the DFT computation. The iterations are 
continued until the changes in the parameter values in successive 
iterations become less than a set threshold or the number of 
iterations reaches a set limit. A reasonably good approximation of 
the speech spectrum is possible with 4 to 5 Gaussian components 
[17], [18]. As the approximation errors for the two do not 
significantly differ, we have used the 4-component model. 
 The choice of initial parameters for the EM algorithm affects the 
solutions obtained and the number of iterations needed. Use of 
parameters obtained for the previous frame as the initialization for 
the current frame results in comparatively smoother parameter 
tracks in a smaller number of iterations, but the estimated values 
respond poorly to rapid spectral changes. The mixture weights 
were initialized with equal values. The means and the variances 
were initialized with values corresponding to the average vowel 
formant frequencies and extreme bandwidths respectively (first: 
600, 160; second: 1200, 200; third: 2400, 300; fourth: 3600, 400 
Hz) as given in [20]. These initialization values resulted in 
parameters tracks responding to the spectral changes in the speech 
signals from a number of male and female speakers. For sampling 
frequency Fs and N-point DFT, the initialization values for the g th 

component are obtained from the values of the average formant Fg 

and extreme bandwidth Bg by using the correspondence μg = 
NFg/Fs and σg = N(Bg/2.35)/Fs. The number of iterations is set at 
12 because no significant decrease in approximation error is 
observed by increasing the number of iterations. Figure 1 shows 
modeling for a 6 ms segment of vowel /a/ spoken by a male 
speaker. As seen in this case, the peaks in the GMM approximation 
generally matched the resonance peaks in the spectrum. 
  

3.  DETECTION OF STOP LANDMARKS  
 
A rate of change function defined on the parameters obtained by 
modeling of the smoothed log magnitude spectrum using 4 
Gaussian components, along with a voicing onset-offset detector 
[1] and a spectral flatness measure [9], is used for detection of stop 
landmarks.  
 As compared to the Gaussian weights, the amplitudes of the 
GMM approximated envelope at the four mean values were found 
to be more consistently related to the spectral changes. The means 
μg(n), square root of the variances σg(n), and amplitude of the 
GMM envelope at the mean locations Ag(n) for the four Gaussian 
components are processed by 30-point median filtering, in order to 
smoothen the tracks during steady state segments without 
significantly smearing the variations corresponding to abrupt 
spectral transitions. These smoothed parameters A'g(n), μ'g(n) and 
σ'g(n) are used for calculating a rate-of-change (ROC) function 
given as  
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Fig. 1. Modeling of a segment of vowel /a/: (a) windowed 
segment of 6 ms, (b) log magnitude spectrum (in dB), (c) 
smoothed spectrum (in dB), (d) GMM approximated spectrum 
with dotted lines indicating the individual Gaussian components. 

(a) 

(b) 
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and R is used to scale the maximum value of rc to 1. The time step 
ns corresponds to 2 ms. The use of short time-step suppresses 
relatively slow spectral variations associated with semivowels, 
voicing offsets, etc. The product operation on individual ROCs 
ensures that the strong peaks occur at the point of sharp spectral 
variation. These peaks indicate the possible location of release 
burst onsets. 
 A voicing detector based on the spectral peak variation in the 
band 0-400 Hz is used for detecting voicing onsets and offsets. 
Peaks taken every 1 ms from the squared magnitude spectrum, and 
smoothed by 20-frame moving average, form the contour E(n). A 
first difference operation on the log of E(n) with a time-step of 26 
ms is used to get a rate-of-rise function re(n). Positive and negative 
peaks above and below thresholds of +9 and -9 dB respectively are 
taken as voicing onsets (+g) and offsets (-g) respectively. Another 
validation of the located landmarks is carried out using spectral 
flatness measure (SFM) calculated as  
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where N is the number of points in the DFT computation. It is low 
for voiced frames with peaky spectra and close to 1 for frication 
with flat spectra [9]. It is computed for 20 ms Hanning windowed 
frames every 1 ms. 
 The detection of +g and -g peaks is used for locating a burst in a 
preceding segment using the peaks in the ROC of GMM 
parameters. If a +g peak is preceded by a -g peak, the segment 
extends backwards to an instant 50 ms before the -g peak, 
otherwise it extends backwards by 50 ms. A burst is located on the 
detection of a -g peak only if it is preceded by another -g peak. In 
such a case, the segment extends backwards 50 ms before the 
preceding -g peak. The segment boundaries get slightly extended to 
the voiced segments, at least on one side, by giving an offset, and 
the need for setting a threshold for the peaks in the ROC is 
eliminated. The detected burst onset is validated by checking for 
the presence of a preceding closure interval. The amplitude tracks 
for the higher three Gaussians, normalized by the respective peaks 
in the segment, should remain below 0.5 in the preceding 10 ms 
interval. The first component is not used because of the possibility 
of the voice bars preceding the burst. This validation eliminates the 
peaks in ROC corresponding to the unvoiced fricatives. The stop 
release burst is declared valid only if the spectral flatness measure 
is above 0.5 for at least one frame within 15 frames on either side. 
For a valid release burst, the preceding -g point is taken as the 
closure onset. The following +g point, with value of spectral 
flatness measure below 0.5, is taken as the voicing onset. 
 

4.  TEST RESULTS 
 

The technique was evaluated using VCV utterances and sentences 
from the TIMIT database. The detection rates were tabulated for 
different temporal accuracies, i.e. misalignment of the detected 
landmarks with respect to the manually located ones.  
 
4.1.  Detection of stop landmarks in VCV utterances 
The technique was applied for detection of stop landmarks in the 
VCV utterances consisting of 6 stops (/b/, /d/, /g/, /p/, /t/, /k/) in the 
context of 3 vowels (/a/, /i/, /u/). These were recorded from 10 
speakers (5 female and 5 male). There were a total of 180 
utterances, with an average duration of 400 ms. Figure 2 shows the 
median smoothed Gaussian parameter tracks for /apa/.  Wideband 
spectrogram, Gaussian modeled spectrogram, and the ROC contour 

are shown in Fig. 3. There were no insertion errors. Stop landmark 
detection rates for different temporal accuracies are given in Table 
1. Out of the total 180 bursts, 90 % were detected within 5 ms of 
the manual landmarks. Detection rates were 90, 92, 93, 96, and 98 
% for temporal accuracies of 5, 10, 15, 20, and 30 ms respectively. 
The detection rates for the voicing onsets were almost similar. The 
closure onsets were detected with less temporal accuracy as 
compared to the voicing onsets. 
 
4.2.  Detection of stop landmarks in TIMIT sentences 
The technique was used for detection of the stop landmarks in a set 
of 50 conversational style sentences (3 female and 2 male speakers 
× 10 sentences each) from the TIMIT database. The detected 
landmarks were compared with the corresponding manual 
transcription in the database. Performance of the detection process 
for different types of landmarks is summarized in Table 2. Out of 
the total 306 stops, the method was able to detect 223 stops (~73 
%) within 5 ms of the TIMIT transcriptions. An analysis of 

Fig. 2. Gaussian parameter tracks (amplitude - thick, mean - 
dashed, and variance - dotted): (a) waveform of  /apa/,: (b) 
Gaussian 1, (c) Gaussian 2, (d) Gaussian 3, and (e) Gaussian 4. 

(a) 

(b) 

(c) 

Fig. 3. (a) Spectrogram, (b) GMM spectrogram, and (c) 
Gaussian ROC contour, for /apa/. 

(b) 

(c) 

(d) 

(e) 

(a) 
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alignment errors for burst detection showed a mean bias of -1.4 ms, 
and a standard deviation of 5.8 ms. Closure onsets were evaluated 
on 270 tokens (marked as bcl, dcl, gcl, pcl, tcl, kcl in the TIMIT 
transcription) having preceding voiced segments. Voicing onset 
detection was evaluated on 232 stop release bursts followed by 
voiced segments. There were a total of 39 (~13 %) insertions, 
which are described by the phoneme transitions listed in Table 3. 
Affricate detections were not counted as insertions. The insertions 
were mainly due to burst like clicks preceded by low energy 
segments and abrupt spectral transitions caused by glottal stops 
(marked as q in the TIMIT transcription).  
 The techniques reported earlier generally give excellent 
detection rates at temporal accuracies of 30 and 20 ms, with the 
rates falling sharply at 10 and 5 ms. For burst detection, the 
technique reported here gave detection rates of 98, 97, 95, 90, 73 % 
at temporal accuracies of 30, 20, 15, 10, 5 ms, respectively.  
 

Table 1 
Detection rates of stop landmarks in the VCV utterances 

Temporal accuracy (ms) Landmark  
(no. of tokens) 5 10 15 20 30 
Burst (180) 90 92 93 96 98 
Closure (180) 36 64 73 83 93 
Voicing onset (180) 76 93 98 98 99 

 
Table 2 

Detection rates of stop landmarks in the TIMIT sentences 
 

Temporal accuracy (ms) Landmark 
(no. of tokens) 5  10  15  20  30  
Burst (306) 73  90  95  97  98  
Closure (270) 19  40  63  80  90  
Voicing onset (232) 45  71  82  91  96  

 
Table 3 

Insertions rates in the TIMIT sentences 
 

Type of transition Insertion rate (%) 
Clicks, glottal stops 8 
Vowel-semivowel 4 
Stop to /l/, /r/ 1 

 
5. CONCLUSION 

 
A stop landmark detection technique based on Gaussian mixture 
modeling of speech spectrum was investigated. A total of 4 
Gaussian functions with appropriately initialized parameters were 
used. The landmarks were detected using a rate-of-change function 
on the parameters derived from the GMM approximated spectrum, 
along with a voicing onset-offset detector and spectral flatness 
measure. The performance of the landmark detector needs to be 
evaluated under noisy conditions. Fine tuning of the modeling 
process and investigations with other rate-of-rise measures may 
further improve the detection rates. Application of the technique in 
speech enhancement under adverse listening conditions needs to be 
evaluated. 
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