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Abstract

A gesture-based interface involves tracking a moving hand
across frames, and extracting the semantic interpretation
corresponding to the gesture. Thisis a difficult task, since
thereis a change in both the position as well as the appear-
ance of the hand. Further, such a system should be robust
to the speed at which the gesture is performed. This paper
presentsa novel attempt at devel oping a hand gesture-based
interface. We propose an on-line predictive EigenTracker
for the moving hand. Our tracker can learn the eigenspace
on the fly. We propose a new state-based representation
scheme for hand gestures, based on the eigenspace recon-
struction error. This makes the system independent of the
speed of performing the gesture. e use learning for adapt-
ing the gesture recognition system to individual require-
ments. We show results of successful operation of our sys-
tem even in cases of background clutter and other moving
objects.

1. Introduction

The use of hand gestures provides an attractive aternative
to cumbersome interface devices for Human-Computer In-
teraction (HCI) [10]. Hand gesture analysis involves both
spatial aswell astemporal processing of image frames. Two
important components of the above task are the tracking of
the moving hand across frames, and extracting the seman-
tic interpretation corresponding to the gesture. Each oneis
a difficult task. Thereis aloss in information due to the
projection of the 3-D human hand to the 2-D image plane.
Elaborate 3-D models have prohibitive high-dimensional
parameter spaces. Further, estimating 3-D parameters from
2-D imagesis also very difficult [10]. The tracker aso has
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to handle changing shapes, other moving objects, and noise
(asin Figure 1). The difficulty of the second task is com-

—

114

Figurel: A set of representative framesfrom ahand gesture
analysis (frames in row-major order, with frame numbers).
(Detailsin text).

pounded by different factors — hand shapes and sizes vary
from individua to individual. Thus, thisis a serious prob-
lem for recognizing static hand gestures alone. For a dy-
namic hand gesture, different people may perform the same
gesture in different periods of time.

Pavlovic, Sharma and Huang [10] present an extensive
review of hand gesture interpretation techniques. Bobick
and Wilson [3] propose a state-based technique for repre-
sentation and recognition of gesturesin which they definea
gesture as a sequence of statesin ameasurement or configu-
ration space. A HMM isapossibletool modeling the spatial
and temporal nature of a gesture[10], [1], [11]. Yeasin and
Chaudhuri [12] model the temporal signature of ahand ges-



ture as afinite state machine.

In this paper, we have proposed a hand gesture based
interface system which uses hand tracking and changes in
hand shapes for the purpose of associating semiotics to
the gesture. Isard and Blake [6] propose the CONDEN-
SATION agorithm (a predictive tracker more general than
a Kalman tracker) for tracking moving objects, including
hand, in clutter, using the conditional density propagation of
state density over time. An EigenTracker [2] has an advan-
tage over traditional feature-based tracking algorithms—the
ability to track objectswhich simultaneously undergo affine
image motions and changes in view (the Appendix gives
salient features of CONDENSATION and EigenTracking).
An important lacuna of EigenTracking is the absence of a
predictive framework. This paper removes a serious restric-
tion of the EigenTracker framework — the absence of a pre-
dictive framework. We develop a novel predictive Eigen-
Tracker with efficient eigenspace update methods — it can
learn the eigenspace representation on the fly. We have
an automatic initialization process for the tracker — it does
not need to be bootstrapped. This learning-and-tracking of
changing hand shapes fits in with our gesture recognition
framework. We express a gesture as a combination of dif-
ferent epochs, corresponding to eigenspace representations
of static hand shapes, and their temporal relationships. The
system goes through the same set of states, whether the
gesture is performed slowly or done fast. We use a shape-
based state identification scheme. Theidentification scheme
makes use of hand shapes of individuals (corresponding to
different states) learnt a priori.

The rest of the paper is organized as follows. Sec-
tion 2 presents our predictive EigenTracker, with on-line
eigenspace updates, and automatic initialization. We use
this predictive Eigentracker to track the motion of the hand.
Next, we discuss our gesture recognition framework. This
framework uses information from the predictive Eigen-
Tracker. In each case, we present results of experimentation
with our system.

2. A PredictiveEigenTracker for Hand
Gestures

One of the main reasons for the inefficiency of the Eigen-
Tracking algorithm is the absence of a predictive frame-
work. An EigenTracker simply updates the eigenspace and
affine coefficients after each frame, requiring a good seed
value for the non-linear optimization in each case. We use
a predictive framework to speed up the EigenTracker. We
incorporate a prediction of the position of the object being
tracked, using a CONDENSATION-based algorithm. We
describe our model for the system state, dynamics and mea-
surement (observation) as follows.

The hand motion between frames has effects such asro-

tation, trandation, scaling and shear — which can be ac-
counted for by an affine model. The shape of the bound-
ing window for the hand will be a parallelogram. Thisis
consistent with the affine motion model. Further, aparallel-
ogram offersatighter fit to the object being tracked (further
reducing the effect of the background) — an important con-
sideration for an Eigenspace-based method. A 6-element
state vector characterizes affine motion. One can use the
coordinates of three image points (any three image points
form a 2-D affine basis). The affine parameters represent
the parallelogram bounding the hand shape in each frame.
Alternatively, the 6 affine coefficients a; (0 < 7 < 5)
themselves can serve as elements of the state vector. In
other WOde, X = [(L() a1 az as a4 0,5]T. These affine
coefficients a; represent the transformation of the current
bounding window to the original one. A commonly used
model for state dynamics is a second order AR process.
X =D X;_ o +D; X;_1 +w, Wwherew, isazero-mean,
white Gaussian random vector. The particular form of the
model will depend on the application — constant velocity
model, random walk model, etc.

The measurement is the set of 6 affine parameters from
theimage Z; = a,;s. Similar to [6], the observation model
has Gaussian peaks around each observation, and constant
density otherwise. We use alarge number of representative
sequences to estimate the covariances of the affine parame-
ters obtained in a non-predictive EigenTracker. These serve
as the covariances of the above Gaussian.

We use a pyramidal approach for the predictive
CONDENSATION-based EigenTracker. The measure-
ments are made at each level of the pyramid. We start at the
coarsest level. Using {S¢_,, i, } and the measurement at
this level, we get {Si, 7{}. The affine parameter estimate
at this level goes as input to the next level of the pyramid.
From the estimates at the finest level, we predict the affine
parameters for the next frame.

It is not feasible to learn the multitude of poses corre-
sponding to hand gestures, even for one particular person.
One needs to learn and update the rel evant eigenspaces, on
the fly. We discuss thisin the following section.

2.1. On-line Eigenspace Updates

In ahand gesture, the appearance of the hand often changes
considerably. One needs to build and update the el genspace
representation efficiently, on-line. A naive O(mN?3) a-
gorithm for N images having m pixels each is computa-
tionaly inefficient. Particularly, one needs efficient incre-
mental SVD update algorithms, to update the eigenspace
at each frame. For our case, we use a scale-space variant
of the algorithm of Chandrasekaran et al. [4], which takes
O(mNk), for k most significant singular values.
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Figure 2: Our Predictive EigenTracker for Hand Gestures:
An Overview

2.2. Tracker Initialization

Initializing atracker is adifficult problem because of multi-
ple moving objects, and background clutter. In other words,
one needsto segment out the moving region of interest from
the possibly cluttered background in the frames. Our hand
gesture tracker performs fully automatic initialization. We
use a combination of motion cues (dominant motion detec-
tion [5] as well as skin colour cues [7], [9], [8] to identify
the region of interest in each frame.

2.3. TheOverall Tracking Scheme

We now present an overview of our overal predictive
EigenTracker for hand gestures (Figure 2 outlines the main
steps). For the first few frames, we segment out the mov-
ing hand (Section 2.2). We now predict affine parameters
— a paralelogram bounding box for the next frame (Step
1in Figure 2, details in Section 2). The next step is ob-
taining measurements (of the affine parameters) from the
image — an optimization of the affine parameters a and the
eigenspace reconstruction coefficients ¢ (Appendix). De-
pending on the reconstruction error (Equation 1, Appendix),
it decides on whether or not to perform an eigenspace up-
date (Section 2.1). If the reconstruction error is very large,
this indicates a new view of the object. The algorithm
recomputes a new bounding box and starts rebuilding the
eigenspace (Step 5in Figure 2). This cueindicatesan epoch
change (Section 3). It then repeats the above steps for the
next frame.

Figure 1 shows the result of an experiment on a typical
hand gesture sequence. Our tracker can successfully track
the moving hand in a variety of changing poses, in spite of
background clutter, as well as other moving objects present
in the scene.

Figure 3(b) compares results obtained using the pre-
dictive EigenTracker with those corresponding to a non-

predictive version (Figure 3(a)). The average number of

(b) Predictive EigenTracker

Figure 3: Tracking results with (a) a simple EigenTracker,
as compared with (b) results of our predictive EigenTracker
(bottom row): some representative frames. The hand is not
properly tracked using the former.

iterations (for the optimization) improves from 3.5 to 2.9.
A comparison of a non-predictive EigenTracker with a pre-
dictive one for the sequence in Figure 4 shows adrastic im-
provement in the average number of iterations — from 7.44
to 4.67.

24. Synergistic Conjunction with Other
Trackers: Restricted Affine Motion

A simple variant of our EigenTracking framework has an
on-line EigenTracker working in conjunction with another
tracker. We can thus take advantage of a tracker tracking
the same object, using a different measurement process, or
tracking principle. The EigenTracker works synergistically
with the other tracker, using it to get its affine parameters.
It then optimizes these parameters, and proceeds with the
EigenTracking. Such a synergistic combination endows the
combined tracker with the benefits of both the EigenTracker
as well as the other one — tracking the view changes of an
object in a predictive manner.

We have experimented with using an SV D update-based
multi-resolution EigenTracker with a skin colour-based
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(a) Non-predictive EigenTracker

127 - 160
(b) Predictive EigenTracker
Figure 4: Non-predictive EigenTracking versus our Predic-
tive framework: another example

CONDENSATION tracker [9], [8] for cases of restricted
affinemotions. Thelatter considersthe parametersof arect-
angular window bounding the moving hand as state vector
elements — its centroid, the height and the width. The ob-
servation is also a 4-element state vector, consisting of the
rectangular window parameters of the largest skin blob. The
state dynamics considers a constant velocity model for the
centroid position, and a constant position one for the other
two parameters. We use the tracking parameters obtained
from the CONDENSATION skin tracker for each frame,
to estimate the affine parameters for the the Appearance
tracker. The appearance tracker then does the fine adjust-
ments of the affine parameters and computesthe reconstruc-
tion error. We first consider a restricted case of affinetrans-
formations — scaling and trandation alone (Figure 5). The
processing time per frame is 100-180ms when it can track
at the coarsest level itself, and 600-900ms when it goes
to the finest level (image size 320x 240). This experiment
showsthat having even avery simple restricted affine model
overcomes an inherent problem with the EigenTracker of
being able to track motion up to only afew pixels.

We extend the previous scheme to cover rotations as
well. We first compute the principal axis of the pixel dis-
tribution of the best fitting blob. We align the principal
axis with the vertical Y-axis and compute the new width,

002 070 072
120 167 200
Figure 5: A simple combination of a CONDENSATION

skin tracker with an online EigenTracker: scaling and trans-
lation. Detailsin Section 2.4

height and centroid. These parameters give us the restricted
affine matrix (scaling, rotation, trandation): A ,csiricted =
Inv(SRT). When applied to the current image, these pa-
rameters take it to the first bounding window of the CON-
DENSATION skin tracker. In Figure 6 we show results of
this approach. This scheme allows tracking of large rota-

Figure 6: Using an online EigenTracker in conjunction with
a skin colour-based CONDENSATION tracker: rotation,
tranglation, scaling. Details in Section 2.4

tions (as evident in Figure 6). We get a better fitting window
and less background pixels, leading to lower eigenspacere-
construction error. The average processing time per frame
is900ms.

3. Gesture Recognition

We propose a hovel methodology for a gesture recognition
system. We use our predictive EigenTracker (Section 2) to
track hand motion across frames. Our predictive Eigen-
Tracking mechanism fits seamlessly into our gesture rep-
resentation and recognition framework. We represent each
gesture as afinite state machine (Figure 7). The statesin the
FSM correspond to different static hand shapes. In our sys-
tem, afixed stationary hand shape istaken asthe start shape
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Figure 7: A very simple example of the representation of a
gesture. We represent a gesture as composed of a particular
temporal sequence of epochs, and transitions between them
(Detailsin text).

—astationary open palm. A stop state (signifying the end of
the gesture) is a position of the hand that has not changed
its position for at least a particular number of frames. A
gesture is composed of afixed temporal order of transitions
between states.

The system stores an eigenspace representation corre-
sponding to each static hand shape. It is important to note
that the segmentation of all hand appearances during a ges-
ture is done automatically, based on the eigenspace re-
construction coefficients. The tracker works on the basis
of the eigenspace reconstruction error (Section 2). If the
eigenspace reconstruction error is less than the parameter
T, (as defined in Figure 2), then we take the hand shape
to be the same as that corresponding to the previous frame.
It means that the system is in the same state as it was for
the previous frame. If the error lies between T'; and T,
we update the eigenspace representation corresponding to
this hand shape. Only when the error exceeds T'», does the
EigenTracker signal an epoch change. This epoch change
corresponds to a drastic change in hand shape, and hence,
anew state of the FSM. The system searches hypothesized
transitions from the current state, based on a predefined set
of gestures. Such a state-based representation imparts ro-
bustness to the speed at which a hand gesture is performed
—it will always correspond to the same set of states.

Our current set of gestures explores the idea of having a
static hand shape represent a state, or an epoch. Since we
have a predictive EigenTracker, we have information about
temporal and spatial changes as well. Hence, an extension
of our scheme will also include this information — for the
case when the shape of the hand does not change signif-
icantly, but the position of the hand changes significantly
with time.

The static hand-shapes corresponding to the individual
states can vary from person to person (e.g., a open hand
shape can be different for different people). We propose a
personalized gesture recognition system. Hand shapes of
individuals with fixed semantics are learnt a priori. Our
system uses these learnt shapes for identification of states.
We exploit hand tracking, epoch changes and state identifi-
cation for gesture recognition. A change in epochs (or the

Figure 8: Contour-based verification of static hand shapes
(Seetext for details)

gestureitself) can switch the system to a different task. The
system tries to recognize a particular hand shape when it
detects an epoch change. For our system, we use a contour-
based shape recognition strategy [11] for verifying particu-
lar hand shapes. Figure 8 depicts the system verifying two
particular hand shapes: an open hand, and a closed hand.

We present some preliminary results with our
eigenspace-based gesture recognition system. In the
sequence of Figure 1, the system starts with the eigenspace
corresponding to an open hand. The eigenspace recon-
struction error starts changing drastically at frame number
75 (corresponding to the upper threshold 7';), and doesn’t
change much thereafter. This represents a transition from
the open hand to the closed hand. Figure 5 shows the result
with another gesture, performed by another individual.
The gesture starts from the same start shape, goes to the
closed hand pose, and ends up at the thumbs-up sign. Here
again, each epoch is triggered by a drastic change in the
eigenspace reconstruction error. The system re-initializes
itself with a fresh eigenspace corresponding to the closest
static shape in its database during each such change.

3.1. A SmpleApplication: A 3-D Mouse

This section describes a simple application of some of the
ideas presented in the preceding sections — a 3-D mouse.
The motivation behind thisisto have ahand (movingin 3-D
space) substituting for a mouse (without extracting any 3-D
positional information). The first image in Figure 9 shows
an example of such a setup: a camerais looking down on
a table, where the user moves his or her hand. The other
frames of Figure 9 show screen snaps of the program in ex-
ecution. The left window shows what the camera sees. On
the right, we show the hand, segmented out from the im-
age. For each such segmented out hand, we use the follow-
ing heuristic to compute the position of the virtual mouse
pointer. We consider the two eigenval ues corresponding to
the hand shape, and find out the principal axis of the hand
shape. We use this to compute the position of the extreme
tip of the fingers. This is where we place the virtual mouse
pointer. If the ratio of the eigenvalues is greater than a
threshold, we consider it to be a pointing gesture, and in-
terpret it to be a mouse click. This system is on-line, and
implemented on a 700 MHz machine running Linux.



Figure 9: A simple application: a 3-D mouse. The first
figure shows the setup with a camera looking at a table lit
by atable lamp. Therest are some sample screen shots.

4. Conclusions

In this paper, we propose a novel gesture-based interface
formulation. Our on-line predictive EigenTracker tracks the
moving hand across frames in cluttered and non-stationary
backgrounds. We also propose a representation scheme for
gestureswhich fitsin with the predictive EigenTracker. The
paper shows the results of experiments with our system, in
support of the proposed methodologies.

Appendix: CONDENSATION and
EigenTracking

The CONDENSATION algorithm [6] represents the state
conditional density by a sample set of N states, S; = {si}
and a corresponding set of weightsTI, = {=i},i € {1,n}.
The agorithm makes use of the principle of factored sam-
pling. The CONDENSATION agorithm needs:

1. amodél for the system state X,

2. astate dynamicsmodel P(X|X;_1), and

3. amodel for an observation Z: P(Z:|X;)

An eigenspace approach involves using pixel data from
images, rather than extracting features from them. Such an
approach involves treating images (or sub-images) as vec-
tors, and constructing the corresponding eigenspace. An
advantage of this approach is the encoding of all available
data about the appearance of an object (present in the im-
ages). An EigenTracker uses an eigenspace for tracking the
movement of an object across frames, based on appearance
information. An EigenTracking approach [2] involves esti-
mating the view of the object (using the eigenspace), aswell
as the transformation that takes this view into the given im-
age (modeled as a 2-D dffine transformation). Black and
Jepson pose the problem as finding affine transformation
coefficientsa (= [ag a1 a2 a3 a4 as]”) and the eigenspace
reconstruction coefficientsc, such that the robust error func-
tion between the parameterized image and the reconstructed

oneis minimum, for all pixel positionsx = [z y]*:
arg minys, p(I(x + f(x,2)) - [Uc](x),0) (D)

Here, p(x,0) = x?/(2® + o?) is arobust error function,
and o is ascae parameter. The 2-D affinetransformationis
given by

G4 Q5

f(x,a):[ao]-k{al “ﬂx 2
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