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Abstract

We present a new on-line scheme for the recognition and
pose estimation of a large isolated 3-D object, which may
not entirely fit in a camera’s field of view. We do not assume
any knowledge of the internal parameters of the camera, or
their constancy. We use a probabilistic reasoning frame-
work for recognition and next view planning. We show re-
sults of successful recognition and pose estimation even in
cases of a high degree of interpretation ambiguity associ-
ated with the initial view.

1. Introduction

In this paper, we present a new next view planning-
based recognition and pose estimation scheme for an iso-
lated large 3-D object. A large 3-D object may not fit into
a camera’s field of view. Figure 1(b) shows an image of a
portion of a building obtained using an active camera (one
whose parameters can be changed purposively e.g., Fig-
ure 1(a)). Such a view could have come from any of the
three models, different views of which are shown in Fig-
ure 1(c), (d) and (e), respectively. Further, even if the iden-
tity of the object were known, the same view could occur
at more than one place in the object – it is not possible to
know the exact pose of the camera with respect to the object
from one view alone.

We consider a view of an object to contain 2-D or 3-D
parts (which are detectable using 2-D or 3-D projective in-
variants, for example), and other ‘blank’ or ‘featureless’ re-
gions (which the given set of feature detectors cannot iden-
tify). We present a new reactive object recognition scheme
for large 3-D objects. The scheme uses a hierarchical part-
based knowledge representation scheme, and a probabilistic
framework for both recognition and planning. The planning
scheme is independent of the particular nature of a 2-D/3-D

part, and the method used to detect it. A novel feature of
our work is the use of inner camera invariants [12] for pose
estimation – image-computable functions which are inde-
pendent of the internal parameters of a camera.

Active recognition systems such as [9], [8], [6], [2], [3],
[4] assume that the object completely fits into the camera’s
field of view. Active part-based object recognition systems
such as [2], [7], [1] assume that the object to be identified
is partitioned into a set of identifiable parts. The active
planning in these systems incurs the overhead of tracking
the region of interest through successive views. Volumetric
primitives used in [2] are associated with a high feature ex-
traction cost, while appearance-based methods [7], [1] re-
quire the object of interest to be segmented out from the
background. None of these handle the case when internal
parameters of the camera are allowed to vary, either unin-
tentionally or on purpose.

The rest of the paper is organized as follows. Section 2
describes our method of pose estimation using inner camera
invariants. We describe our hierarchical part-based knowl-
edge representation scheme in Section 3. Section 4 de-
scribes our scheme of object recognition through next view
planning. We present results of experiments with our sys-
tem, in Section 5.

2. 3-D Euclidean Pose Estimation using Inner
Camera Invariants

We use inner camera invariants to estimate the pose of
parts present in a view of an object. The system uses this
information to plan the next view, if the given view does not
correspond to a unique pose of a particular object.

A commonly used projective camera model is [5]:

�� � �� � � �� � ��� (1)

Here, � � ����� ��� �� is a 3-D world point, and
� � ��� �� ��� is the corresponding image point. � (���)
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Figure 1. A robot with a camera looking at a building. (b) The given view of the object (the building):
only a portion of it is visible. This could have come from any of the models, different views of which
are shown in (c), (d) and (e), respectively

and � (� � �) are the rotation and translation aligning the
world coordinate system with the camera coordinate sys-
tem (the external camera parameters), and � is the matrix
of the internal parameters of the camera:
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The skew parameter 
 may often be considered negligi-
ble [5]. Suppose we know three 3-D points, �� �
���� ��� ��� ��

� ,  � ��� �� ��, and their images �� �
���� ��� ��

� ,  � ��� �� ��. Eliminating the internals of the
camera,
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where ���� and���� are image measurements that are func-
tions of �� � �� (� ��� �� ���

� ) and�� ( � ��� �� ��), and
are independent of camera internals. � ��� and ���� are In-
ner Camera Invariants [12] – image-computable invariants
of the homography A.

We use inner camera invariants for estimating the pose
of a part (� and �). Suppose we know the Euclidean coor-

dinates ���� ��� ��� ��
� of 5 points (in general position) in

the world coordinate system. Six independent inner camera
invariant measurements give us six equations (of the type
in Equation 3) in 6 unknowns: 3 rotations and translations
each. We solve these equations to get the pose, using a suit-
able non-linear optimization routine (constr/fmincon
in MATLAB). For a system with 4 degrees of freedom (here-
after, DOF) (e.g., a setup with one rotational and all three
translational DOF) as in Figure 1(a), we adopt the same pro-
cedure with four independent (inner camera) invariant mea-
surements from four equations.

3 The Knowledge Representation Scheme

We propose a part-based hierarchical knowledge repre-
sentation scheme that encodes domain knowledge about the
objects in the model base. Figure 2 illustrates an example
of our knowledge representation scheme. O represents the
set of all objects ����. An object node �� stores its prob-
ability of occurrence, � ����. A part ���� has a PART-OF
relationship with its parent object ��. A part node stores
the 3-D Euclidean structure of its � constituent vertices
���� ��� ���

� , � � � � � (e.g., � � 	 for a 6-DOF case:
Section 2). It has R and t links with its neighbouring parts.
We define a Part-Class as a set of parts, equivalent with
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Figure 2. The knowledge representation
scheme: an example

respect to a feature set. The set of parts is partitioned into
different equivalence classes with respect to a given feature
set: these equivalence classes are part-classes. � represents
the set of all part-classes ���� ��� � � � ��� for all parts be-
longing to the objects in the model base.

4 The Object Recognition Scheme

The system starts with an arbitrary view of an object in
our model base. Our aim is to identify the given object,
and the viewer pose with respect to it. There are three main
components of our recognition scheme:

1. Hypothesis generation
2. Probability calculations, and
3. Next view planning

We discuss these three topics in the following sections. Our
scheme is independent of the particular technique to identify
a part-class. The only requirement is that it should contain
at least 5 points of interest for pose computation. Figure 3
describes the main steps in our algorithm.

4.1. Hypothesis Generation

Let the given view of an object contain � parts – � ���� ,
����� , . . . ����� . This view could correspond to any of the
� objects in the model base. Further, this configuration of
parts could have come from many different positions within
the same object ��. From the image information, we can
only identify the part-classes ��� , ��� , . . . ��� (where ���
and ��� are not necessarily different) corresponding to each
observed part, respectively (PART-CLASS�� ����� � ���).
The system generates different part configuration hypothe-
ses corresponding to the given view: We compute the esti-
mated pose of each part (Section 2), and check if the relative
poses of parts in the configuration are consistent with the R
and t values in the knowledge representation scheme, within
error limits (we use 	 
	 and 	 20��, respectively). The
next section describes the process of computing probabili-
ties associated with each part configuration hypothesis.

ALGORITHM identify object and pose

(* ------ FIRST PHASE ------ *)
1. initialize object probabilities();

(* Initialize to 1/N *)
2. image:=get image of object();
3. part class info:=identify part classes(image);

IF NO part class observed THEN
make random movement; GOTO step 2;

4. search tree root:=
construct search tree node(

part class info,�����);
5. compute hypothesis probabilities(

search tree root); (* Eq. 5 *)
6. IF the probability of some hypothesis

is � a pre-determined thresh THEN
exit & call success;

7. expand search tree node(search tree root,
MAX LEVELS); (* Section 4.3 *)
(* ------ SECOND PHASE ------ *)

previous:=search tree root;
expected:=get best leaf node(

search tree root);
8. �������:=compute movements(expected,previous);

make movements(�������);
image:=get image of object();

9. part class info:=identify part classes(image);
IF NO part class observed THEN

(* — backtrack — *)
undo movements(�������);
expected:=get next best leaf node(

previous);
GOTO step 8;

10. IF obs view does NOT correspond to expected
THEN

new node:=construct search tree node(
part class info,�������);

ELSE
modify search tree node with observation(

expected,part class info);
new node:=expected;

11. compute hypothesis probabilities(new node);
12. IF the probability of some hypothesis

is � a pre-determined thresh THEN
exit & call success;

13. expand search tree node(new node,MAX LEVELS);
expected:=get best leaf node(previous);
previous:=new node;

14. GOTO step 8

Figure 3. The Object Recognition and Pose
Identification Algorithm



4.2. Probability Calculations

For� objects in the model base, the a priori probability
of each object before taking the first observation, is ��� .
We need estimates of the a priori probabilities of different
configurations of parts that may occur (Step 1 in Figure 3).

� ������ � ����� � � � � ������ �

� ���� 
 � ������ � ����� � � � � ����� � ��� (4)

We may form estimates of � ������ � ����� � � � � ����� � ���
from a very large number of views of the given object from
different positions, and different values of the internals of
the camera (the focal length, for example on which the field
of view of the camera depends) — this is done off-line, be-
fore taking the first observation. We have experimented
with objects having planar faces. For such a case, one may
approximate the probability of a part by its relative area in
the 3-D model.

We use the Bayes rule to compute the a posteriori prob-
ability of each hypothesized configuration (Step 5 in Fig-
ure 3):

� ������ � ����� � � � � ����� � ��� � ��� � � � � ����

� ���������� ���������� (5)

where��������� is given by

� ������ � ����� � � � � ������ 
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The summation in  ���������� is for all objects �
, and
all possible configurations of parts within the object. Be-
cause of the IS-A relation between a part and a part-class
in our knowledge representation scheme (Section 3), each
of the terms � ���� � ��� � � � � ��� � �
��� � �
��� � � � � �
����
is � for all parts belonging to a particular part-class and �,
otherwise.

We now compute the a posteriori probability of each ob-
ject in the model base:

� ��
� �
	
� ��
��� � �
��� � � � � �
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(6)
The summation is for
all configurations of parts �
��� � �
��� � � � � �
��� belonging
to object �
, which could have given rise to the given view
containing part-classes ��� � ��� � � � � ��� . Each object node
in the knowledge representation scheme uses Equation 6 to
updates its probability. If the a posteriori probability of no
hypothesis (Equation 5) is above a predetermined thresh-
old, we have to take the next view to try to disambiguate
between the competing hypotheses.

4.3. Next View Planning

We describe the state of the system in terms of the com-
peting view interpretation hypotheses, and the set of� and
� movements made thus far. We use a search tree node
to represent the system state. One needs to plan the best
move out of the current state to disambiguate between the
competing hypotheses, subject to memory and processing
limitations, if any. Search tree expansion proceeds accord-
ing to the R and t relations in the knowledge representa-
tion scheme. Each search tree move is to get to the cen-
tre/centroid of the expected part. Thus, the expected part is
more likely to be in the camera’s field of view even in the
event of a zoom-in/zoom-out, for example – thus providing
robustness to small movement errors. The planning process
aims to get to a leaf node of the corresponding search tree
– one corresponding to a unique part-configuration. One
may also employ a limited memory search tree expansion
(MAX LEVELS in Figure 3). We use three stages of filter-
ing to get the best leaf node (Step 7 in Figure 3). First, we
consider those leaf nodes which lie along a path from the
most probable hypothesized view interpretation in the pre-
viously observed node. The algorithm assigns each search
tree node, a weight 

���
, where 
 represents the number
of hypothesized view interpretations corresponding to this
node, and !���! is the search tree level (depth) the node lies
on. From among these leaf nodes, we select those asso-
ciated with with minimum total path weight. We resolve
remaining ties in favour of one of with a smaller number
of rotational movements. We are selecting the move with
the best discriminatory ability, at each stage. Hence, it is
consistent in a decision-theoretic sense [11].

The system makes the required movements
�� "�� "�� " � ��� ��� ���, and takes an image at this po-
sition (Step 8). Similar to the process in Section 4.1, we
generate different interpretation hypotheses corresponding
to this view. The non-detection of some parts in the vicinity
of the expected part (we do not predict a view) does not af-
fect the system in any way. Another important consequence
of this fact is the robustness of the system to the presence of
clutter in a view. If the current observation corresponds to
the expected search tree node, we compute the probabilities
of each view interpretation hypothesis. If the probability of
some hypothesis is above a the predetermined threshold, we
declare success, and exit (Step 12). If the current observa-
tion does not correspond to the expected search tree node,
the system searches for the node corresponding to this ob-
servation among all leaf nodes corresponding to the move-
ments made from the previous viewpoint. If we find one,
then we repeat the process described above. If not, we undo
the current movements, get the next best leaf node, and pro-
ceed (Step 9). If the probability of no hypothesis is above
the threshold, this node is expanded further (Step 14).



Figure 4. The 7 part-classes which the 459
parts belong to, for our model base:  ��,
 �	#,  �	", ��$� ,  ��%&� #$,
 ��' , and  ��, respectively in row-major
order.

5 Experimental Results & Discussion

Figure 1 shows the set of architectural models we have
experimented with. We have a 4-DOF experimental setup:
translations along the �-, 	- and 
- axes, and rotation
about the 	- axis (Figure 1(a)). We have chosen as (2-
D) parts the doors and windows of different shapes and
sizes in the models. Such an experimental setup is con-
sistent with our 4-DOF pose estimation procedure 2. The
first step in processing a given view of the object in-
volves a segmentation of the image using sequential la-
beling. Then we detect corners as intersection of lines
on the boundaries of ‘dark’ regions. We use 2-D projec-
tive invariants [10] and grey-level information for recogniz-
ing part-classes. We emphasize however, the our recog-
nition strategy is independent of the types of the parts
and part-classes, or the method to detect them. There
is a very high degree of interpretation ambiguity associ-
ated with a particular view of a few parts of the given ob-
ject. Model LH (Figure 1(a)) has 167 parts, model DS
(Figure 1(b)) has 170, while model GH (Figure 1(c)) has
122. Figure 4 shows the 7 different part-classes these
459 parts (of different sizes) correspond to. The 7 part-
classes, with the number of parts corresponding to each,
are  ��(374),  �	#(24),  �	"(24), ��$� (21),
 ��%&� #$(6),  ��' (6), and  ��(4), respec-
tively. We describe four illustrative experiments with our
system.

The initial view in Figure 5 shows the two detected parts
with part-classes  ��' and  ��. Of the 6 possible hy-
potheses, our part pose estimation procedure (Section 4.1)
prunes out 4 of them. The system plans a disambiguating
move: the second view contains the expected part (bottom
row, centre). This move results in correct recognition and
pose estimation, in spite of the failure to detect a neighbour-
ing part (top row, centre). Further, parts in a view need not
be coplanar. Figure 6 shows an example of correct recog-
nition in such a case.

The first view in Figure 7 could have come from 257

Figure 5. Experiment 1: The sequence of
moves required to identify the object and its
pose. The failure to detect a part does not
affect the system (details in text).

Figure 6. Experiment 2: The sequence of
moves required to identify the object and its
pose. The parts in the initial view do not lie
in the same plane.

configurations of two adjacent parts with part-class  ��.
Two moves from this position were sufficient to recognize
the object, the third view containing the expected part (the
large 4-cornered window). For the same first two views, we
performed two zoom-out operations at the the third camera
position. The recognition results are the same in each of
the cases — Figure 7 (a), (b) and (c). Further, the camera
pose with respect to the expected part in these three cases
are � ���
	� ������� �������� �
������� �,
� �����	� ������� �������� �
������� �, and
� ����		� ������� �������� �
������� �, re-
spectively.

In Experiment 4, the presence of a tree (an unmodeled
object) accounts for clutter in the first, third and fourth view
of Figure 8. The system plans the next move on the basis of
a part: it does not predict an entire view. Hence, recognition
performance is not affected by the presence of unmodeled
objects or the non-detection of parts in the vicinity of the
expected part.

6 Conclusions

We present a new on-line scheme to identify large 3-
D objects which do not fit into a camera’s field of view,
and finds the pose of the (uncalibrated) camera with re-
spect to the object. The system does not assume any knowl-
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The camera progressively zooms out

Figure 7. Experiment 3: For the same first two
views, we progressively zoom-out the camera
in three stages. (a), (b) and (c) depict the three
views which the camera sees, for the third
view. This does not affect the recognition
system in any way (details in text).

Figure 8. Experiment 4: The first, third and
fourth views are cluttered by the presence of
a tree. The image at the bottom shows an
overall view. The corresponding window is
highlighted with a black square.

edge of the internal parameters of the camera, or their con-
stancy (permitting a zoom-in/zoom-out operation, for ex-
ample). The part-based knowledge representation scheme
is used both for probabilistic hypothesis generation, as well
as in planning the next view. We show results of successful
recognition and pose estimation even in cases of a high de-
gree of interpretation ambiguity associated with the initial
view.
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