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Abstract

We present a new active active recognition scheme (using
an uncalibrated camera) based on a new idea, appearance-
based aspect graphs. The scheme is robust to background
clutter, and affine transformations of the object. We use a
probabilistic reasoning framework which helps in probabil-
ity calculations and planning the next view (when a view of
the object does not contain sufficient features to recognise
it unambiguously), in conjunction with a new hierarchical
knowledge representation scheme. Preliminary experiments
with the system show encouraging results.

1. Introduction

In this paper, we propose a new active 3-D object recog-
nition strategy which used appearance-based aspect graphs.
The strategy uses a hierarchical knowledge representation
scheme which guides our probabilistic recognition scheme.
We show results of experimentation with a standard object
database in support of our proposed strategy.

Murase and Nayar [14] propose the use of parametric
eigenspaces for isolated 3-D object recognition. The ad-
vantage of such a strategy over other feature-based ones is
the use of all information present in an image, doing away
with the (often noisy and error-prone) intermediate process
of feature extraction. Existing appearance-based recog-
nition schemes [14], [4] typically need accurate object-
background segmentation, and normalization to illumina-
tion conditions and size. In this paper, we show how our for-
mulation gets around these requirements, which constrain
any appearance-based recognition strategy.

Most 3-D object recognition strategies (whether
appearance-based, or feature-based) use information from
a single view of an object [1], [6], [14]. A single view may
not contain enough features to recognise an object unam-
biguously. Hence, there is a need to take one or more views
around the object, in a planned manner [8], [9], [4], [10].
Borotschniget al. propose an active appearance-based
recognition strategy [4] - to the best of our knowledge, this

is the only other work that uses planning for appearance-
based active object recognition (the work of Winkeleret
al. [16] deals with the selection of prominent views, rather
than planning a set of views). In another paper, Borotschnig
et al. perform a comparative study of using uncertainty
calculi for an active appearance-based recognition strategy
- using probability theory, the Dempster Shafer theory, and
fuzzy logic [3]. While the authors report good results for a
probabilistic approach under certain conditions, they use an
information theoretic-criterion for termination. This paper
presents a simpler and computationally efficient procedure
for the same, using probabilities alone. Additionally, we
derive a theoretical bound on the number of views required
for recognition, too. Thus, this does nor incur the cost
of using a large number of images for recognition, as in
the active appearance-based method of Deinzeret al. [7],
which uses a CONDENSATION-based tracker. Further,
the authors assume an equal probability assumption of all
views - this is not a tenable assumption for most objects.

The organisation of the rest of the paper is as follows.
Section 2 proposes a hierarchical scheme to efficiently rep-
resent domain knowledge, and help in the planning process.
We introduce our probabilistic recognition scheme in Sec-
tion 3, and use it for next view planning in Section 4. We
show results of experimentation with our system in Sec-
tion 5.

2. View Recognition; Knowledge Representa-
tion Scheme

An Aspect Graph [12] partitions the space of viewpoints
around an object into equivalence classes with respect to a
set of features (aspects). As aspect graph has nodes as as-
pects, and links correspond to visual events - aspect transi-
tions. Aspects can be further clustered intoclasses- equiv-
alence classes of object appearances. In this paper, we pro-
pose the concept of anAppearance-based Aspect Graph
(based on a parametric eigenspace representation of an ob-
ject) and develop a hierarchical knowledge representation
scheme based on the same idea. A view of an object cor-
responds to a class. The following section describes our



method of class recognition using an uncalibrated camera.

2.1. Appearance-based View Recognition

We propose a method for recognising a view of an object
(a class), which does not suffer from the limitations of ex-
isting appearance-based recognition schemes such as [14],
[4]. The first concerns size and orientation normalisa-
tion. Our scheme is independent of these factors - in fact,
any affine transformationsbetween the stored information
about an object in the model base, and that presented to
the recognition system. We adapt an idea from Black and
Jepson’s EigenTracker [2] for this purpose. We pose the
problem as finding affine transformation coefficientsa =
[a0 a1 a2 a3 a4 a5]T and the eigenspace reconstruction co-
efficientsc, such that the robust error function between the
parameterized imageI (indexed by its pixel locationx) and
the reconstructed oneUc (whereU is the matrix of the most
significant eigenvectors) is minimum, for all pixel positions
x = [x y]T :

arg min∀x, ρ(I(x + f(x,a))− [Uc](x), σ) (1)

Here,ρ(x, σ) = x2/(x2 + σ2) is a robust error function,
andσ is a scale parameter. The 2-D affine transformation is
given by

f(x,a) =
[

a0

a3

]
+

[
a1 a2

a4 a5

]
x (2)

Section 3 examines our probabilistic class (view) recogni-
tion in detail. Background segmentation is another restric-

Figure 1. The Knowledge Representation Scheme: An

Example

tive point in existing appearance-based recognition schemes
(and is often done by hand, for the objects in the model
base, or all experiments are done against a constant back-
ground). We get around this limitation using a simple back-
ground subtraction mechanism: we move the object by one
step, and using a variant of a pyramidal motion segmen-
tation scheme [11]. The above affine parameters have an
added advantage - they help in accurate localisation of the

object of interest in the given image, and ensure aparal-
lelogram bounding boxaround the object in question - a
tighter fit, as compared to a rectangle. A tighter fit ensures
less background clutter, ensuring better chances of a match
between the stored eigenspace, and the object in question.
A third point is handling different illumination effects. For
this, one may either learn the illumination parameters in the
eigenspace, or assuming illumination source not to change
their position, normalise the image brightness.

2.2. The Knowledge Representation Scheme

Rimey and Brown [15] propose the use of Bayes Nets
for active planning tasks. We propose a new hierarchical
knowledge representation scheme encoding domain knowl-
edge about the model base. Figure 2.1 shows an example.
An object nodeOi is linked to its constituent aspectsaij (a
PART-OFrelationship). Aspectaij has an angular extent
θij . Adjacent aspects have a link between them. Each node
aij , Oi stores itsa priori probability. ClassesCk have an
IS-A relationship with the set of all classesC. The same
goes for objectsOi andO. A class nodeCk stores itsa
priori probability P (Ck). Each class nodeCk is linked
with the set of aspectsaij which correspond to it. The
knowledge representation scheme helps in probability cal-
culations (based on the instantiation of a node as evidence
with its associated probability: Section 3. This evidence in
turn, propagates across the levels, right down to the object
nodes). It also plays an important role in next view planning
(Section 4). We use an on-line eigenspace update mecha-
nism [5] to build the aspect graph - we declare an aspect
boundary when the reconstruction error is above a particu-
lar threshold.

A view of a particular object is an input to the recog-
nition system. The next section describes our probabilistic
hypothesis generation scheme.

3. Hypothesis Generation

3.1.a priori Probabilities

For a given set ofN objects, we take thea priori prob-
ability of each objectOi is 1/N . We first compute thea
priori probability of an aspectaij of objectOi as

P (aij) = P (Oi)P (aij |Oi) (3)

(This equation computes the joint probabilityP (aij , Oi),
and serves as an indicator of thea priori probability of an
aspect before the next observation is taken.)P (aij |Oi) is
initialized toθij/360◦ before the system takes the first view.
From this equation, we initialize thea priori class probabil-



ity of classCk as follows:

P (Ck) =
∑

p

[P (Op) ·
∑

q

P (apq|Op)] (4)

The inner summation is for all aspectsapq belonging to
classCk i.e., PART-OF(apq, Op) = TRUE. We also model
cases of feature detection errors during the process of class
determination. We use the termP (Cl actual|Ck obs) to de-
note the probability that the class is actuallyCl, given that
classCk is observed. We compute these estimates in the
off-line aspect graph construction process [13]. The recog-
nition system takes in an arbitrary view of an object as in-
put. The first step is class recognition corresponding to the
view of the object. The information about the classes that
the given view could correspond to, along with their prob-
abilities serves as an input to the next phase: aspect, and
object recognition.

3.2. Class Recognition

The system is given a view of an object as an imageI.
We calculate thea posteriori probability of the observed
classCk, given that imageI has been observed:

P (Ck obs|I) =
e−errk∑
∀l e

−errl
(5)

The summation in the denominator is over all classesCl.
Here,errl is the reconstruction error incurred on project-
ing the imageI onto the eigenspace of classCl. We need
P (Cl actual|I), the probability of the class being actually
Cl, given imageI observed:

P (Cl actual|I) =
∑

k

P (Cl actual|Ck obs)P (Ck obs|I)

(6)
Here, P (Cl actual|Ck obs) is the probability of the ob-
served classCk actually being classCl - this takes feature
detection errors into account. The summation fork is over
all classesCk.

3.3. Object Recognition

We use thea posteriori class probabilities to calculate
thea posterioriaspect and object probabilities. We gener-
alize the winner-take-all approach in an earlier work [8] to
include actual class probabilities. We compute thea poste-
riori aspect probabilitiesP (aij |I) as follows:

P (aij |I) =
∑

k

P (aij |Ck)P (Ck actual|I)

= P (aij |Cr)P (Cr actual|I) (7)

We note that the above summation can be simplified by the
observation thatP (aij |Ck) = 1 for exactly oneclassCr

such thatIS-A(aij , Cr) = TRUE. The previous section
(Section 3.2) gives the computation for the second term.
Equation 8 below shows the computations forP (aij |Cr):

P (aij |Cr) =
P (Cr|aij)P (aij)∑
ij P (Cr|aij)P (aij)

(8)

The summation in the denominator is for aspectsaij such
thatIS-A(aij , Cr) = TRUE. Thus, our knowledge represen-
tation scheme (Section 2) simplifies computations by hav-
ing links between only the relevant terms. Finally, we com-
pute thea posterioriobject probabilities:

P (Oi|I) =
∑

j

P (aij |I) (9)

4. Next View Planning

The given view of an object could correspond to more
than one aspect from more than one object in the model
base. Due to this ambiguity, one has to search for the best
disambiguating move, in order to recognise the object. This
is of course, subject to memory and processing limitations.
We use a search tree to search for this best move. Figure 2
outlines the basic steps in our object recognition algorithm.
The first phase consists of steps described in detail in the
previous section. The next view planning scheme is similar
to that of an earlier work involving the first author [8], with
one important difference. A search tree node represents the
following information: the classes which could correspond
to the given view along with their respective probabilities
(in case the probability of no class is above a particular
threshold - the earlier work [8] went ahead with the most
probable class), the aspects corresponding to each class, and
the possible range of positions within each aspect. The step
size of movement is an important parameter, since too small
a step size may cause us to remain within the same aspect
- incurring wasteful image processing operations. A large
move on the other hand, could miss out on a unique aspect,
altogether. From a viewpoint, we categorise moves as:

Primary Move A primary move represents a minimum an-
gle move out of an aspect.

Auxiliary Move An auxiliary move represents a move
from an aspect by an angle corresponding to the pri-
mary move of another competing aspect.

Let αc
ij and αa

ij represent the minimum angles necessary
to move out of the current assumed aspect in the clockwise
and anti-clockwise directions, respectively. Three cases are
possible:

1. Type I move: αc
ij andαa

ij both take us out of the cur-
rent aspect to a single unique aspect in each of the two
directions We construct search tree nodes correspond-
ing to both moves.



ALGORITHM identify object

(*------ FIRST PHASE ------*)
01. initialize obj probabilities(); (* 1/N *)
02. im:=get image of object();
03. class list:=identify class(im);

(* Sec 3.2 *)
IF unknown class(class list) THEN exit;

04. st root:=
construct search tree node(class list,0);

05. compute object probabilities(
st root); (* Eqs 7,9 *)

06. IF prob of some object ≥
a thresh THEN exit & declare success;

07. expand search tree node(
st root,0,class list); (* Sec 4 *)
best leaf:=get best leaf node(st root);

(*------ SECOND PHASE ------*)
prev:=st root;
expected:=best leaf;

08. α:=compute move angle(expected,prev);
make movement( α);
im:=get image of object();

09. class list:=identify class(im);
IF unknown class(class list) THEN exit;

10. new node:=
construct search tree node(class list, α);

11. compute object probabilities(new node);
12. IF prob of some object ≥

a thresh THEN exit & declare success;
13. expand search tree node(

new node, α,class list); (* Sec 4 *)
best leaf:=get best leaf node(st root);

prev:=new node;
expected:=best leaf;

14. GOTO step 08

Figure 2. The Object Recognition Algorithm

2. Type II move: Exactly one out ofαc
ij andαa

ij takes us
to a single unique aspectaip. For the other direction,
the aspect we would reach depends upon the initial po-
sition in the current aspect. We construct a search tree
node corresponding to the former move.

3. Type III move : Whether we move in the clockwise
or the anti-clockwise direction, the aspect reached de-
pends on the initial position in the current aspect. We
choose the move which leads us to the side with the
largest angular range possible in any reachable aspect.

We expand a non-leaf node by generating child nodes cor-
responding to primary moves from a node. If more mem-
ory/processing time is available, one can generate auxiliary
moves also. We assign a code to each move, a higher code
to a less preferred move. We assign a code 0 to Type I
and II primary moves and 1 to Type II auxiliary moves.
Type III primary moves moves get a code of 2, and Type
III auxiliary moves, 3. The weight associated with a node
is 4i · Code, wherei is the depth of the node in the search
tree. We use three levels of filtering to determine the best

leaf node. First, we consider those on a path from the most
probable aspect(s) corresponding to the previously observed
node. Among these, we consider those having paths of least
weight. From these, we finally select one with the min-
imum total movement (Steps 07 and 13 in Figure 2). The
system takes this movement, and the above process (the sec-
ond phase of the algorithm, Figure 2) repeats till successful
recognition. (We assume that the given object is one of the
model base objects. Our system will report an unknown ob-
ject for an object with an unknown class. The system will
fail for three cases, as outlined in a previous work [8].)

It is important to note that we do not exhaustively gener-
ate all moves out of an assumed aspect. We strike a balance
here, and use the next observation to look at the possible
classes (and their associated aspects) this observation (given
the past history of observations) could have corresponded
to. Thus, our search tree expansion prunes out a large part
of the search space, and resynchronises with each obser-
vation. As in [8], we can prove that the search tree node
expansion is finite, and always terminates. Further, we can
show that for a given view corresponding to a set ofn as-
pects, the average number of moves needed to discriminate
between them isO(logen), for a representative case [8].

5. Results and Discussion

We present results of some preliminary experiments with
our system. In the absence of a standard modelbase of ob-
jects for active appearance-based recognition, we have cho-
sen to experiment with the COIL-20 database (Columbia
University), Figure 3. While these objects have been used

Figure 3. The COIL-20 database (Columbia University)

for single-view recognition, we simulate a case for active
object recognition using the same objects, by considering
a very small number of eigenvectors (Typically, 10% of the
total number) and considering a suitable threshold for the
similarity between two classes.With this in mind, we ex-
amine our recognition strategy with regard to the following
issues. This section presents the results of 111 experiments
with our system. For our experiments, we have (empiri-
cally) chosen a threshold probability of 0.9 for object recog-
nition.



O3 : C14
−110−→ C17

+15−→ C18
+205−→ C14

O18 : C14
−110−→ C14

+15−→ C14

O5 : C14
−110−→ C16

−45−→ C15

O19 : C14
−110−→ C17

15−→ C18
205−→ C18

O6 : C14
−110−→ C18

−20−→ C18
−15−→ C20

Figure 4. Active recognition with planning, correspond-

ing to primary moves alone. The first image in each

row, when projected onto the eigenspace of all classes,

shows minimum distance from class C14, with a suffi-

ciently high probability (details in text). Each row shows

the discriminating moves for the same starting class C14

for different objects in the modelbase.

Planned Recognition vs Recognition with random views

Figure 5 shows a sample of recognition results for the same
starting classC14 (which could have come from 8 aspects
in 5 objects out of the 20 in the modelbase), for different
objects in the modelbase. The trade-off between planning
with both Primary and Auxiliary moves, and Primary moves
alone, is one of completeness in the planning process (with-
out incurring the prohibitive cost of an exhaustive search)
versus consuming less memory and processing resources
(at the cost of increasing the number of moves required for
recognition).In order to compare a the benefits of a planned
recognition strategy with that of a random strategy (moves
made at random, with the same probability updating pro-
cess in place), we have worked with primary moves alone.
For the 111 experiments in each case, the average number
of moves is 3.46, which increases to 5.40 for the random
case. Figure 5 shows the corresponding moves for the same
starting initial classC14, for each of the objects in Figure 5.
The number of moves for the random case is clearly more.

O3 : C14
−61−→ C18

−106−→ C14
−9−→ C14

−175−→ C14

O18 : C14
−116−→ C14

−23−→ C14
−16−→ C14

O5 : C14
+47−→ C18

+44−→ C18
+56−→ C16

+161−→ C18
+11−→ C2

O19 : C14
−22−→ C14

−28−→ C18
−39−→ C17

−6−→ C17
−28−→ C2

O6 : C14
−48−→ C14

−77−→ C18
−6−→ C18

−94−→ C18
−107−→ C2

Figure 5. Active recognition with random unplanned

moves: a representative case. Overall, planning reduces

the average number of moves needed for unambiguous

recognition. These experiments use the same initial

class C14 as the same starting point as in Figure 5. Each

row shows the (random) moves taken by the system be-

fore the probability of the corresponding object crosses

a certain threshold value (0.9 for our experiments).

Multi-view recognition vs. single-view recognition

For the 111 experiments, we observed correct recognition
results from a single view in only 65.70% of the cases,
whereas the corresponding number for our active recogni-
tion strategy is 98.19%. This clearly shows the advantage
of next view planning over a single view-based strategy. In
our experiments, the cases where the system failed was with
respect to the two cars in the COIL-20 model base. For our
set of features, this corresponds to a case where our strategy
is not guaranteed to succeed - objects with the same aspect
structure (i.e., the layout of classes in the aspect graph) but
different aspect angles. where the system is not able to dis-
tinguish between objects with the same layout of aspects.
It is important to note however, that the probabilities of all
other objects were zero at the end of these experiments.

Variation of object probabilities

In Figure 5, we show the variation ofa posteriori object
probabilities for the sequences depicted in the first and



Figure 6. Variation of the a posterioriobject probabilities

for the sequences corresponding to the first and fourth

rows in Figure 5: the first image corresponds to class

C14, and the two moves are for objects O3 and O19,

respectively. The curves are for all objects with non-zero

a posterioriprobabilities after the first observation.

fourth rows in Figure 5. The top figure (forO3) shows an
interesting effect: the opportunistic nature of the system.
Till the second observation, objectO5 is the most probable.
The evidence after the third move results in the probability
of O3 going to 1, and all the rest becoming zero.
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