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Abstract

Many 3-D object recognition strategies use aspect
graphs to represent objects in the model base. A cru-
cial factor in the success of these object recognition
strategies is the correctness of the aspect graph, its
ease of creation, and the extent to which it can repre-
sent all views of the object for a given setup. Factors
such as noise and non-adaptive thresholds may intro-
duce errors in the feature detection process. This paper
presents a characterization of the error process as well
as an algorithm for constructing aspect graphs, given
noisy sensor data. We present extensive results of our
strategies applied on a reasonably complex experimen-
tal set and demonstrate applications to a robust 3-D
object recognition method.

Keywords Aspect Graph, Feature Detection Errors,
Noisy Sensor Data, Aspects, Classes, Aspect Graph
Construction Algorithm

1 Introduction

Many 3-D object recognition strategies use aspect
graphs (for example, [1], [2], [3], [4], [5])- The success
of such a strategy crucially depends upon its ability
to handle feature detection errors — the ability of the
aspect graph construction algorithm to model and ac-
count for such errors, as well as the mechanism in the
view-identification algorithm to handle feature detec-
tion errors. In analytical approaches, aspect graphs
are constructed directly from object shapes and sur-
face characteristics. A limitation of such an approach
is its applicability only to a specific class of objects.
(e.g., [6], [7], [8], etc.) Uniform partitioning ap-
proaches tessellate the viewpoint space into uniform
partitions (e.g., [9], [10], [11]). Adjacent viewpoints
which give the same appearance of the object with re-
spect to a feature set, are grouped together to form an
aspect. A site is a representative viewpoint for a par-
tition, at which sensor data is collected. The uniform
partitioning approach is more general than the ana-
lytical approach since it is independent of the object
shape and structure, the sensor, or the feature set.
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This paper presents a new algorithm for aspect
graph generation with active sensors, using a uniform
partitioning approach. No related work accounts for
feature detection errors in aspect graph construction.
We show its applicability for robust 3-D object recog-
nition in [4] and [5]. We present results of over 100
experiments on two sets of models, showing the effec-
tiveness of our strategies.

2 Errors in Raw Aspect Data

Let the term ‘raw aspect data’ denote the collec-
tion of feature vectors obtained at the set of sites in
the tessellated viewing space.

Aspects and Classes Koenderink and van
Doorn [12] define aspects as topologically equivalent
classes of object appearances. Since sensors may be
of different types, Ikeuchi and co-workers generalize
this definition — Object appearances may be grouped
into equivalence classes with respect to a feature set.
These equivalence classes are aspects [10]. A Class
(or, Aspect-Class) is a set of aspects, equivalent with
respect to a feature set.

Aspect-Candidates and Class-Candidates We
refer to aspects and classes obtained from raw as-
pect data as aspect-candidates and class-candidates,
respectively. Thus, we can have erroneous aspect-
candidates and class-candidates, but no erroneous as-
pects and classes.

2.1 A Classification of Errors in Raw As-
pect Data

The result of the error process may be characterized
by its position(site), content(value, or feature vector
label) or both. One can also characterize an error in
terms of the raw aspect data available, in terms of
aspect-candidates, class-candidates and their parame-
ters. For our formulation, we assume that the sensor
can move around the object in a circle in fixed angular
increments, at a fixed height. We define the following



terms:
A : The set of all aspect-candidates

C : The set of all class-candidates
A(Ac CA) 2 {a | CLASS.CAND(a) =,
where a € 4,c € C, CLASS CAND : A — C}
0, : angular width of aspect-candidate «,in terms of
the number of sites it occupies
Npuin : the minimum total number of sites at which
a class-candidate should be present in the
entire model-base to be called a
‘Valid class/class-candidate’
O,nin : the minimum extent which an
aspect-candidate must have in order for it
to be called a ‘Valid aspect-candidate’
©, : the minimum extent which an aspect-candidate
must have in order for it to be called a
‘Prominent aspect-candidate’(©, > Opin)
AY 2 {a]by >0 where a € A}
Al 2 {a]by < Onin, where a € A.}
(Thus, A U AL = A, AINAL = ¢)
G, : set of aspect-candidates in the neighbourhood of

aspect-candidate a
P(c'" | ¢) : the probability of the class-candidate

actually being ¢/, given that class-candidate

¢ has been observed

At the end of the aspect graph construction algorithm,
a prominent aspect-candidate will either constitute an
aspect by itself, or have other aspect-candidates inte-
grated into it to constitute an aspect.

We classify errors in aspect data into the following
five categories:
Type I Error A Type I error is present in a region
of width < 0,,;, between two aspects of the correct
aspect graph. This corresponds to the “border effect”
in [2]. In the raw aspect data, a Type I error can be
described as follows:

CLASS.CAND(a;) # CLASS.CAND(a;),
0(1i70aj > G)min: and Z aak < Opin

ar between a; and aj
Here, a; and a; are two valid aspect-candidates be-

longing to different class-candidates such that there is

a small region of width < ©,,;, between them. Fig-

ure 1(a) illustrates an example of this type of error.

Type II Error The error process may introduce an

isolated error inside an aspect such that the following

conditions hold in the raw aspect data between two

aspect-candidates a; and a;:

1. aaiaeaj Z szn

2. Eak 0o, < Omin ¥V ap between a; and a;

3. CLASS_.CAND(a;) = CLASS_ CAND(aj) =
c(say)

4. EQGAC aa < Nmin
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Figure 1: A pictorial representation of some types
of errors(Different shading patterns represent differ-
ent aspect candidates)

5. % < athreshold T}, 0 < Ty < 1, and
a€Ae &
6. P(ciEC’LASS_C’AND(ak)) > a threshold T3,
0 < T <1, a; between a; and a;
The probability estimates are characteristics of the
given raw aspect data and are obtained from it. Fig-
ure 1(b) illustrates conditions 1, 2 and 3, which are
common to Type IT and Type III Errors.

For a Type II error, we observe a small region of
width < 0,,;, in between two valid aspect-candidates
a; and aj, in the raw aspect graph. For the small
enclosed error region, class-candidates observed are
associated with the class-candidates of the enclosing
aspect-candidates, for the particular model or the en-
tire model base. Such ‘association errors’ characterize
the response of a feature detector to a particular fea-
ture, or a combination of features present in the model
being viewed.

Type IIT Error We define a Type III error as one in-

troduced by the error process such that conditions 1 —

5 of a Type II error hold, but condition 6 does not

i.e., there is no association of an error with a particu-

lar class-candidate.

Type IV Error Type IV errors constitute those er-

rors scattered in an aspect such that the following ad-

ditional conditions hold good for aspect-candidates a

in the raw aspect data:

1. maxgea, 05 > Omin, where CLASS_.CAND(a) =
c, but

2. 04 < Opin, and

3. Vv €Ga, 0y < Onin

4. Vv € G,

CLASS_ CAND(~v) # CLASS_.CAND(«)



Figure 1(c) illustrates an example of a Type IV Error.
Type V Error Type V errors also involve errors scat-
tered in an aspect with the conditions 1 — 3 for an
aspect-candidate « in the raw aspect data. The fourth
condition is different: Fy € G, for which
CLASS CAND(y) =CLASS.CAND(«)

A Type V error indicates that the aspect-candidates
with the same class-candidate may be part of a single
aspect. Figure 1(d) illustrates an example of this type
of error.

3 Building the Aspect Graph
3.1 A New Evaluation Function for As-
pect Graphs
We propose a new coefficient to evaluate the output
of aspect graph construction algorithms. We define
the ‘Demerit Coefficient’ for the aspect graph of model
i in model base M as follows:

. A
n(M,i,7) S Y (1= pij) dcij, cijra)+

J

vy d(cij, Dij) +0 ) pij
where D;; is thejoriginal raw aspec]t data item at site
J of model i, ¢;; is the class-candidate assigned to site
J by the aspect graph construction algorithm, d( , )
denotes the Euclidean distance operator for two nor-
malized feature vectors, and u, v and o are constants
which depend upon the aspect data characteristics.
pij is defined to be 1 at if d(c;j,c¢;541) > threshold
7, and 0 otherwise.

We define the Demerit Coefficient for the set of as-
pect graphs for the entire model base as the average of
the Demerit Coefficients of the M individual models’
aspect graphs, using the same constants and threshold
for each model:

M
Nmodel base (Mv T) é (1/M) Z U(M; i: T)

i=1
To evaluate the performance of an aspect graph con-
struction algorithm, we consider the values of the De-
merit Coefficient before and after the application of
the algorithm. For the raw aspect data, c;; is the same
as D;; for this case. The second term of n(M,i,7) is
zero, while the presence of errors in the raw aspect
data causes the first and third terms to have large
values. The output of a good aspect graph construc-
tion algorithm is smooth, piecewise continuous, and is
close to the original data. Hence for such a case, all
the three components of n(M,,7) have low values.

3.2 Aspect Graph Generation Algorithm

This section proposes a low order polynomial time-
complexity algorithm for building an aspect graph
from noisy aspect data. The algorithm maintains

estimates of the probability with which one class-
candidate is observed as another. To keep estimates of
these association values, the algorithm uses an N¢ x N¢
matrix, the ASSOC_TABLE. The [i][jjth entry stores
the probability of the class-candidate actually being
cj, given that class-candidate c; is observed. The AS-
SOC_TABLE stores these values as counts of the num-
ber of times one class-candidate appears as another.
Our algorithm is divided into three phases:

3.2.1 Algorithm Phase I

Phase I of our algorithm is primarily concerned with
identification of valid class-candidates. The algorithm
clusters the raw aspect data into aspect-candidates us-
ing a 1-D sequential labeling algorithm. For an aspect
graph which is not heavily corrupted with errors, one
expects the class-candidates corresponding to promi-
nent aspect-candidates to occupy more than N,n
sites. Hence for such an aspect graph, this phase is
expected to identify most of the valid class-candidates
for the given model base. At the end of the entire algo-
rithm, all valid class-candidates constitute the list of
all classes for the given model base. A class-candidate
node has the property that no node changes its label
from VALID to INVALID, or vice versa during the
course of the algorithm.

3.2.2 Algorithm Phase II

Phase IT is primarily concerned with identification
of prominent aspect-candidates after removing inter-
spersed errors. In this phase, we consider pairs of
proximal valid aspect-candidates with the same
class-candidate, say c¢. We define a pair of valid aspect-
candidates (a;, a;) as proximal valid aspect-candidates
if 8., € (0,0min) ¥V ai lying in between a; and a;
in the direction of traversal of the aspect-candidate
list. For each pair of proximal valid aspect-candidates
with the same class-candidate separated by a gap of <
Omin, we integrate both the valid aspect-candidates
and those in between them, into one. The correct
class-candidate for the aspect-candidates in between
the valid aspect-candidates a; and aj, is considered
to be that of a; and a;. The algorithm updates the
ASSOC_TABLE with the information about the class-
candidates of the valid aspect-candidates and those in
between them. For the class-candidates correspond-
ing to the valid aspect-candidates, we increment the
ASSOC_TABLE]Ji][i] count by the size of the aspect-
candidates. For the aspect-candidates a; between
a; and aj, the algorithm updates the entry corre-
sponding to CLASS_CAND(ay) being observed as



CLASS_CAND(a;) by the size of aspect-candidate
ag.

Phase II of our algorithm removes Type II and
Type III errors from the raw aspect data — both of
which consider isolated errors in an aspect for spu-
rious class-candidates (Whether the isolated error re-
moved is a Type II or Type III error will be clear from
the ASSOC_TABLE conditional probabilities). This
phase also removes some Type IV and Type V er-
rors: that of aspect-candidates associated with a valid
class-candidate, but having less angular extent. It is
able to remove those errors regions which fall between
two valid aspect-candidates having the same class-
candidate. The algorithm uses the ASSOC_TABLE to
account for association errors. If the value of P(c|c’)
is above a particular threshold (c and ¢’ are not neces-
sarily different), the algorithm interprets an instance
of ¢’ to be c.

3.2.3 Algorithm Phase III

There are two passes through Phase III. The first is
a logical pass, done in order to get estimates for AS-
SOC_TABLE entries. The actual pass, which follows
the logical pass uses ASSOC_TABLE estimates made
both during Phase II as well as the logical pass of
Phase III. In Phase III again, we consider pairs of
proximal valid aspect-candidates a; and a;. Depend-
ing on the gap between a; and a; in the direction of
traversal, we consider two cases:

Case 1: gap(ai,a;) < Omin In such a case, we
cannot have any valid aspect-candidate in between
a; and a;. For this reason, we obtain the minimum
square-error decision boundary for the region of gap
0 (0 < Opin). The error for a decision boundary is
the sum of Euclidean distances between the original
class-candidate label and the one just assigned for the
entire region, both suitably normalized. We select the
one which incurs minimum error. This process has
quadratic (O(6?)) time complexity. This is one point
where we use the association of one class-candidate
with another. For each class-candidate in the region
of width ¢, its probability of being some other class-
candidate is above a particular threshold, we replace
it with this class-candidate for the purpose of getting
an alternative decision boundary. Of the two decision
boundaries calculated so far, the algorithm takes the
one with the minimum error.

Case 2: gap(a;,a;) > Opin We construct a nor-
malized histogram for the class-candidates in the re-
gion between valid aspect-candidates a; and a;. If the
maximum histogram value exceeds a threshold, and
a; and a; have the same class-candidate, then we inte-

grate all aspect-candidates from a; to a; into a;,a nd
return. Otherwise, for all histogram entries above a
threshold, if a; and a; have the same class-candidate,
we repeat the above procedure. If the above test fails,
we try to grow aspect-candidates a; whose histogram
entry exceeds a threshold, if its distance to the next
aspect-candidate a; (of the same class-candidate) is
less than the current extent of a;. For regions still un-
accounted for, we get a single minimum-error decision
boundary.

4 Experimental Results & Discussion
Our experimental setup has a camera connected
to a MATROX Image Processing Card and a step-
per motor-controlled turntable. The turntable moves
by 200 steps to complete a 360 degree movement. We
have experimented extensively with two object sets as
model bases.
1. Model Base I: 7 Aircraft Models (Fig 2)
We use as features, the number of horizontal lines
({(h}), the number of vertical lines ((v)), and the num-
ber of circles ({c)).

Figure 2: Model Base I: The objects (in row ma-
jor order) are heli_1, heli_2, plane_1, plane_2, plane_3,
plane_4, and biplane.

2. Model Base II: 8 Polyhedral Objects (Fig 3)
We use the number of horizontal lines ((h)), the num-
ber of vertical lines ((v)), and the number of non-
background segmented regions in an image((r)) as fea-
tures.

E—

Figure 3: Model Base II: The objects (from left) are
01, 02, 03, 04, 05, 067 07 and 087 respectively.

We use hough transform-based line and circle detec-
tors. For getting the number of regions in the object,



we use sequential labeling on a thresholded gradient
image.

By the term ‘smoothness’ of model base data(A),
we mean

M G
S(A) = (1/M) - 30 d(eij i)

i=1 j=1
where M is the number of objects in the model base
and G is the number of tessellated viewpoints for the
aspect data. Let the term ‘Input Smoothness’ (S(I))
and ‘Output Smoothness’ (S(0)) refer to the smooth-
ness expression for the raw aspect data and the output
of the algorithm, respectively. (For S(I), ¢;; = D;;.)

The aspect data for Model Base I (aircraft mod-
els) has a very high values of the Demerit Coefficient
Nmodel base and S(I) as compared to the aspect data
for the other. Hence, we first present results of 100
experiments with the first model base. Then, we com-
pare some figures with those of Model Base IT (poly-
hedral objects).

Output of the Aspect Graph Construction Algo-
rithm: Figure 4 shows a comparison of the raw as-
pect data and the output of our algorithm, for one in-
stance of the aspect data for object plane_2 in Model
Base I. A visual inspection of the lower graph shows

Input Rau Aspect Data
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Figure 4: Raw aspect data and the output of our al-
gorithm:plane_2, Model Base I. On the y-axis, each
class-candidate is represented by an index. Different
heights represent different class-candidates.

that the aspects produced are prominent and not too
large in number, the graph is piecewise smooth and
at the same time, fidelity to the original data is high.
Figure 5 shows an example for Model Base II.

Input and Output Smoothness: Figure 6(a) shows
a comparison of the input and output smoothness for

T T T T
Input Raw Aspect Data

Class-Candidate
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Site Mumber

T T T T
Output of our Algorithm

Class-Candidate
T
L

a 2| 4@ &a aa 188 126 14@ 168 126 e 1]
Site Mumber

Figure 5: Raw aspect data and the output of our
algorithm:0g, Model Base II. On the y-axis, each
class-candidate is represented by an index. Different
heights represent different class-candidates.

100 sets of aspect data for the aircraft model base.
Even though the raw aspect data has a large variation
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Figure 6: (a) Variation in input ‘smoothness’ with the
output ‘smoothness’, (b) Variation in the total model
base error with input ‘smoothness’ over 100 observa-
tions

in § values, the variation in in S values for the output
data is very small.

Total Model Base Error and Number of Aspects:
We define total model base error as:

M G
£(4) 2 (1/M) Y " d(eij, Diy)

i=1 j=1
where M is the number of objects in the model base
and G is the number of tessellated viewpoints for the
aspect data. Figures 6(b) and 7(a) show the variation
in £ and the number of aspects, respectively with the
input smoothness for the 100 data sets.
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in the Demerit Coefficient for the input raw aspect
data with the Demerit Coefficient for the output of
the aspect graph construction algorithm

Demerit Coefficients: Figure 7(b) shows the vari-
ation of the Demerit Coefficient for the input aspect
data, with the Demerit Coefficient for the output of
the aspect graph construction algorithm for the 100
data sets. Our aspect graph construction algorithm
greatly reduces the Demerit Coefficient. Further, the
variation in the Demerit Coefficient for the output
data is low compared with that for the input raw as-
pect data.

Percentage of sites where a single decision boundary
had to be taken: The only part of our algorithm which
has quadratic time complexity is where a single deci-
sion boundary has to be taken over a set of adjacent
sites. The rest of it runs in linear time. Figure 8(a)
shows the percentage of sites where a single decision
boundary had to be taken, for 100 sets of aspect data.
This is quite low (mean=29.47%, variance=1.85), even

WW
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Figure 8: (a) Percentage of sites where a single de-
cision boundary had to be taken, and correctness in
Phase II estimates in the ASSOC_.TABLE (b) Per-
centage reduction in total model base error with AS-
SOC_TABLE data

for aspect data with high S(I) values.

Correctness of Phase I ASSOC_TABLE estimates:
We compare the probability values in the AS-
SOC_TABLE at the end of Phase III, to what they
were at the end of Phase II. We refer to this as ‘cor-
rectness’. Figure 8(a) shows the variation in percent-
age correctness of Phase II estimates, with the input

‘smoothness’ for 100 data sets.

Percentage reduction in model base error with AS-
SOC_TABLE estimates: The model base error £(A)
is reduced if one used the association data from the
ASSOC_TABLE. Figure 8(b) shows the percentage re-
duction in error for 100 instances of model base data.

Comparison of performance factors of our aspect
graph construction algorithm on the two model bases:
Table 1 shows the comparison between the two model
bases. The figures for Model Base I are for 100 ex-
periments, whereas those for Model Base II are for 4.
Though the feature detectors used for the two model
bases are different, their range of output values for the
two model bases are comparable.

5 Application to Robust 3-D Object
Recognition

Any aspect graph-based object recognition system
needs well-defined aspects, which are not too large
in number. Secondly, a probabilistic strategy can
make the system more robust and resistant to errors
compared to a deterministic one. Our work on iso-
lated 3-D object recognition ([4], [5]) uses the output
of our aspect graph construction algorithm, and AS-
SOC_TABLE estimates. To the best of our knowledge,
our work on 3-D object recognition is the only one
that accounts for feature detection errors in an object
recognition algorithm.

A view of a 3-D object corresponds to a class.

Feature-Class A Feature-Class is a set of equivalent
aspects defined for one particular feature.
The papers [4], [5] present a probabilistic frame-
work for recognition and planning. The N¢ x N¢
ASSOC_TABLE stores the number of times a class-
candidate is observed as another. Let pj;; represent
the probability that the feature-class present is fj,
given that the detector for feature F}; detects it to be
fir. We define pji;; as the ratio of the number of times
the detector for feature Fj interprets feature-class fj
as fjr, and the number of times the feature detec-
tor reports the feature-class as fjp. We use the AS-
SOC_TABLE to compute pji;; values for each feature-
class. The system uses the pj;; values for computing
the correct a posteriori class probabilities. It then
maps class probabilities onto object probabilities. If
the probability of no object is above a predetermined
threshold, the next view planning algorithm plans the
best view to distinguish between the competing as-
pects at a stage.

Figure 9 shows two examples of experiments with
objects from the two model bases. For Figure 9(a),
the initial class could have come from 10 aspects. The
corresponding number for Figure 9(b) is 18. The sys-



Model Base I Model Base II

PARAMETERS Mean Variance | Mean Variance
Input Smoothness 138.85 4.51 43.99 0.47
Output Smoothness 20.99 0.74 18.93 0.34
Total Model Base Error 111.49 5.01 27.97 1.35
No. of Aspects 94.51 4.55 80.5 1.12
Demerit Coefficient (input data) 242.84 7.32 67.69 2.59
Demerit Coefficient (output data) 34.13 1.17 28.99 0.48
Quadratic Complexity Regions 29.47% 1.85 7.47% 0.41
Correctness of Phase II Estimates 91.91% 4.46 94.74% 3.72
Error reduction with ASSOC_TABLE | 9.18% 2.08 4.85% 0.37

Table 1: Aspect graph construction algorithm performance parameters for the two model bases

(342(332)) (410)  (221) (221) 2 (4

(a) Moves for object plane_1, initial class (332)
(b) Moves for object Oz, initial class (232)

Figure 9: Some experiments with objects in the two
model bases. The numbers above the arrows denote
the number of turntable steps. (The figure in paren-
thesis shows an example of recovery from feature de-
tection errors)

tem needs 1 and 2 moves, respectively to correctly
identify the given object. Figure 9(a) shows an exam-
ple where the pj;;, values help the system in recovering
from feature detection errors. Due to the shadow of
the left wing on the fuselage of the aircraft, the fea-
ture detector detects 4 vertical lines instead of 3, the
correct number. (This line is not shown superposed,
for clarity.)

6 Conclusion

This paper presents an integrated approach for han-
dling feature detection errors for use in robust active
3-D object recognition. We present the results of ex-
tensive experimentation on a reasonably complex ex-
perimental set, in support of our strategy. Scope for
future work involves an extension to the general 3-D
case.
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