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Abstract—Active contours are very widely used in computer that, we describe our solution and finally we present the results
vision problems. Their usage has a typical problem, that of and conclusions.
bunching together of curve points. This becomes apparent
especially when we use active contours for tracking leading II. NOTATION

to instability in curve evolution. In this paper, we propose a . : . . . .
tangential term to stabilise the evolution while at the same time We first describe the notation used in this paper. A curve is

ensuring that the curve shape is not changed. The proposed denote_d_ k_)yC_(p, t), wherep is the curve parameter artdis
method is simple and the computational overhead is minimal, the artificial time parameter. Thusparameterises a family of

while the results are good. curves whilep parameterises a single member of this family.
The initial curve isC(p, 0) and the family of curves is obtained
|. INTRODUCTION by evolving C(p,0) as per some curve evolution equation.

The local tangent anthward normal are denoted bty andn

Active contours are very widely used in computer visionespectively. The curvature is denoted Adwnd the arc length
tasks like tracking and segmentation. A flurry of research waarameter by. The quantityg = |C,|, is interpreted as the
sparked off by the original paper of Kass and Witkin [1] whiclspeed of a particle on the curve. This quantity is a measure
still continues. Active contours are simply connected closed the parameterisation of the contour.
curves which move so as to minimise some energy functionalsThe force at each point on the curve can be resolved into
The minimisation yields the curve evolution equations arttho components: along the local tangent and normal denoted
depending on the numerical implementation, contours halwg o and 3, respectively. This is written as:
been classified as parametric active contour or geometric active
contour. As their name suggests, parametric active contours
are implemented using parametric curves like splines [2]
finite element method [3] in a Lagrangian framework. On th
other hand, geometric active contours are implemented in an dg a
Eulerian framework using the level set methods [4] [5]. An T —grf + ap’ @)
interesting paper which links these two approaches is [6].

O a0+ (.0 @

iven this equationg varies as follows [16] [17]:

. . . . . . It is seen from the above equation that the curve speed
It is out of scope of this article to review the entire aCt'V?unction depends on both the components. On the other hand

conLour_II_l;c]erqtgr_e,l howeverfwe me”t:"g ?_ fev(\j/(;)fth; |mportaEthaS been shown by researchers [17] that only the normal
works. The initial energy functional defined by Kass et & mponent of the forcg influences the shape of the curve.

[1] was based on image gradients while Ronfard [7] extend e tangential component reparameterises the curve. Based

It to region based energy functionals. Mallgd? [8] introduc_egn this fact, most works have concentrated on constructing
the level set method into the computer vision Commun't}?nergy functions and paid attention to the normal term to speed

Anot_her Iandmark_ paper is [9]. WhiCh converte(_j the in?tiaup the convergence, increase the capture range etc. No specific
gradient problem into that of finding a geodesic path in &

Ri ; defined by the i Thev h é)rts were made to give some shape to the tangential term
lemannian space defined by the image. ey have Usglat pest it got constructed as a side effect. This did not

Fhe level set method for implementation. Some of the OIhﬁBSe any problems as these works used level set methods.
important works are [10], [11] [12] [13] [14]. However, there are some typical problems with the Lagrangian
The advantages and disadvantages of both these method$ g mentation which is discussed next. We also discuss a few

well documented [15]. Briefly, the level set method representa@;mmon solutions as well as some works which had a different
tion allows topological change but has the disadvantage of téﬁ)'proach.

ing slow; converse is the case with parametric representation.

In applications like tracking, which is our primary interest, Ill. PROBLEMS WITH CURVE EVOLUTION

topological changes seldom occur. Therefore we concentrat®ifficulties with Discrete curves : A well known problem

on parametric active contours only in this paper. We usewith the parametric representation of curves is that during

spline based implementation similar to that of [2]. evolution the points on the curve bunch close together at
In the next section, we describe the problem and discusartain regions and they space out elsewhere. This increases

a few solutions which have been proposed in literature. Afterror in numerical approximation of curves measures like



tangent and curvature. In a spline implementation, althoughThe above methods are rather ad-hoc in the sense that
the tangents and normals are computed analytically and rtbey are methods to adjust Euclidean distance between points
uniform spacing of points is not a problem, in regions wherafter they space out and do not actually try to prevent this
the points come close together the control points also bunghenomenon from occuring. Some better methods to obtain a
together. This may lead to formation of discontinuities imore uniform point spacing have been proposed in [15] [16]
the curve. Subsequently the normal is ill-defined, leading [©8]. We however postpone the discussion of these methods to
formation of small local loops. These loops blow up in size aritie next section. This would enable us to compare immediately
ultimately the curve degenerates. In regions where the poiotsr method with these approaches.
space out, the segmentation will of course be much poorer.
This problem which is disturbing in segmentation problems,
becomes intolerable in tracking. Therefore our aim in this work We first qualitatively describe the cause for the bunching of
is to maintain a uniform spacing of points. the points on the curve and the control points. As mentioned
As an example, we show two frames from a trackingréviously, controls the shape while controls the param-
sequence of a hand. We use the final curve of the previdei§risation. It might be thought that if we set the tangential
frame as the initialisation for the current frame. Figure1(@Pmponentx to zero; the curve would retain its parameteri-
shows the curve just after initialisation. The points on the curf&tion and be well behaved. It is seen from equation (2) that
are nearly equidistant. We use a minor modification of tte depends on both the components of the force. Therefore,
region competition model [11] for tracking (this is explainedvhile reconstructing the curve with a discrete set of points the
in the next section). After four frames, as marked in figurgPacing between the points varies in an unpredictable manner.
(1(b)), the points accumulated in two regions are marked ByiS leads to uneven spacing of points at certain portions of
red circles. In the very next frame, in figure (1(c)), we notic® curve and the consequent problems described in the earlier
that small loops have formed in these regions. These logtREtioN. - .
blow up and the curve becomes unstable. The occurence of Our approach we ensure curve stability by using a very
degeneracy depends partly on the motion direction. In tRETPle equation to controy. It is a well known fact that
example shown, as the hand moves from the right to leffie arc length is the desired parameterisation to describe the
the points accumulate to the right and vice versa. Of cour&lrve. This is an intrinsic description of the curve. Also, we

the exact number of frames between initialisation and IOJE’te that when the curve is parameterised by its arc length,
formation depends on different image sequences. the curve speed function quantigybecomes equal td. We

Few Solutions :In this section, we present a few possiblemake use of this simple fact to control the curve. Though

approaches described in the literature to tackle this problé';r%C length parameterisation is most desirable; it cannot always
and discuss their limitations. e achieved in practice. This is because of the representation

used. For example, when we use closed periodic B Splines

1) Reinitialisation of curve can be done either after # represent a curve, the parameter range&vjs the number
fixed number of frames or when the distance betweaf basis functions. Obviously, it cannot be guaranteed that the
successive control points falls below a certain thresholéngth of the curve would always be equal to this or even close
As proposed in [2], this can be done by minimising théo this. Therefore, the next practical compromise would be to
least squared distance between the current curve dmveg to be a constani’.
the new curve while penalising the distance between thelt is then natural to use equation (2) to force the curve
control points. However, this is not a very good solutiotowards the parameterisation which would make: K. The
because the shape of the curve would change during th& hand side of this equation predicts hgwchanges given
re-positioning of the control points. The computation i$ and«. We know the normal componep this is obtained
also increased in checking the distances in each frafiem minimising the energy function defined on the curve.

IV. PROPOSEDMETHOD

after every iteration. Equation 2 can be rewritten as:
2) Another ad-hoc solution is inserting or deleting points da g
from the curve when the distance between them exceeds ap = o + gk B, 3)
or falls below a certain threshold. This again is not a very
good solution; the thresholds have to be set manualkft Us set: P
and in general is a naive procedure. Y K- g. (4)

3) In a spline based implementation; we could also con- ot

trol the curve by deleting or inserting control points.QuaIitatiVEly, at each point we try to find by pushingg at that

Although algorithms exist for such a procedure; thiBOINt o the constank’. We can sefx’ by simply averaging it
solution is not natural, is specific to splines and i8Ve' the curve in the first frame. We obtainby substituting

computationally expensive. Also, if we were to us&duation (4) in equation (3) and then numerically solving the

the control points to represent the shape space, th&§gulting ODE:

operations would change the dimensions of the feature da 0g K 5
space. op ot —9+gnp ©)



(a) Frame 26 (b) Frame 30 (c) Frame 31
Fig. 1: Curve Degeneration:Fig 1(a) Initial curve marked in red. Convergence of curve to target(in green). Fig 1(b) lllustration

of loop formation (in red) due to target motion. Fig 1(c) Increasing loop size at the locations marked in red in previous frame.

After solving for a(p,t), we use the values in equation(1)calculatedy in equation(1). Finally, in [18], the authors obtain
This simple term gives very good stabilisation of the curve dke internal energy term by minimising the following:
we shall see in the next section on results. M
It is interesting to compare the proposed energy term with E = / (g% — ¢)%dp (6)
that proposed in [15], [16] and [18]. In [15] the tangential 0
energy term (for maintaining uniform parameterisation) iwhere M depends on the representation used arslpropor-
shown to bex = g—g. tional to the length of the curve. However, the above term will
When the normal force componenthas a smaller mag- also cause a shrinkage of the curve. Therefore, although there
nitude compared to the tangential part; the above force iy be a stabilisation of the curve, there is also a change in
equivalent to the diffusion ofy along the curve as time the shape of the curve because of the normal component. This
progresses. The above assumption may not be strictly validnot at all a desirable side effect. In our method, there is
in regions of high curvature. The term proposed in this pape feedback term like this and hence we expect better results.
is better because it directly addresses the issue at hand. W biggest disadvantage we feel in the non local term of [16]
do not make any assumptions in our work. In fact, we dseand [18] is that both require calculation of length of the curve
while computinga at each point. or practically speaking, its numerical approximation. This can
In [16], the authors have proposed two terms for calculatiflly be done by using a large number of points to approximate
a. In the first term, which is a non local term, is obtained the curve. Therefore, the dimensions of various matrices will

by solving the following ODE: increase resulting in higher computation time. Our proposed
method is free of such constraints.

Oa = KkB— < KB > +(£ — 1w As mentioned in the beginning of this paper, we have used

s g the proposed term to stabilise the curve applied to tracking

where < . > denotes averaging over the curve and= USing the Region Competition model. We describe the tracking
ki + ke < kB >, ki and ko are constants. The authorsdlgorithm next.

have shovyn that this term leads asymptotically to a uniform V. TRACKING ALGORITHM
parameterisation. Note that there are two parameters to be . .
fixed here. We have used the region competition model [11] for track-

ing. This model was proposed for segmentation of an object

In the second methody is obtained by lettingy = 0,60, . . ) L . .
where# = In(£). The rationale behind this term is that it ign an imagel using the statistical properties of the object. The

obtained as the tangential component of the solution of tf%eta |sdto movzlao? potllnt o(;] the é:.ur\@ mtre]nther inward ort.
intrinsic heat equation. The normal component of the soluti ward normal direction depending on the image properties

is the mean curvature motion. However, it is well known that the point on the curve(C). We build histograms of the
mean curvature motion is too slow in practice for convergenz:%rg ) . . . .
[19]. Therefore researchers speed up convergence by addi ?ecnvely. Animage p0|nt. !ymg on thg Curve 15 d_enoted by
normal term. Hence, we feel that the term might not perfor ). Therefore, the probab_lllty of this pixel belonging to the
so well in practice. One drawback of both these methods staffiget and the backgroundp@([((])) a}nde(I(C)). _
numerical implemention requires updationgofcurvature and he curve evolution equation then is as follows [11]:
tangent angle aftew is calculated; only then are the curve ocC pe(I(C)
— = pkn + log [p} n

points updated. In our method we can directly apply the ot 7 (I(C) (7)



(a) Frame 31 (b) Frame 40
Fig. 2: Curve Stabilisation using proposed method. Even for rapid motions the curve remains stable.

The interpretation of the above equation is as follows; if thehange is slow but the object moves fast. Not only at frame
probability that the curve point belongs to the background &l (figure 2) is the curve stabilised but also remains so till
higher than the probability that it is a part of the target then thieame 40, figure(2(b)).
point moves in the inward direction and vice versa. This meansWe next take a more difficult sequence where there is a
that the initialisation is such that the curve should at leasbmbination of shape change and motion. Figures 3(a)and
partially cover the target. This is a very common assumption 8fb) shows one such sequence. We again note that the curve
tracking. In [11] the authors have used parametric distributionsmains stable despite this combination of motion and shape
to model the target and background; we however have usgthnge.
histograms because they are simple and fast. We ignore the
bins of the histogram where the probability values are too VIl. CONCLUSIONS AND FUTURE WORK

low. Parametric active contours are simpler to implement and
We extend the same model for tracking. We use the comuch faster than level set methods; however their stability is
verged contour in the previous frame as the initialisation @_ﬂways suspect. In this paper, we presented a simple method
the contour in the next image. We use histograms to model fiagstabilise parametric active contours. This can be used with
target and background feature distributions in the RGB cologny representation of contours. In one of the future works, we
space. We generate the target histogram offline manually gnésent a rigorous theoretical proof of the proposed equation.
generate the background dynamically in the following manner.
The B Spline curve lies entirely within the convex hull of its
control points and we assume that the target lies mostly withil M ass, Jé-\/"’gg'_‘igvz1""_”3%1',3-19T8eé.20p0“'°5' “Snakes: Active contour

the region enclosed by the spline curve. however computinig] Menet, Saint-Marc, and Medioni, “Active contour models: Overview,
. . . implementation and application,” pP. 194-199, 1990. .
the convex hull is computationally expensive. We thereforgs) L. "Cohen and I. Cohen, “Finite-element methods for active contour

i i i i models and balloons for 2-d and 3-d imagéBEE Trans. Pattern Anal.
find the biggest rectangular bounding box enclosing the curve o6 ¢ Intell vol 15, no. 11 . 113121147, November 1093,

and sample the image randomly outside this box. We can build] g.o_sher aggo%.Fedki\Mevel Set Method and Dynamic Implicit Surfaces
. . . : S pringer, .
a histogram of the whole image excluding the region insidgs; %_ -Q' ‘f}h-ia”'L-e"eF', Set N{%@é’ds and Fast Marching Method€am-
i i ridge University Press, .
the Curve, but in our work we found that about 3500 pomt%] C. Xu, A. Yezzi, and J. L.Prince, “On the relationship between paramet-
from the image suffice for most purposes. ric and geometric active contours,” roc. 34th Asilomar Conference
2398|gnals,8ystems, and Computésilomar, October 2000, pp. 483—
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