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Abstract 

Impedance cardiography senses the variation in the 

thoracic impedance caused by variation in the blood 

volume and it is used for estimating the stroke volume 

and other cardiovascular indices. Respiratory and motion 

artifacts in the sensed signal introduce errors in these 

estimations. A denoising technique, using discrete Meyer 

and symlet-26 wavelets, with scale-dependent threshold-

ing for suppressing the respiratory artifact and limiting of 

the wavelet coefficients for suppressing the motion 

artifact is investigated. Denoising of signals with 

simulated respiratory artifacts improved the signal-to-

artifact ratio by 23.5 dB. Denoising of signals with real 

respiratory and motion artifacts resulted in the values of 

L2 norm and max-min based improvement indices being 

close to one, indicating effective suppression of artifacts 

without any significant signal distortion. 

 

 

1. Introduction 

Impedance cardiography is a noninvasive technique 

based on sensing the variation in the thoracic impedance 

Z(t) caused by variation in the blood volume in the thorax 

[1–10]. The negative of the time derivative of Z(t) is 

known as the impedance cardiogram (ICG) [1,2]. The 

parameters obtained from ICG can be used to estimate the 

stroke volume and some other cardiovascular indices and 

for diagnostic information. The ICG signal is generally 

contaminated by respiratory and motion artifacts, which 

may be much stronger than the signal during exercise and 

post exercise recordings [2,3,6–11]. Generally, the 

bandwidth of the ICG signal extends over 0.8 – 20 Hz, 

while respiratory and motion artifacts have components in 

the range dc – 2 Hz and 0.1 – 10 Hz, respectively. The 

artifacts need to be suppressed because they introduce 

errors in the estimation of the stroke volume and other 

cardiovascular indices. Motion artifacts can be avoided by 

acquiring the signal with the patient lying in a resting 

state. Holding the breath during the recording can be used 

to avoid respiratory artifacts, but it may affect the stroke 

volume and it cannot be used for recording over a long 

interval from most patients. Ensemble averaging of the 

ICG with respect to the R-peaks of ECG is the most 

commonly used method for reducing the artifacts [3,4,8]. 

But it also suppresses the beat-to-beat variations in ICG 

and may introduce errors in the estimation due to 

smearing of the characteristic points in the waveform 

[5,6].  

For suppressing respiratory artifacts in ICG, a 

technique using LMS-based adaptive filtering and a 

reference related to respiration was proposed in [10]. 

Several wavelet based techniques have been reported for 

denoising of biosignals without the need for references 

related to the artifacts [5,12–16]. In [5], scale-dependant 

thresholding using discrete Meyer wavelet has been used 

for suppression of the respiratory artifacts in the ICG. In 

wavelet-based denoising applications, the wavelet basis, 

thresholding technique, and the method of estimating the 

thresholds need to be carefully selected. The noise 

suppression is better if the shape of the wavelet or its 

scaling function closely matches the shape of the signal or 

the noise. If the signal components of the noisy input 

waveform are restricted to a few details, these can be 

added together to reconstruct the denoised signal. Hence 

various wavelets need to be evaluated for their suitability 

for suppressing the respiratory artifact. The wavelet 

thresholding is based on the assumption that noise 

components are always present and that the noise 

amplitudes are low in comparison with the signal, and 

hence the contribution of the signal and noise to the 

wavelet coefficients can be separated on the basis of the 

magnitude of the coefficients as a function of time [17]. 

These assumptions are not valid in case of motion artifact 

in ICG, because the signal components are always present 

and the motion artifact may be intermittent and may be 

stronger than the signal.  

A wavelet-based technique for suppressing the 

respiratory and motion artifacts in impedance 

cardiography is investigated. It uses scale-dependent 

thresholding for suppression of respiratory artifact and 

wavelet coefficient limiting for suppression of motion 

artifact. The effectiveness of the denoising is assessed by 

applying it on ICG signals acquired from several healthy 

subjects during different physical activities and exercises. 
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2. Signal processing 

Application of wavelet bases from Daubechies, 

Coiflets, discrete Meyer (dmey), and symlet families, for 

decomposition of the artifact-free ICG signals and the 

ICG-free respiratory artifacts, showed that dmey and 

sym26 captured the ICG in its first few levels and the 

artifacts in the other levels [18]. Compared to the other 

bases, they more compactly represented the signal and the 

artifact. For ICG sampled at 500 Hz, the signal 

components were present in details up to D8, and these 

details did not show contribution from respiratory artifact. 

Thus scale-dependent thresholding using dmey or sym26 

can be used for denoising the ICG. The denoised signal is 

reconstructed by adding together the first eight details. 

Ten-level decomposition of the noise-free ICG signals, 

using dmey, showed all the coefficient magnitudes to be 

below a certain value. In the presence of motion artifact, 

some of the coefficients acquired much higher values. 

Hence it may be possible to suppress motion artifact by 

limiting the coefficient magnitude to a value called the 

limiting threshold. Several statistical methods, like 

SURE, universal threshold, empirical Bayesian, minimax, 

etc. have been used earlier for thresholding-based 

denoising [13–15,17]. Minimax threshold is the largest 

threshold that minimizes the maximum relative risk [17]. 

It produced threshold values which effectively suppressed 

motion artifacts represented in D5–D8. The threshold 

values estimated by the method are proportional to the 

number of samples processed, and hence they are higher 

for lower scales (D1–D5). Use of these thresholds does 

not result in significant artifact suppression. 

In artifact-free recordings, the wavelet coefficients in 

lower scales (D1–D5) were found to be almost uniformly 

distributed. For signals with strong motion artifacts, the 

coefficients representing motion artifacts had relatively 

higher values and were easily distinguishable from those 

representing the signal components. For these scales, 

"level-dependent" thresholds can be estimated for limiting 

the coefficients. The coefficients are divided in frames of 

twice the average R-R interval, ensuring at least one 

cardiac cycle in every frame. The R-peaks are located by 

applying the Pan-Tompkins algorithm [19] on 

simultaneously acquired ECG. In each frame, the absolute 

maximum is found for each scale. The maxima in all the 

frames are used to calculate mean µi and standard 

deviation σi for each scale i. The threshold for wavelet 

limiting is taken as µi – ησi. A value of   close to zero 

resulted in effective denoising without causing signal 

distortion, while a larger value caused distortion in 

artifact-free ICG segments. 

Based on these empirical investigations, minimax-

based thresholds were used for D5–D8, while level-

dependent thresholds were used for D1–D5. Thus D5 was 

subjected to two limiting operations. It has been earlier 

reported that thresholding-based denoising of ECG results 

in oscillations at sharp transitions in the signal and these 

can be suppressed by translation-invariant application of 

denoising [14]. Such oscillations were not visible in the 

denoised output after application of either of the two 

denoising steps of our technique. 

 

3. Method of evaluation 

The ICG signals for the study were recorded using the 

impedance cardiograph developed in our lab [16] and the 

impedance cardiograph model HIC2000 (from Bio-

impedance Technology, Chapel Hill, NC) at a sampling 

rate of 500 Hz. Two sets of signals were used for the 

evaluation. In set A, three recordings were taken from 

healthy subjects: (i) subject in resting state and holding 

the breath (artifact-free recording), (ii) subject in resting 

state without any restriction on breathing (recording with 

respiratory artifact but no motion artifact), (iii) subject 

performing different physical activities (recording with 

both types of artifacts). Set B consisted of signals with 

simulated respiratory artifacts [16]. For this purpose, two 

types of signals were recorded from healthy volunteers, 

with the volunteer resting in supine position without any 

non-ventilatory movements. During the first recording, 

the volunteer held the breath for 10 s. One of the cycles 

was repeatedly concatenated to obtain a periodic artifact-

free ICG. During the second recording, the volunteer 

synchronized the inhale and exhale phases with 0.4 Hz 

square wave displayed on an oscilloscope. Sixty cycles of 

the ICG were ensemble averaged with respect to the 

respiratory cycle to estimate one cycle of respiratory 

artifact. It was repeatedly concatenated to simulate a 

periodic ICG-free respiratory artifact. The ICG-free 

artifact was scaled to have the same RMS value as the 

artifact-free ICG signal. The ICG-free artifact ro(n) was 

added to the artifact-free ICG s(n) with a scaling factor α 

to obtain the contaminated ICG  

 x(n) = s(n) + αro(n) (1) 

with a signal-to-artifact ratio (SAR) of –20 log α. 

A quantitative evaluation for selecting the most 

suitable wavelet was carried out by using the artifact-free 

set of signals in the set A and by estimating the RMS 

error in reconstructing the signal. The denoising was 

qualitatively evaluated by a visual examination of the 

output for suppression of the artifact and presence of 

distortion for signals in the set A. For quantifying the 

respiratory artifact suppression, the technique was applied 

on signals in the set B. The SAR in the denoised output 

ˆ( )x n , for N samples, was calculated as 

2 2
ˆSAR  10 log( ( ) / | ( ) ( ) | )
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This method of evaluation can be used only for signals 

with simulated respiratory artifact. 



Another evaluation, as used by Tong et al. [19], 

involved the improvement indices (I.I.) based on L2 norm 

and excursion (max-min) of the signal and calculated as 

 
(Pre-denoising value)  (Post-denoising value)

I.I.=
(Pre-denoising value)  (Artifact-free value)




 (3) 

It can be computed for signals with actual artifacts by 

using an artifact-free segment as the reference. An index 

value close to one indicates an effective denoising and a 

small value indicates ineffective noise suppression. A 

value larger than one indicates signal distortion. 

 

4. Results and discussion 

The average RMS error in reconstructing the artifact-

free ICG from the first eight scales, for 20 artifact-free 

ICG segments of 10 s duration, was found to be 1.5% for 

sym26 and dmey wavelet, while other wavelets resulted 

in slightly larger errors [18]. These results indicated that 

sym26 and dmey are better suited than other wavelets for 

wavelet-based denoising of ICG. 

Application of artifact suppression on signals with 

simulated respiratory artifacts in the set B resulted in 

almost identical results for both the wavelets, with 

average SAR improvements of 23.5, 19.6, 15.0, and 9.9 

dB for input SAR of -9, -3, 3, and 9 dB, respectively. The 

corresponding values of the improvement indices based 

on L2 norm were 1.01, 1.25, 1.06, and 1.4, respectively. 

Almost similar results were found for the max-min based 

improvement indices.  

For assessing the effectiveness of the technique in 

suppressing real artifacts, it was applied on the recordings 

in the set A. It’s application on artifact-free recordings in 

the set A did not result in any visible signal distortion. 

Figure 1 shows an example of processing of an ICG 

signal recorded during post-exercise resting state. The 

ICG signal has no motion artifact, but a large respiratory 

artifact and high heart rate variability. Figure 2 shows an 

example of processing of one of the signals in set A, with 

ICG contaminated by respiratory and motion artifacts. 

The signal was recorded during a mild level of physical 

activity involving hand movement and no restriction on 

respiration. After denoising for suppressing respiratory 

artifact, denoising using wavelet coefficient limiting was 

applied. The recovered signal is found to be almost free 

of both the artifacts. 

For a quantitative evaluation of suppression of actual 

respiratory and motion artifacts, the improvement indices 

were computed using artifact-free segments as reference. 

The average for both the indices for 33 segments (each of 

10 s) from two subjects was 1.02, indicating that artifacts 

were suppressed without introducing any significant 

distortion in the signal. 
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Figure 1. ICG with respiratory artifact (subject: C6): (a) 

recorded ICG, (b) recovered respiratory artifact, (c) denoised 

ICG (all waveforms in Ω/s). 
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Figure 2. ICG with respiratory and motion artifacts (subject: 

A4): (a) recorded ICG, (b) recovered respiratory artifact, (c) 

motion artifact recovered from D5-D8, (d) motion artifact 

recovered from D1-D5, and (e) denoised ICG (all waveforms in 

Ω/s). 

 



In all the evaluations, denoising performance of sym26 

and dmey were found to be almost similar. As the filter 

lengths of sym26 and dmey are 52 and 102, respectively, 

denoising using sym26 is preferable as it involves less 

computation. 

 

5. Conclusion 

The presented wavelet-based denoising technique uses 

scale-dependent thresholding for suppression of 

respiratory artifact and wavelet coefficient limiting for 

suppression of motion artifact. The wavelets dmey and 

sym26 were found to be better suited for this application. 

Quantitative and qualitative assessment of the technique 

by applying it on recordings from healthy subjects 

showed that both types of artifacts were suppressed 

without introducing any significant signal distortion. It 

needs to be further validated on recordings from healthy 

subjects and patients in a clinical setting, and the values 

of the stroke volume estimated by impedance 

cardiography needs to be compared with the values 

obtained by established techniques like Doppler 

echocardiography. The denoising technique may be 

useful in processing of the ICG signals for beat-to-beat 

estimation of cardiovascular indices without placing 

restrictions on respiration and motion. It may help in 

extending the application of impedance cardiography to 

ambulatory and stress test recordings. 
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