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Abstract— Burst onset landmarks in the speech signal are 
transient segments with low energy and their accurate 
detection is important in applications involving landmark 
based speech modification, estimation of place of closure for 
speech training aids, and phoneme recognition. Rate of change 
measures of energy parameters from spectral bands with fixed 
boundaries are generally used for landmark detection. The 
differences in the parameter variation rates and ranges, 
correlations among them, and their dependencies on speakers, 
make them less suitable for precise time localization of burst 
onsets. A method for detection of burst onset landmarks is 
presented which uses rate of change of spectral moments, in 
addition to energy parameters of the short-time speech 
spectrum. Evaluation results indicate that this method can give 
high detection rates with improved temporal accuracy. 
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I.  INTRODUCTION  
The perceptual cues essential for the identification of 

speech are non-uniformly distributed in the speech signal. 
Compared to the steady-state segments, transition segments 
are concentrated areas of acoustic cues. These acoustically 
salient regions are known as "landmarks" [1]. Speech 
intelligibility enhancement is possible by intensity, spectral, 
or duration modification of these landmarks so as to make 
them robust in the presence of noise [2]. The motivation for 
these intelligibility enhancement techniques is derived from 
"clear speech", a natural way adopted by a speaker to 
improve speech intelligibility when talking to a hearing 
impaired listener or in the presence of background noise. 
Clear speech is reported to be about 17% more intelligible 
than conversational speech [3]. This intelligibility advantage 
is mainly derived from the robustness of acoustic landmarks. 
Several intelligibility enhancement techniques based on 
acoustic properties of clear speech have been reported and 
many of these use detection and modification of speech 
landmarks for automated processing [4], [5], [6]. 

Burst onset landmark is associated with the abrupt 
release of frication energy after a closure interval, and it may 
be followed by aspiration and the transition of formants to 
the onset of the succeeding vowel. The durations of closure, 
burst, and voicing onset are dependent on the speaker, 
speaking style, type of the stop consonant, and the context in 
which it appears. The typical values of these parameters are 
in the range of 50-100 ms for closure, 5-10 ms for burst, 0-30 

ms (voiced stops) and 30-150 ms (unvoiced stops) for 
voicing onset, respectively. An illustration of the landmarks 
associated with a typical stop consonant in a vowel-
consonant-vowel (VCV) context is given in Fig. 1. Among 
the consonantal landmarks, burst onset landmark is most 
transient in nature. Accurate detection of burst onsets is 
important for improving performance of landmark based 
speech recognition schemes [7], [8]. For use in speech 
training aids, Pandey and Shah [9] proposed a method for 
estimating the vocal tract shape during the stop closures of 
vowel-consonant-vowel utterances by using bivariate surface 
modeling of the shapes obtained by LPC analysis during the 
transition segments. The detection of burst onset landmark 
can be helpful in locating the burst offset, aspiration, and 
consonant vowel (CV) transition boundaries. The properties 
of burst spectrum can be used to provide supplementary 
information regarding the place of articulation of the stop 
consonant. Detection of burst onset landmarks with good 
temporal accuracy is quite important in intelligibility 
enhancement applications [10], [11]. 

A rate-of-rise (ROR) measure based on the first 
difference of parameters extracted from different bands in 
the smoothened wideband spectrum (e.g. band energy, 
spectral peak, and spectral tilt) is generally used to locate 
landmarks [1], [12], [13]. Such methods have been reported 
to provide good detection rates (≈90%) at moderate temporal 
accuracies (20-30 ms). Overall detection rates for burst onset 
landmarks reported by Liu [1] are 41%, 68%, 85%, and 88%, 
for temporal accuracies of 5, 10, 20, and 30 ms respectively 
for sentences from TIMIT database. Salomon et al. [13] used 
temporal parameters like envelope, periodicity, and fine 
structure in addition to  band energy parameters for landmark 

 

 

Figure 1. Stop consonant landmarks for VCV utterance /apa/: 
waveform and wideband spectrogram. 
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detection. For a temporal accuracy of 50 ms, 91% of stop 
closures and 96% of stop release bursts were detected, when 
evaluated using sentences from TIMIT database. Adaptive 
time steps (5 ms for stop bursts, 30 ms for frication, and 2 
pitch periods in periodic regions) were used to improve 
temporal accuracy of detection.  

Time step used in the computation of rate-of-rise (ROR) 
using first difference operation should be comparable with 
the transition duration of the landmark of interest. 
Landmarks with slow parameter variations can be reliably 
detected with a larger time step (20-30 ms), but for time-
localizing abrupt landmarks, shorter time steps are needed. 
The use of a fixed time step for all the parameter tracks 
irrespective of the type of landmark has the drawback of 
spreading the actual center of transition when the transition 
duration is less than the time step used. When the time step is 
less than the transition duration, the peak amplitude in the 
ROR, representing the transition gets reduced [14]. Both 
these cases adversely affect the temporal accuracy and rates 
of landmark detection. Landmark detection schemes for 
speech recognition application typically use a two-pass 
strategy with a first pass with comparatively larger time step 
(26-50 ms) to locate the neighborhoods of landmarks of 
interest reliably, followed by a second pass with a lower time 
step (10 ms), to time-localize the landmarks [1], [14]. 

The energy variation associated with the burst onset may 
get distributed non-uniformly over the frequency bands, and 
the rate of variation may also be non-uniform depending on 
the band boundaries and type of the landmark. This makes 
the selection of a single fixed value for time step difficult 
when energy parameters from spectral bands with different 
bandwidths are used for landmark detection. A typical burst 
lasts for a time period of 5-10 ms after its onset, and 
temporal accuracies less than this order may adversely affect 
the processing based on the detected landmarks. 

Performance of landmark detection methods based on 
spectral energy change degrades at regions of lower SNR 
levels, and in the presence of background noise. Sainath and 
Hazan [15] reported a sinusoidal model based scheme in 
which sharp changes in the signal harmonicity was used in 
addition to spectral energy variation for landmark detection. 
This method was able to locate landmarks more precisely, 
compared to the spectral energy based method. 

Parameters characterizing the overall spectral shape are 
reported to be useful for improving the temporal accuracy of 
landmark detection. An approach based on parameters from 
the Gaussian mixture modeling (GMM) of short-time log 
magnitude spectrum [10], [11] was investigated to improve 
the accuracy of detection of stop landmarks. In this method, 
a rate of change (ROC) function defined on the parameters 
obtained by modeling of the log magnitude spectrum using 4 
Gaussian components along with a voicing onset-offset 
detector and a spectral flatness measure was used for 
detection of stop landmarks. It was possible to detect over 
90% of stop release bursts in VCV syllables and 73% of stop 
bursts in TIMIT sentences within 5 ms of manual landmarks. 
The iterative process of estimation of the Gaussian 
parameters is computation intensive and the method is not 

suited for a real-time implementation. A method based on 
spectral moments in addition to energy band parameters is 
investigated for locating burst onset landmarks, with the 
objective of reducing the computational complexity and for 
improving the temporal accuracy. Spectral moments are 
indicatives of spectral shape, and have been used as 
parameters supporting classification of Mandarin stops [7]. 

Combining different parameters to get a single parameter 
indicating the overall variation needs some form of 
normalization of the parameters, taking into account their 
ranges and correlations. Due to the speaker dependent 
variabilities in speech, defining a fixed weight for a 
parameter without over-sensitizing or desensitizing its 
variation is often difficult. We have investigated the 
effectiveness of a rate of change measure based on 
Mahalanobis distance for time localizing the burst onsets. 
Evaluation has been performed using VCV utterances and 
sentences from TIMIT database to quantify the effect of 
parameters and distance measures on the temporal accuracy 
of burst onset detection. 

II. METHODOLOGY 
We have investigated the use of peak energy from fixed 

frequency bands and the first four moments of the short-time 
speech spectrum as parameters for burst onset detection. A 
combined rate of change measure based on Mahalanobis 
distance, referred to as ROC-MD, is investigated and its 
performance is compared with that of sum of the individual 
ROCs. The use of a rate of change measure (ROC) for 
different values of time steps is investigated to examine the 
effect of time steps on temporal accuracy of burst onset 
detection.  

A. Computation of energy band parameters  
For speech sampled at 10 kHz, 512-point DFT is 

computed for 6 ms Hanning windowed frames, every 1 ms. 
The magnitude spectrum for each frame is smoothed by a 
20-point moving average taken along the time index n. 
From the smoothed spectrum X(n,k), peaks in three different 
frequency bands (1.2-2.0, 2.0-3.5, and 3.5-5.0 kHz) are 
selected as  

2
10( ) 10log (max ( , ) )bE n X n k=  (1) 

where the band index b ranges from 1 to 3, and the 
frequency index k ranges from the DFT indices representing 
the lower and upper boundaries for each band.  

B. Computation of spectral moments 
Treating the normalized short-time speech spectrum as a 

probability density function, its first four moments are 
evaluated as a function of the position of the analysis 
window. The smoothed spectrum X(n,k) is normalized as 

/ 2

1
( , ) ( , ) ( , )

N

k
p n k X n k X n k

=
= ∑   (2) 

where N is the number of points in the DFT computation. 
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The centroid of the spectrum is computed as 
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where fk  is the frequency in Hz corresponding to the DFT bin 
with index k. The spectral moments (the centroid, standard 
deviation, skewness, and kurtosis) indicate the frequency of 
concentration of the spectral energy, spread of energy around 
this location, the symmetry of the spectrum, and its 
peakiness.  

The second, third, and fourth moments, which are related 
to the variance Fσ(n), skewness Fs(n), and kurtosis Fk(n), 
respectively, are computed as 

 
1// 2

1
( ) ( ( )) ( , )

mN
m

m k c
k

F n f F n p n k
=

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦
∑  (4) 

where m = 2 for Fσ(n) , m = 3 for Fs(n), and m = 4 for Fk(n). 

C. Computation of rate of change 
Landmark detection involves measurement of rate of 

variation of a set of parameters extracted from the speech 
signal on a short-time basis, and locating regions with a 
significant variation characterizing the landmark. A rate of 
change measure based on first difference operation with a 
fixed time step is generally used to get the rate of variation of 
parameters. For band energy prameter Eb(n), ROC measure 
is defined as  

 ( ) ( ) ( )Eb b br n E n E n K= − −  (5) 

where K is the time step. This measure indicates the 
difference in parameter value of the current frame, from a 
frame preceding it by K frames. An abrupt transition is 
indicated by a well defined peak in the ROC track, while the 
track has a very low value during steady-state segments.  

The rate of change of different parameters are in 
different magnitude scales and they may be correlated to a 

certain extent. Mahalanobis distance [16], [17] can be used 
to take care of the correlations and scale differences of the 
parameters and to get a single rate of change indicating the 
overall variation of parameters. Mahalanobis distance of a 
point y defined by a set of parameters, from a cluster of 
previous parameters x is defined as 

 1 0.5(( ) ( ) )Td −= − −y μ y μ∑  (6) 

where μ is the mean and Σ is the covariance matrix of the 
cluster x. 

Fig. 2(a) shows two simulated parameter tracks P1 (solid) 
and P2 (dotted) which may correspond to energy variations 
in two spectral bands at the onset of a burst landmark. The 
rate-of-rise tracks of P1 and P2, computed with a first 
difference with a 10 ms time step are shown in Fig. 2(b). For 
P1, the transition duration is equal to the time step. The ROC 
track has a peak at 45 ms, the center of transition of P1. In 
case of P2, the transition duration being more than the time 
step, the ROC track becomes flat-headed, loosing the time 
information. The amplitude of the ROC track for P2 has 
lower amplitude than that of P1, even though the two 
parameter variations are taking place with the same 
amplitude level. A combined ROC based on Mahalanobis 
distance (ROC-MD) of the two parameters with a time step 
of 10 ms is shown in Fig. 2(c). It has a well defined peak at 
40 ms where the simultaneous variations in P1 and P2 take 
place, showing that the ROC based on Mahalanobis distance 
combines the individual variations in parameters and is able 
to give a single measure indicative of the overall variation. 

D. Detection of burst onset landmarks 
The detection of voicing offsets (g-) and voicing onsets 

(g+) are performed using the method reported in [1] using 
the peak energy variation in the frequency band from 0 to 
400 Hz. The peak energy is computed as 
 2

10( ) 10 log (max ( , ) )gE n X n k=  (7) 

where k1 ≤ k ≤ k2, k1 and k2 being the DFT indices 
corresponding to 0 and 400 Hz respectively. A rate of rise 
measure of Eg(n) is computed with a time step of 50 ms (K = 
50) as 

 ( ) ( ) ( )Eg g gr n E n E n K= − −  (8) 

The crossing points ( )Egr n below and above threshold 
values of -12 dB and +12 dB respectively are taken as the 
voicing offset and voicing onset points. An intervocalic burst 
onset is located at the most prominent peak in the ROC, 
between the g- and g+ points.  

Three different approaches were attempted for the 
computation of the covariance matrix, namely 1) dynamic 
computation from a cluster formed by parameter set of 20 
frames preceding the current frame, 2) computation from the 
parameter set of the entire utterance, and 3) computation 
from the parameter set of the utterance excluding the silence 
and very low energy intervals. 

Figure 2. Simulated parameter tracks as a function of time (ms): (a) 
P1 (solid), P2 (dotted), (b) ROR tracks, and (c) Mahalanobis 
distance based ROC. 

Time (ms) 
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An examination of the ROC tracks resulting from these 

three approaches, and the individual values in the covariance 
matrix indicated method 3 to be most effective. The 
threshold used to demarcate the speech and silence was kept 
at 20 dB below the maximum signal level in the utterance. 
The absolute value of this threshold and the duration of 
parameters concatenated for getting the covariance matrix 
were individually examined and were found not very critical 
in getting a valid covariance matrix, provided the parameter 
set properly represented the long term variations in the high 
energy speech segments. The ROC-MD was computed as  

1 0.5
mdROC ( ) (( ( ) ( )) ( ( ) ( )) )Tn n n K n n K−= − − − −y y y y∑  

(9) 

where Σ is the precomputed covariance matrix from the 
selected parameter set, y(n) is the parameter set of the 
current frame n, and K is the time step. 

III. EVALUATION AND RESULTS 

A. Evaluation using VCV utterances 
The method was evaluated using 180 VCV utterances 

from 10 speakers (5 male and 5 female) involving 6 stop 
consonants (/p, t, k, b, d, g/) recorded in three vowel contexts 
(/a, i, u/) from each speaker. 

A total of seven parameters, namely three band energy 
(Eb1, Eb2, Eb3) and four spectral moments (Fc , Fσ , Fs , Fk) 
were used for burst onset landmark detection. Fig. 3 shows 
the energy tracks for a VCV utterance, on a normalized 
scale. The four corresponding spectral moments are shown in 
Fig. 4. Fig. 5 shows the VCV utterance, and ROC-MD 
computed from energy and spectral moment parameters, 
along with the rEg track. Four different cases were 
considered, based on the selection of distance measure and 
the parameter set used for burst onset detection.  

Case 1: Sum of ROC of band energies: Individual ROCs 
were computed for 3 band energy parameters (Eb) with time 
steps of 3 ms and 6 ms. A combined ROC was obtained by 
normalizing absolute values of each ROC to the range of 0 to 
1 and by summing them. The three normalized ROCs were 
assumed to contribute equally towards burst onset detection. 

Case 2: ROC-MD of band energies: ROC-MD was 
computed using the 3 band energy parameters defining the 
parameter set y and the corresponding covariance matrix Σ, 
for time steps of 3 and 6 ms.  

Case 3: ROC-MD of spectral moments: Using the four 
spectral moments, ROC-MD was computed. To avoid 
computation overflow during silence and closure segments, 
addition of 1) single tone of 100 Hz, and 2) broad-band noise 
to the signal was investigated. Addition of tone had the 
drawback of offsetting the centroid to the tone frequency and 
thereby biasing the higher order moments. A broad-band 
noise with 40 dB SNR was added to the signal, which was 
found not to affect the ROCs associated with the frication 
noise at the burst onsets.  

Case 4: ROC-MD of energy and spectral moments: ROC-
MD was computed for all the utterances with the three 
energy parameters and the four spectral moments defining 
the parameter set y and the corresponding covariance matrix 
Σ, for time steps of 3 and 6 ms.  

The detection rates at the temporal accuracy levels of 3, 
6, 10, 15, and 20 ms are listed in Table I for time steps of 3 
and 6 ms, respectively, for the 4 different cases considered. 
The temporal accuracy of burst onset detection reduced as 
the time step was increased, in all the four cases. Compared 
to the use of sum of ROC’s, ROC-MD improved the 
temporal accuracy of landmark detection. The spectral 
moments  were less  effective  compared to the band  energy  

Time (ms) 
Figure 5. VCV utterance /aga/: (a) Waveform, (b) ROC-MD, (c) rEg 
track used for voicing offset and onset detection. 

Figure 4. VCV utterance /aga/: (a) Fc , (b) Fσ , (c) Fs , and (d) Fk tracks. 

Time (ms) 

Figure 3. VCV utterance /aga/: (a) waveform, (b) Eb1 (thick), Eb2 (thin) 
and Eb3 (dashed) tracks. 

Time (ms) 
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TABLE I.  DETECTION RATES FOR VCV UTTERANCES 

Case  
Time step 

(ms) 
Temporal accuracy (ms) 

3 5 10 15 20 

1 
3 81 84 86 87 87 
6 48 79 85 86 87 

2 
3 86 91 93 96 97 
6 55 85 93 96 97 

3 
3 76 81 83 87 90 
6 52 66 72 73 76 

4 
3 90 95 96 98 99 
6 57 90 96 99 99 

TABLE II.  DETECTION RATES FOR TIMIT SENTENCES 

Time step 
(ms) 

Temporal accuracy (ms) 
3 5 10 15 20 

3 58 63 77 87 88 
 

parameters. The combined use of energy and spectral 
moments with a Mahalanobis distance based ROC was most 
effective in localizing burst onset landmarks. 

B. Evaluation using TIMIT sentences 
The method was evaluated using 50 conversational style 

sentences from TIMIT database involving 10 sentences each 
from 5 speakers (2 male and 3 female). ROC-MD of spectral 
moments and energy parameters (time step = 3 ms) which 
gave the best burst detection rate in VCV utterances (Case 4) 
was used for evaluation. The covariance matrix was 
precomputed for each utterance excluding parameters during 
closure and silence intervals.  

A single-pass processing was used for burst onset 
detection which located the most prominent peak in the 
ROC-MD for each voicing onset (g+) with a preceding 
voicing offset (g-) and a valid closure interval. A minimum 
duration of 10 ms with energy below 20 dB of the vowel 
energy level in the utterance was considered as a valid 
closure. For a total of 238 tokens, the detection rates at the 
temporal accuracy levels of 3, 6, 10, 15, and 20 ms are listed 
in Table II. The method also detected silence to 
vowel/semivowel onsets, frication onsets, glottal 
stops/clicks, with the insertion rates being 11%, 9%, and 4% 
respectively. 

IV. CONCLUSION 
The use of spectral moments as additional parameters 

for burst onset detection and the use of Mahalanobis 
distance based rate of change was investigated. Energy 
parameters are highly reliable and contribute more towards 
detection rate. Spectral moments are useful as additional 
parameters for improving detection rates of burst onset 
landmark, but need to be combined with energy parameters 
for reliable and accurate detection of landmarks. Rate of 
change obtained by Mahalanobis distance based first 
difference (ROC-MD) operation is more effective in 
combining parameters and deriving a single parameter 

indicative of the overall variation. It is less sensitive to the 
variations in time steps and it is effective for time-localizing 
the burst onsets. For both distance measures considered, 
short time steps performed better.  
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