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Abstract

Most object recognition systems use information from
a single image of an object. In many cases, a single view
may not contain sufficient features to recognize the object
unambiguously. Hence, more than one view is necessary.
With an active sensor, the recognition process therefore
mvolves identification of a view of an object and if nec-
essary, planning the next view. This paper presents a
new on-line recognition scheme based on next view plan-
ning for the identification of an isolated 3D object using
simple features. The scheme uses a probabilistic reason-
wng framework for recognition and planning. We present
a knowledge representation scheme which encodes both
feature-based information about objects in the model base
as well as the uncertainty in the recognition process. This
scheme is used both in the probability calculations as well
as in planning the next view. The recognition scheme is
on-line wherein past observations guide the planning pro-
cess. Results clearly demonstrate its effectiveness for a
reasonably complexr experimental set.

1 Introduction

Most model-based object recognition systems con-
sider the problem of recognizing objects from the image
of a single view [1, 2]. However, a single view may not
contain sufficient features to recognize the object unam-
biguously. In single-view object recognition, systems of-
ten need to use complex feature sets [2]. In many cases,
it may be possible to achieve the same, incurring less
error and smaller processing cost using a simple feature
set and suitably planning multiple observations [4]. Be-
sides,; a simple feature set is more applicable for a larger
class of objects.

In this paper, we present a new reactive and on-line
recognition scheme based on next view planning for the
identification of an isolated 3D object. Our algorithm
plans the sequence of views that can provide reliable
recognition incurring minimal image processing cost. We
propose a probabilistic reasoning framework for recogni-
tion and planning. We also present a knowledge repre-
sentation scheme which encodes both feature-based in-
formation about objects in the model base as well as
the uncertainty in the recognition process. This scheme
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is used both in the probability calculations as well as
in planning the next view. Due to the hierarchical na-
ture of our scheme, we do not face a problem as in [5]
namely, of many redundant hypotheses being generated
and having to remove them later through consistency
checks. Further, our system does not incur the compu-
tational overhead of [3] in tracking the region of interest
over successive frames. We have experimented with ob-
ject sets wherein a view could have come from a large
number of poses of a number of objects. We present
results demonstrating the effectiveness of our scheme.

2 The

Scheme
A 3D object has different views, independent of the
viewpoint over a particular range of viewing angles. A
view is characterized by a set of features. Aspects have
been defined as topologically equivalent classes of object
appearances [6]. In this context, we define the following
terms:

Knowledge Representation

Class A Class (or, Aspect-Class) is a set of aspects,
equivalent with respect to a feature set.

Feature-Class A Feature-Class is a set of equivalent
aspects defined for one particular feature.

Figure 1 (a) shows a simple example of an object
with its associated aspects and classes. The locus of
view-directions is one-dimensional and we assume ortho-
graphic projection. In this example, the basis of the dif-
ferent classes is the number of horizontal and vertical
lines in a particular view of the object.

We propose a new knowledge representation scheme
encoding domain knowledge about the object, relations
between different aspects, and the correspondence of
these aspects with feature detectors. Figure 1(b) illus-
trates an example of this scheme. We use this knowledge
representation scheme both in belief updating as well as
in next view planning. The representation scheme logi-
cally consists of two parts:

1. The Feature-Dependence Subnet
In the feature-dependence subnet



ASPECT 5
CLASS1

e

OBJECT ON . ASPECT 4
TURNTABLE j:‘ CLASS?2
ASPECT 6 ‘ ( S ) ‘ | ASPECT 3
CLASS3 : CLASS1
ASPECT 7 7
CLASS1 o ACSEAEg 22
ASPECT 8 '
et I =
ASPECT 1
CLASS1

(a)

Figure 1: (a) Aspects and classes of an Object (b)

o F represents the complete set of features {F;}
used for characterizing views

A Feature node F} is associated with feature-
classes fj.

Factors such as noise and non-adaptive thresh-
olds can introduce errors in the feature detec-
tion process. Let p;;, represent the probabil-
ity that the feature-class present is f;;, given
that the detector for feature F; detects it to
be fjr. We define p;, as the ratio of the num-
ber of times the detector for feature F} inter-
prets feature-class f;; as f;r, and the number of
times the feature detector reports the feature-
class as f;;. The F; node stores a table of these
values for its corresponding feature detector.

A class node C; stores its a prior: probability,
P(C;). A link between class C; and feature-
class f;, indicates that f;r forms a subset of
features observed in C;. This accounts for a
PART-OF relation between the two. Thus, a
class represents an n-vector [fi;, f25. - faj.l-
Since a class cannot be independent of any fea-
ture, each class has n input edges correspond-
ing to the n features.

2. The Class-Aspect Subnet
The class-aspect subnet encodes the relationships
between classes, aspects and objects.

e O represents the set of all objects {O;}

e An object node O; stores its probability, P(O;)

¢ An aspect node a;; stores
its angular extent 6;; (in degrees),
its probability P(ai;),
its parent class C, and

its neighbouring aspects

FEATURE-
DEPENDENCE
SUBNET

CLASS
ASPECT
SUBNET

The knowledge representation scheme: an example

o Aspect a;; has a PART-OF relationship with
its parent object O;.  Thus, the 3-tuple
( O;, Cj, b;p ) represents an aspect. Aspect
node a;; has exactly one link to any object (O;)
and exactly one link to its parent class Cj.

3 Hypothesis Generation

The recognition system takes any arbitrary view of
an object as input. Using a set of features (the feature-
classes), it generates hypotheses about the likely iden-
tity of the class. This 1s, in turn used for generating
hypotheses about the object’s identity. Each hypothesis
is associated with a probability. Hypothesis generation
consists of two steps:

1. Class Identification
2. Object Identification

We present an algorithm to find the class and object
probabilities given a feature class as evidence. The al-
gorithm selects feature detectors according to suitability
and need. All probability calculations can be performed
in low-order polynomial (maximum quadratic) time.

3.1 Class Identification, Accounting for Un-
certainity

3.1.1 Ordering of Feature Detectors

A proper ordering of feature detectors speeds up the class
recognition process. At any stage, we choose the hith-
erto unused feature detector for which the feature-class
corresponding to the most probable class has the least
number of outgoing arcs i.e., the least outdegree. This
is done in order to obtain that feature-class which has
the largest discriminatory power in terms of the number
of classes it could correspond to. For example, in Fig-
ure 1(b) if all feature detectors are unused and Cs has
the highest a prior: probability, Fs will be tried first,
followed by F% and FY, if required.



3.1.2 Class Probability Calculations Using the
Knowledge Representation Scheme

We obtain the a priori probability of class C; as:

P(Cy) = Z[P(Op) ‘ Zp(apqu)]

P

(1)

Here, aspects ap, belong to class C;.  P(apg|Op) is
6,4/360. We can compute P(C;) from our knowledge
representation scheme by considering each aspect node
belonging to an object and testing if it has a link to node
Ci.

Let the detector for feature F; report the feature-class
obtained to be f;;. Given this evidence, we obtain the
probability of class C; from the Bayes rule:

P(Cs) - P(fis]Ci)
> om[P(Cm) - P(fis]Ci)]

P(fix|C;) is 1 for those classes which have a link from
feature-class f;5. It is O for the rest.

P(Cilfix) = (2)

Class Recognition in the presence of feature de-
tection errors

For an error-free situation, P(Ci|f;x) is P/(C;), the a
posteriori probability of class C;. However, due to errors
possible in the feature detection process; a degree of un-
certainity is associated with the evidence. The value of

P'(Cy) is, then:

P(Cy) = ZP(Cz’|fjl) “Djik (3)

where f;;s are feature-classes associated with feature Fj.
According to our knowledge representation scheme, only
one feature-class under feature Fj , say f;, has a link to
class C;. The summation reduces to one term, P(Cj|fjr)-
pjrk- Thus, our knowledge representation scheme also
enables recovery from feature detection errors.

Figure 2 shows a flow diagram depicting the interac-
tion of the hypothesis generation part with the rest of
the system. Let Np,, N¢ and N4 denote the number
of feature-classes associated with feature detector Fj,
the number of classes, and the number of aspects, re-
spectively. a priori class probabilities can be computed
in time O(N¢ + Na), and a posteriori values in time
O(NF,; - N¢). Figure 3 outlines our class recognition al-
gorithm.

4 Next View Planning

The class observed in the class recognition phase could
have come from many aspects in the model base, each
with its own range of positions within the aspect. Due
to this ambiguity, one has to search for the best move to
disambiguate between these competing aspects subject
to memory and processing limitations, if any. The state

of the recognition system consists of information such as
the class observed, the aspects possible for the movement
made thus far, and the range of positions possible within
each aspect. The planning problem thus reduces to a
search in this state space for the best move to distinguish
between competing aspects at any state. We use a search
tree for this purpose.

Our planning algorithm performs an efficient search
in the state space. We assign weights to different state
transitions possible within the current assumed aspect
and the adjoining aspects during search tree traversal.
The algorithm selects the sequence of state transitions
with the highest discriminating power and lowest move-
ment cost as the move from the current state, corre-
sponding to the most probable aspect. As a benchmark,
we prove that the average number of observations re-
quired to uniquely identify the given object is O(logen),
where n is the number of aspects the initially observed
class could correspond to, for a simple deterministic case.

4.1 Object Identification

Based on the outcome of the class recognition scheme,
we estimate the object probabilities as follows. Initially,
we calculate the a priori probability of each aspect as:

(4)

If there are NV objects in the model base, we initialize
P(0;j,) to 1/N before the first observation. For the first
observation, P(a;,k,|Ojp) is 0; 1, /360.

For any subsequent observation, we have to account
for the movement in the probability calculations. For
example, a particular movement may preclude the oc-
curence of some aspects for a given class observed. The
value of P(a;,,]0;,) is given by Equation 5 below:

P(aj,k,) = P(O;,) - P(aj,k,10;,)

P(aj,k,105,) = ¢j,k,/360 (5)

where ¢j,kp (0jpky € [0,0;,%,]) represents the angular
range possible within aspect a;,x, for the move(s) taken
to reach this position. Due to the movement made, we
could have observed only m (0 < m < r) aspects out of
a total of r aspects belonging to class Cj.

Let the class recognition phase report the observed
class to be ;. Let us assume that C; could have come
from aspects ajk, , Gjoky 5 ---Gj,.k,., Where all ji, jo,
... Jm are not necessarily different. We obtain the a pos-
terior: probability of aspect a;,, given this evidence us-
ing the Bayes rule:

Plajr,) - P(Cilajn,)
o1 [P(aj,n,) - P(Cilaj,k,)]

P(Cjlaj,k,) is 1 for aspects with a link to class Cj, 0
otherwise. Finally, we obtain the a posterior: probability

P(0,) = Plaj,i|C:) (7)

P(ajzkz |CZ) =

(6)
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Figure 2: Flow diagram depicting the flow of information and control in our system



ALGORITHM identify _class

compute_a_priori_class probabilities();
fd := identify feature detector_to_use();
fcl := get feature class(image,fd);

o W N

predetermined threshold THEN
pass this class as evidence to the
object recognition phase, EXIT
6. IF all feature detectors have been used

7. GO TO Step 2

compute_a_posteriori_class probabilities(fcl);
IF the probability of some class is above a

AND the probability of no class is above the threshold THEN EXIT

(* Eq. 1; Section 3.1.2 Part 1 *)

(* Section 3.1.1 %)

(* Use £d on the image, identify feature class *)
(x FEgs. 2,3; Section 3.1.2 Part 2 *)

Figure 3: The Class Recognition Algorithm

where aspects a;,k, belong to class Cj.

If the probability of some object is above a predeter-
mined threshold, the algorithm reports a success, and
stops. If not, it means that the view of the object is not
sufficient to identify the object unambiguously. We have
to take the next view.

Figure 4 shows our object recognition algorithm.
The time taken for all aspect and object probability
calculations is linear in the number of aspects. In
our hierarchical scheme, the link conditional probabil-
ities(representing relations between nodes) themselves
enforce consistency checks at each level of evidence.
The feature evidence is progressively refined as it passes
through different levels in the hierarchy, leading to sim-
pler evidence propagation and less computational cost.

5 Results and Discussion

Our experimental setup has a camera connected to a
MATROX Image Processing Card and a stepper motor-
controlled turntable. The turntable moves by 200 steps
to complete a 360 degree movement. We have experi-
mented extensively with two object sets as model bases.
We have chosen such objects in our model base that most
of them have more than one view in common. The list of
possible aspects associated with one initial view 1s quite
large.

1. Model Base I: 8 Polyhedral Objects
We use as features, the number of horizontal
and vertical lines (hv), and the number of non-
background segmented regions in an image {r). (A
class is represented as (hvr). ) Figure b shows the
objects in this model base.

2. Model Base II: 7 Aircraft Models
We use the number of horizontal and vertical lines
(hv), and the number of circles (¢} as features. (A
class is represented as (hvc). ) Figure 6 shows the
objects in this model base.

We use hough transform-based line and circle detectors.
For getting the number of regions in a view, we use se-
quential labeling on a thresholded gradient image.

Experiments with Model Base I: Polyhedral
Objects

Figure 7 shows some results of experimentation with
the objects in the first model base. Figure 7(a) and
(b) show the moves for two objects Oz and O4 with the
same class initially observed, namely (232). The aspect
list associated with the initial observation has 18 aspects
from the 8 possible objects. For Figures 7(c) and (d),
the initial class is (221), which could have come from 17
aspects. The moves are shown for objects O7 and Os,
respectively.

To give an idea of the number of moves required by
our system, we present some results of 46 observations on
model base I. An aspect list of size 18 on the first view
required an average of 3.4 moves. The corresponding
numbers for aspect lists of sizes 17, 5 and 3 are 3.21,
2.33 and 3.00, respectively.

Experiments with Model Base II: Aircraft
Models

Figure 8 shows some results of experimentation with
the objects in the second model base. Figures 8(a), (b),
(¢), (d) and (e) show the moves for objects biplane, two
aspects of plane-1, heli-1 and heli-2, respectively. The
aspect list corresponding to the initial observation has b
aspects.

The average number of moves for a total of 58 obser-
vations for aspect lists of sizes 10, 9, 7, 5 and 4 are 2.67,
2.00, 2.00, 2.05 and 2.00, respectively.

6 Conclusions

We present a scheme for the recognition of an iso-
lated 3D object through on-line next view planning us-
ing probabilistic reasoning. The recognition scheme has
the ability to correctly identify objects even when they



ALGORITHM identify_object

(¥ ————— FIRST PHASE -————- *)
1. initialize object_probabilities(); (* Initialize to 1/N *)
image := get_image_ of object();
3. class := identify_class(image); (* Section 3.1 %)
IF class = UNKNOWN THEN exit;
4, search_tree_root := construct_search_treenode(class,0);
5. compute object probabilities(search tree root); (* FEgs. 6,7 *)

6. IF the probability of some object is above a
predetermined threshold THEN exit AND declare success;
7. expand search treenode(search tree root,0,class); (* Section 4 *)
best_leaf := get_best_leaf node(search_tree root); (* Section 4 *)
(¥ —————- SECOND PHASE ------ *)
previous := search_tree_root;
expected := best_leaf;
8. angle := compute_angle tomove by(expected,previous);
make movement (angle) ;
image := get_image_ of object();

9. class := identify class(image);
IF class = UNKNOWN THEN exit;
10. new_ node := construct_search_tree_node(class,angle);

11. compute_object probabilities(newroot);
12. IF the probability of some object is above a
predetermined threshold THEN exit AND declare success;
13. expand search _tree node(new node);
best_leaf := get_best_leaf node(newnode);
previous := new.node;
expected := best_leaf;
14. GO TO step 8

Figure 4: The Object Recognition Algorithm

Figure 5: Model Base I: The objects (from left) are Oy, Oz, O3, Oy4, Os, Og, O7 and Og, respectively.




Figure 6: Model Base II: The objects (in row major order) are heli-1, heli-2, biplane, plane-1, plane-2, plane-3 and
plane-4.

40

(a) Os: (232) =53 (231(221)) =53 (232) =25 (221) =5 (232)

(b) O4: (232) =28 (221) =13 (221) =3 (221)

61

(c) O (221) =5 (221) 225 (423)

(221) 2% (221) =5 (221) =% (221)

(d) 0s: (221) 2%

Figure 7: Some experiments with Model Base I: The initial classes are (232) and (222), respectively for each pair
of rows. (The figure in parentheses shows an example of recovery from feature detection errors)



(d) heli-2: (332) =% (540)

(e) heli-1:  (332) =2 (510) =2 (510)

Figure 8: Some experiments with Model Base II: The initial class is (332). (The figure in parentheses shows an
example of recovery from feature detection errors) For clarity, the lines and circles detected are shown superimposed
on the original images.



have a large number of similar views. While we use sim-
ple features for the purpose of illustration, one can use
other features such as texture, colour, specularities and
reflectance ratios. Our knowledge representation scheme
facilitates planning by exploiting the relationships be-
tween features, aspects and object models. If a feature
set 1s not rich enough to identify an object from a sin-
gle view, this strategy can be used to identify it from
multiple views, considering simple features.

An extension of this work would take movement er-
rors into account. Major areas for further work include
multiple object recognition and searching for an object
in a cluttered environment.
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