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Abstract 
Speech-training aids providing a visual feedback of 
articulatory efforts can be used for improving articulation by 
the hearing-impaired children. LPC-based estimation of vocal 
tract shape works satisfactorily for vowels but fails during stop 
closure. The vocal tract shape during the stop closures of 
vowel-consonant-vowel (VCV) utterances can be estimated by 
bivariate surface modeling of the vocal tract area function 
during the transition segments preceding and following the 
stop closure. The accuracy of the estimated shape during the 
closure depends on the detection of the transitions. A 
technique for detecting the VC and CV transitions in VCV 
utterances based on a measure of the rate of change of vocal 
tract area function is presented. The automatically marked start 
and end points of transitions showed a good match with the 
manually marked ones and resulted in a consistent estimation 
of the place of closure of velar, alveolar, and bilabial stops. 
Index Terms: speech training aid, vocal tract shape, transition 
segment detection 

1. Introduction 
The acoustic-to-articulatory mapping involves estimating the 
sequence of vocal tract shapes that produce a given speech 
signal [1]. It has potential applications in speech synthesis 
[2],[3], speech recognition [4], and speech training aids [5]-
[7]. The shape of the vocal tract can be specified by its cross-
sectional area values as a function of position along the tract 
length [1]. Several methods can be used for directly estimating 
the vocal tract shape from the speech signal: linear predictive 
coding (LPC) based analysis [8],[9], formants and factor 
analysis [10], articulatory codebook mapping [1], etc. Speech-
training aids providing a visual feedback of articulatory efforts 
have been found to be useful in improving vowel articulation 
by the hearing-impaired children [6],[7]. Most of these 
systems use Wakita’s LPC-based method [9] for direct 
estimation of vocal tract shape as it is suitable for real-time 
processing [6]. It works satisfactorily for vowels, but fails 
during the closure segments of oral stops due to low energy 
and lack of spectral information [9],[11]. Hence, a technique 
for estimating the place of articulation of stop consonants is 
needed for improving the effectiveness of speech-training aids.  
 Pandey and Shah [11] reported a method to interpolate the 
vocal tract shape during the stop closures of vowel-consonant-
vowel (VCV) utterances by using a bivariate surface model 
fitted on the vocal tract shapes during the transition segments 
preceding and following the stop closure. Use of least-squares 
based bivariate quadratic approximation resulted in 
satisfactory estimation of place of closure for different 
unvoiced and voiced oral stops. The estimated place of closure 
for /ΛCa/ utterances, involving stop consonants /b/, /d/ and /g/ 

from 20 male and 20 female speakers, showed a good match 
(with a correlation coefficient of 0.94) with those obtained 
from direct X-ray imaging from XRMB database [12]. A 
detailed investigation showed that the accuracy of the 
estimation was highest if the segments used for the modeling 
corresponded closely to the VC transition segment preceding 
the closure and the CV transition segment following the 
closure [13]. Inclusion of a part of the closure or the release 
burst in the segments used in the modeling can introduce 
errors, while that of a part of the vowel on either side can 
decrease the sensitivity of the fitted model in interpolating the 
place of closure. Hence a method for automatically detecting 
the VC and CV transitions is needed for improving the 
accuracy of the estimated place of closure and improving the 
feedback given by the visual speech training aids.  
 Several methods for detecting the acoustic landmarks 
associated with stop consonants have been reported [14], but 
they do not mark the start and end points of the transitions. As 
accurate formant tracking [15] is still a challenging task, it 
cannot be used to accurately detect the transition segments. 
Onset of voicing after the stop closure is generally detected as 
the onset of periodicity in the acoustic waveform. Several 
methods to detect the voicing onset for calculating the voice 
onset time have been reported [16]. But they are not useful in 
detecting the CV transition, because presence of aspiration 
decreases the accuracy of voice onset detection [17] and 
association of this landmark with the start and end of the CV 
transition varies with voicing and place of the stop consonant.  
 Plots of vocal tract area function of VCV utterances with 
different oral stops show a distinct pattern during the transition 
segments as compared to the steady state segments. A method 
based on a measure of the rate of change in the area values is 
presented for marking the VC and CV transitions for estimat-
ing the place of closure of oral stops in VCV utterances. 

2. Estimation of place of closure  
Vocal tract shapes are estimated using Wakita’s method [9]. 
The speech signal is sampled at 10 kHz with 16-bit 
quantization. A first difference of the signal is taken for 
providing an approximate 6-dB/octave pre-emphasis. 
Hamming window is applied on analysis frames with duration 
equal to twice the average pitch period, and the successive 
analysis frames are shifted by 5 ms. A 12th order LPC is used 
to compute the reflection coefficients from the autocorrelation 
coefficients of the windowed frame. The vocal tract from 
glottis to lips is modeled as 12 cylindrical sections of equal 
length and the vocal tract area function is obtained as ratios of 
the areas on both sides of the section interfaces and these 
ratios are converted into areas by assuming a constant 
normalized area of unity at the glottis end. The amount of 
opening in a section of the vocal tract is obtained as the square  
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root of the area value for use in subsequent analysis and 
display, although it is referred to as area. 
 LPC-based vocal tract shape estimation fails during stop 
closure due to unavailability of relevant spectral information. 
The vocal tract shape during the stop closures of VCV 
utterances can be estimated by bivariate polynomial modeling 
of the shapes during transition segments preceding and 
following the stop closure as they tend to show different two-
dimensional patterns for different places of closure [11]. In 
this method, the estimated vocal tract area values, given 
as ( , )g x y at analysis frame x  (along the time axis) and the 
section number y from the lip end, during the VC and CV 
transitions, are approximated by a bivariate quadratic function. 
The function coefficients are obtained for minimizing the sum 
of the squared approximation error. The section numbers 

≤ ≤a by y y for the frames ≤ ≤a bx x x  and cx  ≤ x ≤ dx  
corresponding to VC and CV transitions, respectively, are 
used for the modeling as shown in Figure 1. The functions 
with the estimated coefficients are used for interpolat-
ing ( , )g x y during the closure segment ( ≤ ≤b cx x x ). In [11], 
the transition start and end points were estimated using a two-
step process. The start and end points of the utterance were 
estimated using the short-time average magnitude of the signal 
[18]. The start and end of the closure were marked using an 
empirically selected threshold of 0.2 times the RMS value of 
the VCV utterance, and the end point was delayed to exclude 
the closure burst. The VC transition start ax  and the CV 

transition end dx were marked using empirically selected 
durations. The transition durations vary across speakers, and it 
is difficult to empirically set the values for utterances from 
speakers with speech impairment.  

3. Transition segment detection 
Vocal tract area values estimated using LPC analysis with 
fixed-length window show a significant variability with the 
position of the analysis frame. It has been shown that the area 
values obtained at the minima of the windowed energy index 
(the ratio of the energy of the windowed signal to the energy 
of the signal within the frame) can be used for improving the 
consistency of vocal tract shape estimation [19]. This method 
was used to interpolate the values for frames at 5 ms intervals. 
Plots of area values for VCV utterances from a number of 
speakers were examined for a relationship between estimated 
area values and transition segments. These plots indicated that 
a measure of the rate of change of the vocal tract shape may be 

useful in marking the transition segments during VCV 
utterances. As an example, Figure 2 shows results for /ata/. 
The areas for first 6 sections are relatively steady as the vocal 
tract shape does not change significantly during the vowel. 
The estimated values show transition during the VC and CV 
transitions, and the transitions extend over approximately the 
same interval as the formant transitions.  

3.1 Computation of rate of change  
A rate of change measure of the two-dimensional vocal tract 
area function may be computed by combining the rate of 
change of individual sections. As the first difference was 
found to be noisy, slope estimated from a moving 7-point 
linear regression was used as a rate of change measure. The 
root-mean-square of slopes of the first 6 sections was used as a 
combined rate of change. This function, as shown in Figure 
2(i), has distinct valleys at the VC transition start and the CV 
transition end and peaks at the VC transition end and the CV 
transition start. However, an examination of the plots of this 
measure for different utterances from several speakers showed 
that the valleys and peaks were not consistently associated 
with the transition points, and hence this measure is not 
suitable for automated marking of the transitions. 
 Time-slope of the moving bivariate polynomial fitted on 
the area values ( , )g x y was used as another measure of rate of 
change. We used linear and quadratic approximations. The 
bivariate linear approximation is given by 
  0 1 2( , ) ( , )= + + +g x y c c x c y x yε   (1) 

Figure 1: Selection of transition area values for 2D modeling 
and interpolation [11]. 

Figure 2: Rate of change functions: (a) waveform (0.6 s) of 
/ata/ from a male speaker; (b) wideband spectrogram; (c)-(h) 
areas of first 6 sections, starting from the lips, (i) RMS of rate 
of change of areas, (j) 1c  from bivariate linear approximation. 



where ε is the approximation error. Modeling is carried out for 
first six sections, i.e. 1 6≤ ≤y  and for moving 7-frame 

segment centered at the current frame nx , i.e. 3−nx  ≤ x  

3≤ +nx . The coefficients 0c – 2c  are obtained for least 
squared error. In matrix notation, the bivariate linear 
polynomial can be expressed as, 
  Az = b + r   (2) 
where r represents the approximation error, and A, z, and b 
matrices are given by 

1 1 1 1 1
3 3 3 2 3

1 2 6 1 6

⎡ ⎤
⎢ ⎥= − − − − +⎢ ⎥
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AT
n n n n nx x x x x  

[ ]0 1 2=zT c c c  

[ ]( 3,1) ( 3, 2) ( 3, 6)= − − +bT
n n ng x g x g x  

The polynomial coefficient vector z for least squared error is, 

  -1A) A bz = (AT T  (3) 

The coefficient 1c  is taken as the combined rate of change of 
area values along time axis x .  
 Figure 2(j) gives a plot of 1c . It has a small value during 
the steady state vowel segments. At the VC transition start, a 
constriction begins and 1c becomes negative, reaching a 
negative peak almost near the closure. After the closure 
release, the opening starts increasing and it is indicated by a 
positive value of 1c . Its value reaches a peak at the CV transi-
tion start and then falls to almost zero near its end. This pattern 
was observed across the utterances examined from several 
speakers, indicating the suitability of 1c  for marking the VC 
and CV transitions. It may be noted that the peaks and valleys 
in 1c  may occur at the start and end of the utterance and also 
during the closure, but being outside the search region they do 
not affect the transition detection. A similar investigation with 
bivariate quadratic approximation showed that the change in 
vocal tract shape during the transitions was represented by two 
coefficients, but neither captured the change as effectively and 
consistently as 1c from bivariate linear approximation. 

3.2. Detection of transition segment boundaries 
An example of markings for locating the boundaries of the 
transition segments is shown in Figure 2. The start and end of 
the stop closure are estimated using short time average 
magnitude with a threshold value of 0.2 times the RMS value 
of the signal [11]. These points marked as solid vertical lines 
on the waveform in Figure 2(a), are used as first estimates of 
the VC transition end and the CV transition start, respectively. 
Moving left from the closure, a negative peak 1nc is searched 
to mark a refined estimate of the VC transition end. The values 
in the frames further left are compared with a threshold to 
mark the VC transition start. To make the detection adaptive to 
different rates of transition in the utterances, the threshold is 
kept as 10.2 nc for the first 5 frames and then changed by 

10.1 nc for each frame. Similarly, a positive peak 1pc is 

searched on the right side of the closure to mark the CV 

transition start. The positive peak tends to enter into the CV 
transition during aspirated stops, leading to an error in 
marking the CV transition start. In such stops, the time delay 
between the short time average magnitude based estimate and 
the positive peak was observed to be consistently more than 15 
ms. Hence if the time delay between the initial estimate and 
the positive peak is more than 15 ms, a point corresponding to 

10.5 pc is located before the positive peak and is marked as the 

CV transition start. The values in the frames further right are 
compared with a threshold to mark the CV transition end. The 
threshold is kept as 10.2 pc for the first 5 frames and then 

changed by 10.1 pc for each frame. The detected transition 

start and end points are marked by dotted lines in Figure 2(j). 

4. Results  
Utterances of the type /aCa/ with stop consonants /p,b,t,d,k,g/ 
from two male and two female speakers were analyzed for 
estimation of place of maximum constriction during the stop 
closures. The start and end points of VC and CV transitions 
were marked by the method presented in the previous section. 
The accuracy of the automated markings was evaluated by 
comparing them with the manual markings obtained by visual 
inspection of the wideband spectrograms using PRAAT. The 
errors in the marking of the four transition points were 
calculated. There was one large error, of 30 ms in marking VC 
transition start for /ada/ from one speaker. As the transition in 
this utterance was much longer than the error, the error did not 
affect the bivariate modeling. All the other errors were within 
±15 ms. The range, mean and standard deviation of the errors 
are given in Table 1.The standard deviations are less than 10 
ms, indicating a match with the manually marked locations. 
 The marked transition segments were used for estimating 
the vocal tract shape during the stop closure using the bivariate 
quadratic modeling and interpolation. The results for VCV 
utterances with stops /p, t, k/ are shown in Figure 3. The vocal 
tract area values are displayed as areagram, a two-dimensional 
plot of the square root of area values as gray levels as a 
function of time along x-axis and normalized distance from 
glottis towards lips (G-L) along y-axis. The four arrows 
indicate the detected transitions. The largest constrictions 
during the closure in the areagrams are at the normalized 
distance of 1, 0.8, and 0.6 for /p/, /t/, and /k/, respectively, 
matching with the values of 1, 0.75 – 0.89, and 0.47 – 0.70, for 
the bilabial, alveolar, and velar oral stops, respectively, as 
estimated from MRI [20] and X-ray images [21]. 
 

Table 1: Errors in transition segment estimation  

Transition point Error (ms) 
       Range Mean Std. dev. 

VC transition start -10  30 8.1 8.3 
VC transition end -15 15 1.2 7.4 
CV transition start -5 10 2.7 3.9 
CV transition end -15 10 -1.0 7.7 

 
5. Conclusion  

A technique using the slope of the bivariate linear approxima-
tion fitted on the vocal tract area function for automatically 
marking the VC and CV transitions during VCV utterances 
has been presented. The automatically  marked  points  have  a  



  

 

good match with the manually marked ones, and resulted in 
satisfactory estimates of place of closure of oral stops. The 
technique needs to be further evaluated on VCV utterances 
from speakers with different languages and accents, and 
particularly on utterances from children needing speech 
training. In addition to its potential for improving the visual 
speech training aids, the technique may be useful in other 
non-real time speech processing applications requiring an 
accurate marking of the transitions. 
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