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Abstract

Trackers based on cameras operating in the visible band do
not work well in low lighting conditions. Infrared (IR) cam-
eras typically have a low frame rate, hence making tracking
in the IR band difficult. This paper presents a novel ap-
proach for cooperative tracking between two cameras oper-
ating in the IR and visible bands. We represent a framework
for fusing results of two such kalman trackers, using an es-
timated geometric relationship between the two cameras.

1 Introduction

Tracking a human being in low light conditions using a vis-
ible band camera is a difficult task due to low image con-
trast. An IR camera captures IR radiation emitted by the
human body. The human body temperature of37◦C is usu-
ally above the environmental temperature - techniques used
in an IR camera to suppress the background [10] are suffi-
cient to get a good contrast in an IR image. Since the image
obtained from an IR camera is independent of lighting con-
ditions, an IR tracker is used to track moving objects in poor
lighting conditions. However, if a person is moving rapidly,
an IR tracker fails because it has a lower frame rate as com-
pared to a visible band camera. In this paper, we propose
to use both IR and visible band cameras to track a mov-
ing person and fuse the results obtained from both trackers.
The fusion techniques give good results when either tracker
fails.

Pfinder [15] is a real-time system for tracking a per-
son which uses a multi-class statistical model of color and
shape to segment a person from a background scene. Har-
itaoglu et al. [8] model background scene pixels by min-
imum, maximum and maximum difference, and then use
thresholding and statistical procedures to segment the ob-
ject being tracked. Mammenet al. [12] useCb and Cr
values of skin colour to track a moving hand by using an
algorithm which is trained for skin color values which can
track only specified color values. Guptaet al. extend the
concept of EigenTracking to include a predictive compo-
nent, for faster and more reliable tracking [7]. They also

propose a framework for cooperative tracking - enhancing
any tracker with additional shape information. This is how-
ever, only for restricted affine motion. Even with a predic-
tive framework however, EigenTracking is inherently slow
due to the iterative non-linear framework. In all prediction-
based trackers, the measurement is made with respect to the
presence of the object of interest within the predicted re-
gion. Whether this is skin colour-based for a human hand
for example, or motion-based - such techniques do not per-
form robustly under low lighting conditions. Noise further
affects this process adversely. Therefore, a tracker operat-
ing in the visible band of electromagnetic radiation fails. In
such cases, inputs from a tracker operating in another region
of the spectrum (such as IR) may prove useful. Consider a
case of a rapidly moving person. Most IR cameras have a
low frame rate as compared to visible band cameras. The
large displacement of the person between two successive
frame leads to the failure of an IR tracker. In this paper, we
propose a symbiotic framework for fusing information from
two such trackers, for conditions adverse to any one partic-
ular tracker. We propose a Kalman Filter-based technique,
along with state vector fusion and measurement fusion, for
robust tracking.

2 Cooperative Tracking

In this section, we discuss models used to track both IR
and visible band images. We further discuss how to map
the motion window from IR image to visible band image
and vice-versa, and fusion of results obtained from IR and
visible band trackers.

2.1 Tracker Framework

We use a Kalman filter-based scheme is used for both visi-
ble band and IR images. The Kalman filter is based on a rep-
resentation of the system using thestate-space approach, in
which a dynamical system is described by a set of variables
called the state [9]. The system is described in terms of
the following two equations wherex(n) is the state at time
n andy(n)is the measurement or observation.Theprocess
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Figure 1: Illustration of choice of states

equationandmeasurement equationare given as:

x(n + 1) = Φ(n + 1, n)x(n) + v1(n) (1)

y(n) = C(n)x(n) + v2(n) (2)

The vectorsv1(n) representing theprocess noiseand
v2(n) representing themeasurement noiseare modeled as
zero-mean, white-noise processes whose correlation matri-
ces areQ1 andQ2 respectively.y(n) represents the mea-
surement. Here the process equation (Equation 1) describes
the state dynamicsi.e., how the states change with time. The
measurement equation (Equation 2) shows the relationship
between the observationi.e., the measured value and the
state. The state transition matrixΦ(n + 1, n) and the mea-
surement matrixC(n) are both assumed to be known along
with Q1(n) andQ2(n). The filtering problem is to find the
minimum mean-square estimates of the components of the
statex(n) by using the observed data.

Any tracker needs three states - a state vector, a state
dynamics, and a measurement vector. We select the center
coordinates(mx,my) of the rectangular window bounding
the person, and its height(H) and width(W ), as elements
of the state vectorx(n) (Figure 1). Thus the state changes
allow the window to move, expand or shrink. The elements
of the measurement vectory(n) are the top, bottom, left
and right edges of the motion window. For such a situa-
tion, we observe that the the noise affectingmx andW is
independent of noise affectingmy and H. The first pair
depends on the vertical measurements, whereas the second
depends on the horizontal measurements. Thus, instead of
a single Kalman filter in a 4-dimensional state space, we
implement the motion tracker as two Kalman filters in 2-
dimensional state space. The states for the two Kalman fil-
ters arex1(n) = [mx W ]T andx2(n) = [my H]T and
their corresponding measurements arey1(n) = [T B]T

andy2(n) = [L R]T respectively.
For the measurement, we have a very simple technique

to detect motion. To avoid spurious motion detection due
to noise, we normalize and threshold the absolute differ-
ence image. The threshold is based on the distribution of
grey levels in the difference image. The minimum bounding

rectangle, surrounding the all the pixels above threshold, is
used for tracking. For more accurate motion estimation, one
may use dominant motion extraction [11], for instance. For
the state dynamics, we have experimented with two models:
constant position, and constant velocity.

2.1.1 Constant Position Model

In this case, one may think of the states as undergoing a
transition due to the effect of white noise. This implies that
the change in state from one frame to another is uncorre-
lated. The motivation behind such a model is a common
observation that states do not change very rapidly across
consecutive frames and hence the change can be modeled
by noise. In our case we have a time-invariant state tran-
sition matrixΦ(n) = I and measurement matrixC(n) =

C =
[

1
2

1
2

1 −1

]
respectively. Thus, we may rewrite the

process equation (Equation 1) and the measurement equa-
tion (Equation 2) as follows.

x(n + 1) = x(n) + v1(n) (3)

y(n) = Cx(n) + v2(n) (4)

2.1.2 Constant Velocity Model

Theprocess equationand themeasurement equationof the
constant velocity model is given as [6], [2]

x(n + 1) =
[

1 T
0 1

]
x(n) +

[
1
2
1

]
v1(n) (5)

y(n) = [ 1 0 ]x(n) + v2(n) (6)

WhereT is sampling time. In this case too, we have a ver-
tical tracker, and a horizontal tracker. For our experimental
setup, the person’s height does not change abruptly and the
distance between camera and object is large. We use a con-
stant position model for the vertical tracker (Section 2.1.1),
while in horizontal tracker the horizontal lines of minimum
bounding rectangle left and right (Y Coordinates, Figure. 1)
are tracked independently. The state of the horizontal model
is x(n) = [Position velocity]T (Position is either the left
or right line of the minimum bounding rectangle)

2.2 Fusion and Updating

Figure 2 shows a block diagram of the proposed cooper-
ative tracking mechanism. A tracker (IR, or visual band)
fails when its entries of the covariance matrices exceeds the
pre-determined thresholds. The IR and visible band camera
look at approximately the same part of the scene. For such
a setup, we show in [5] that image points in the two images
are related by a 2-Daffinetransformation:

[
vx

vy

]
=

[
a b
c d

] [
ix
ix

]
+

[
tx
ty

]
(7)
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Figure 2: Cooperative IR and Visible Band tracking: Flow
diagram

The constant position IR tracker fails

The constant position tracker in the visible band

Measurement fusion ensures correct IR tracking

Figure 3: Constant Position Model: The effect of measure-
ment fusion

where[vx vy]T and[ix iy]T are corresponding points in the
visible band and IR images, respectively, anda, b, c, d, tx
andty are the 6 affine parameters relating the two. We esti-
mate the 6 affine parameters from point correspondences in
a set of training images. The system has the IR and visible
band cameras temporally synchronized with each other.

The cooperation between the trackers can be through ei-
ther measurement fusion, or state vector fusion. We assume
the measurement noise to be independent, for the two cam-
eras. In measurement fusion [14], [13], the measurement
vectorsyi(n) andyv(n) are fused to obtain the minimum
square estimatēy.

ȳ = yi + Ri(Ri + Rv)−1(yv − yi) (8)

R̄ = [(Ri)−1 + (Rv)−1]
−1

(9)

The constant position visible Band tracker fails

The constant position IR tracker

Measurement fusion ensures correct visible band tracking

Figure 4: Constant position model: The effect of measure-
ment fusion

Here,R̄ is the covariance matrix of the fused measurement
vector ȳ. Rv andRi are covariance matrices of the mea-
surement vectorsyi andyv, respectively.

In our experimental setup, the frame rate of the visible
band camera is approximately 8 times than that of the IR
camera. First, we show results with using a constant posi-
tion model (Section 2.1.1). In Figure 3, the IR tracker fails
due to rapid displacement of the moving object, between
any two consecutive frames. measurement fusion using re-
sults from the visible tracker enables correct tracking, as
shown. In Figure 4, the visible band tracker fails due to
poor lighting. Measurment fusion using results from the IR
tracker mitigates this problem.

Let x̂i(n/n) andx̂v(n/n) denote the state estimates of
the IR and visible band trackers, respectively. state vector
fusion [6], [2], [3], performs a Maximum likelihood fusion
in the following manner ([6], [4], [1]):

x̄ = x̂i + (Pi −Piv)(Pi + Pv −Piv −Pvi)
−1(x̂v − x̂i)

P̄ = Pi − (Pi −Piv)(Pi + Pv −Piv −Pvi)
−1(Pi −Pvi)

Here,x̄ andP̄ are the fused estimates and the correspond-
ing covariance matrices; andPi andPv are the covariance
matrices ofx̂i(n/n) and x̂v(n/n) respectively. In both
measurement and state vector fusion, the fusion and updat-
ing is done when the corresponding IR and visible band im-
age pairs are available. Otherwise, the visible band tracker
continues to track independently. In Figures 5 and 6, we use
the constant velocity model, and additionally show results
using state vector fusion. In both cases, the fusion enables
more reliable tracking of the moving object, across frames.
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Figure 5: Constant velocity model: the effect of state and
measurement fusion

3 Conclusion

This paper presents a symbiotic framework for combining
results of two trackers using state vector and measurement
fusion; Even when one tracker fails in adverse conditions,
the symbiotic information fusion enables robust tracking as
shown by our experimental results.
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