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ABSTRACT

A camera typically has a very limited field of view.
Image mosaicing involves stitching together im-
ages taken at different camera viewpoints, in order
to have a wider field of view. Thus, automation of
the above process is an important issue. This paper
proposes a new method for automatic generation
of mosaics, using Geometric Hashing. This speeds
up the matching process in addition to automat-
ing it. We show the application of our method
on two important cases namely, one of rigid pla-
nar camera motion, and panoramic mosaics. We
provide experimental results in support of our pro-
posed method.

1. INTRODUCTION

A camera typically has a limited field of view.
A lens with a wide field of view (such as a fish-
eye lens) incurs substantial distortion. In addi-
tion, capturing the entire scene with the limited
camera resolution compromises the image qual-
ity. Hardware-based methods (e.g., quick time
VR, Surround Video) impose a strong limitation
on the imaging conditions. Image mosaicing algo-
rithms register or stitch a sequence of images into
a composite image [1, 2, 3].
Image mosaicing involves the following:

1. Image alignment: One has to determine the
transformation that aligns images to be com-
bined into a mosaic. Registration or align-
ment methods can be loosely divided into fol-
lowing classes - algorithms that use the pixel

values directly i.e., correlation method; al-
gorithms that use frequency domain method
i.e., fast Fourier transform; algorithms that
use low level features such as corners or edge
i.e., feature based algorithms and algorithms
that use relation between features i.e., graph
theoretical methods [4, 5].

2. Image cut and paste: Most regions in a mo-
saic are overlapping and are covered by more
than one images. There are two ways to deter-
mine the region. (a) Combining the aligned
images by a suitable function such as median,
average, etc, and (b) Selecting a region from
one of the images. Method (a) requires an ac-
curate alignment over entire image area, oth-
erwise the resulting mosaic will be blurred.
The method (b) requires alignment only along
the seams. This is more useful in cases where
camera motion, scene geometry and imaging
conditions are challenging [6].

3. Image blending: It is used to overcome in-
tensity difference between the images, differ-
ences that are present even when images are
perfectly aligned. These are created by dy-
namically changing camera gain [1].

2. GEOMETRIC HASHING

Image alignment requires matching M points in
one image with N points in another. As such,
this process has an exponential time complexity,
O(MY). Lamdan et al. [7] propose Geometric



Hashing as a fast method for 2-D object recog-
nition, where M object points are to be matched
to N image points, restricted to an affine frame-
work. We generalize this idea for image alignment
(the first step in image mosaicing), according to
the specific transformation between two images —
Euclidean, Affine, or the most general Projective
case.

A 2-D transformation requires K basis points
(K = 3 for Euclidean and Affine, 4 for Projec-
tive). We can select ordered pairs of K basis points
from the first image in (]\[g) x K! ways (this is
O(M*)). For each such basis, we compute the co-
ordinates of the remaining M — K (O(M)) points.
A hash table stores these coordinates, indexed by
the basis points. We repeat the process for the
second image. Matching rows of coordinates be-
tween hash tables of the two images has quadratic
time complexity. We can reduce this to linear
is we sort each row in the hash tables. Hence,
the problem of matching image features reduces to
O(ME+INE+L) » the row matching time. This is
has polynomial time complexity, an improvement
over the exponential time complexity required for
a naive feature match. It is important to note that
the relative change of successive camera positions
is often kept small to mazimize the number of cor-
responding points between images. We show the
application of Geometric Hashing to two impor-
tant cases of mosaicing. In each case, we use the
above idea to further reduce the time complexity
of image alignment.

3. MOSAICS FOR PLANAR RIGID
CAMERA MOTION

Two camera positions are related by a 3-D Eu-
clidean (rigid-body) transformation:

P =RP+T (1)

Here, P = [X YV Z]T and P’ = [ X' Y’ Z']" rep-
resent the (non-homogeneous) 3-D coordinates of
a point viewed by the two camera stations, and
p=|[zy 1" and p' = [z’ ¢ 1]7 are the corre-
sponding image points. For a planar rigid trans-
formation (say in the XY-plane), 7 = [T}, T, 0]”

and
cos@ —sinf 0
R=| sinf cos® 0 (2)
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The 2-D image points and 3-D points in the cam-
era coordinate system are related by

Ap = AP and Ap' = A'P’ (3)
where A and A’ represent the matrix of internal
camera parameters — the focal lengths in the z-
and y- directions f;, fy,, and a skew factor s. The
internal parameter matrix is of the form [8]:
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Using the above equations, we can show that the
2-D coordinates of the corresponding points p and
p’ are related by a 2-D affine transformation with
6 parameters:

x' a b T t
NIRRT
We need at the correspondence of 3 or more points
to estimate the affine parameters.

3 points are needed to form an affine basis.
Hence, a hash table for an image with M points
will have (]\?{) x 3! rows, each with M — 3 affine
coordinates of the remaining non-basis points. We
can calculate the time complexity of the matching
step as in Section 2. As mentioned there, the rela-
tive camera motion between frames is often small.
Hence for many practical cases, we may make an
additional assumption to speed up alignment.
Algorithm 1:

(1) Represent the reference frame by a set of cor-
ner points.

(2) For every non-collinear triplet of points, find
the angle (#) formed by two linearly independent
vectors and the length (I) between the end points.
We use these as parameters in the hash table. In
this way, we have (]\34 ) values of 8 and [.

(3) For the second frame of the scene, find the an-
gle 6 and length [ for every non-collinear triplet as
shown in Figure 1. So we have (N ) values of # and

3
[ for hash table comparison. (4) For every basis
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Figure 1: (a,b,c) triplet in the ref. image (left)
and (a’,b',c') triplet in the second image (right)

triplet in second image, find the difference between
angle 0s(;) and angle 0r;) of all basis triplet in the
reference image.

60,5y =| Os¢y — Orgy |

where i = 1,2,3... (4); 7 =1,2,3... (§). Simi-

larly, calculate the difference in length as
0lig) =l sy = Iy |

Out of (1\5[ ) X (g ) combinations, few most likely to
be correct pairs can be retained for further consid-
eration. We discard the basis triplets which give
angle difference more than a threshold. In this
pass many pairs are expected to be disqualified.
Then select those triplets for which 47 is less than
some small threshold. The idea of doing this is
to reduce the length of the hash table, so that
one has to compute only a few candidate match-
ing triplets between the two image pairs. Since
we are looking for correspondences between inter-
est points detected in for separate images, only
those triplets which preserve the shape and size in
the two images are considered for possible match-
ing. It should be noted that # and [ are not affine
invariants. However, we may often make this as-
sumption as motion of the camera is often kept
very small to generate good quality mosaics.
Based on this correspondence, the transforma-
tion can be found from a pair of matched triplet
or estimated from more matched triplets by least
square error estimation (LSE) method. Select the
@ points (we have considered @ = 20) around the
basis triplet in reference image and the second im-
age. Let these points be U; and V. The required
transformation can be obtained as solution of LSE

estimation which minimizes the LSE measure
p
§=>_|TU; - V; |? (5)
j=1

with respect to unknown motion parameters. The
minimum value of ¢ gives the correct transforma-
tion. The pixels in the overlapping part are taken
from the single image or by averaging of pixels.
Here we are using the Harris corner detector [9]
to detect interest points, which are used as feature
points. The first row of Figure 2 shows two images
taken by such an imaging setup. The image at

= e =

Figure 2: Two sample images and their resultant
mosaic (bottom row): Details in text

the bottom shows the resultant mosaic. We show
another example of this case in Figure 3.

4. PANORAMIC IMAGE MOSAICING

We now consider a camera rotating about its op-
tical centre. Such images when stitched together
constitute a panoramic mosaic. A commonly used
camera model is [8]:

AP=A[R|T |Py (6)

relating the coordinates of a 3-D point in the world
coordinate system Py, = [X Y Z 1]7 to its image



Figure 3: Resultant mosaic

point [z y 1]7. X is a projective constant. Here
R denote a rotation matrix and T, a translation
vector. We can relate the image coordinates to the
(non-homogeneous) coordinates of the 3-D points
in the camera coordinate systems using Ap = AP
and A'p’ = A’P’. For two cameras looking at the
same point 3-D point Py,

P =RP+T (7)

For panoramic image mosaicing, 7 = 0. So
NA'~1p’ = A\RA~!p. Hence, we have

pp' = Hp (8)

H is a 3 x 3 invertible, non-singular homography
maftrix.

The above homography matrix represents a
2-D to 2-D projective transformation. There-
fore, we use a projective basis for our geomet-
ric hashing-based scheme. We consider projective
bases defined by pairs of four non-collinear projec-
tive points, using the canonical frame construction
of [11]. This method considers mappings from the
four non-collinear points to the corners of a unit
square. Thus, we have (T) x m! possible choices
for the basis vectors. We repeat the procedure of
Section 2 for k = 4 here. However, as in Section 3,
we can make a similar assumption here, to sim-
plify the image alignment computation.

Algorithm 2:

(1) Represent the reference image by the sets of
corners.

(2) For every quadruplet (of which three
must be non-collinear), find the angles (61, 65)
formed by two linearly independent vectors and
lengths(ly,3) between two end points as shown in
Figure 4.

(3) For the second frame of the scene, for every
quadruplet find the corresponding (6,1) values.
(4) for every quadruplet in the second image, find
the difference between angle 651 ;) and angle 0r1;
and difference between 0s2(;) and angle 6r2;) of
all quadruplet in the reference image:

(a (b)

Figure 4: (a,b,c,d) basis quadruplet in reference
image (left) and (a’,V',c,d’) basis quadruplet in
second image(right).

501(1}3’) :| ﬁsl(j) — 97‘1@) |, 502(1}3’) :| 932(]’) — 97‘2@) |
Similarly, calculate the difference in lengths as
(Sll(i,j) :| lsl(j) — l?“l(i) |, 6l2(z’,j) :| lSQ(j) — lr2(i) |

where i = 1,2,3... (V¥); j = 1,2,3... (}). out
of (]Z[) X (]Z ) combinations, few most likely cor-
rect pairs can be identified through two passes.
We can discard the quadruplets which gives an-
gle difference more than threshold. The pairs of
quadruplets with small difference in #1 and 62 will
be considered for comparison based on lengths. By
sorting based on /1 and 6l2, choose pairs with
minimum value of /1 and 6l2. So, the pair with
least values of 661, 862,6[1,012, considered as a
right candidate. Even in the absence of any invari-
ance in parameters € and [, the above constraints
can be safely used as the relative change in these
parameters is very small due to dense time sam-
pling of images. The required transformation can
be recovered from a pair of matched quadruplets,
or estimated from more matched quadruplets by
using least squares estimation method.



Figure 5: A panoramic mosaic created from a set of 30 frames of the Hiranandani complex, Powai

By finding transformation between two frames,
the second frame is transformed with respect to
first one and they are combined to form mosaic.
Here, reference image is selected and all other im-
ages are registered with respect to the reference
image, and mosaic is created. In this case, the re-
gion in the overlapping area is taken form one of
the images, so there is no effect of blurring in the
mosaic image. For the mosaic in Figure 5, we have
considered a set of 30 images taken by a camera
rotating by approximately 300°.

5. CONCLUSION

This paper presents a new method for automatic
generation of mosaic. Our method is based on
Geometric Hashing. This gets over the problem of
exponential time complexity in matching features
across images. Additionally, the entire process
does not require human intervention. We show
results in the support of proposed strategies.
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