
CONTOUR-BASED MELODY REPRESENTATION: AN ANALYTICAL STUDY

Sumantra Dutta Roy, Preeti Rao and Ameya S. Galinde

Department of Electrical Engineering,
IIT Bombay, Powai, Mumbai - 400 076.

{sumantra, prao, ameya}@ee.iitb.ac.in

ABSTRACT

In this paper, we identify parameters crucial to
the performance of a Query By Humming (QBH)
system, and present an analytical approach to de-
termining optimal values of such parameters. Ex-
isting systems use heuristically chosen parameters
- our analytical results are in accordance with such
values. We present results of experimentation with
simulated data, as well as an actual melody database
of a QBH system.

1. INTRODUCTION

Query by Humming (hereafter, QBH) has emerged
as an important area of research in audio-based
search engines, and building efficient Human-
Computer Interfaces (HCI) [1], [2], [3], [4], [5],
[6], [7]. Thus far, related work in the area has
only considered the use of a 3-, 5- or 7-level pitch
contour [8], [6], [7], [9]. - this is usually based
on empirical studies. To the best of our knowl-
edge, there has been no attempt to derive such
an estimate using analytical methods. This paper
presents an analytical study of QBH systems. We
develop a new coefficient to evaluate the perfor-
mance of a QBH system. Our results of exper-
iments with analytical models, as well as an ac-
tual melody database give results consistent with
those in existing literature. While this paper con-
siders the special case of uniform tune lengths, our
current research involves extending this to a Dy-
namic Programming-based framework to handle
the most general case.

2. THE REPRESENTATION SCHEME

We assume all notes in a musical piece lie only on
a quantized set of absolute pitch values (in Hz).
The ratio of any two adjacent pitch values is 21/12.
The interval between two such adjacent values is a
‘semitone’, and an ensemble of 12 such pitch values
or notes is an ‘octave’ [3]. Without loss of gener-
ality, we may assume a logarithmic scale for such
notes with the least count on this scale correspond-
ing to a semitone. (This ensures equal distances
along the logarithmic scale, corresponding to any
two adjacent semitones) Our representation of a
user query or any melody consists of a sequence
of numbers where each number signifies the ‘dis-
tance’ between the current note and the previous
note, or more precisely, the number of semitones
lying in between these two adjacent notes in the
musical piece [8].

As an example, we can consider a (fairly real-
istic) case where a note will be no more than an
octave apart from its previous note i.e., it can ei-
ther ascend by a maximum of 1 octave (+12 semi-
tones) or descend by a maximum of 1 octave (-12
semitones). This is quite a reasonable assumption,
since most musical pieces proceed with a steady
rise or fall of notes and even a pitch change of one
octave between adjacent notes is rarely encoun-
tered. We may represent this span of relative notes
by the set [−12, +12]. For a casual singer’s notes
sung slightly off-key, we approximate the corre-
sponding relative note to the closest one on our
scale. As an illustrative example, let us consider
the following sequence of 4 notes (all notes lying
in the same octave) in Western music notation (all
notes in the same scale, say Scale C Major): [Mi

So Fa Ti]. In our notation, this is [+3 -2 +6].
Such a representation makes a particular melodic
contour invariant to pitch transpositions.

Kageyama et al. [1] and Ghias et al. [2] propose
the use of static heuristic thresholds for splitting
the melodic contour into the desired number of lev-
els. Sonoda et al. [9] propose the use of dynamic
determination of thresholds. In their method, they
determine the thresholds based on the histograms
for the relative pitch values, to get a 3-level con-
tour. While this has the advantage of being opti-
mal for a given set of songs, it is highly unlikely
that the number of songs in a database will remain
constant over a period of time. The thresholds,
and hence the entire representation of a song may
change with the addition of even a single song to
the database. This is costly operation in terms of
time (even if done off-line) and hence, not a de-
sirable property. Kim et al. consider empirical
evidence to decide on choosing the number of lev-
els of quantization, k. However, to the best of our
knowledge, no existing approach considers an an-
alytical approach to determining the performance
of a QBH system, or the number of optimum num-
ber of levels, for instance. With a view to reduce
the number of parameters, we adopt a uniform
quantization scheme to find out the optimal value
of k, in our analysis.

2.1. Statement of the Problem

For our analysis, we consider a range of relative
notes R. We further assume that the finest level
of quantization (with each mark specifying a rel-
ative note) will give rise to N relative notes, ly-
ing between two limits r0 and rN , respectively1.
Given a N− level quantization, we wish to divide
this range into k intervals (using k − 1 markers
between r0 and rN) uniformly - The aim is to find
an optimal value for k. The range of possible val-
ues of k is 1 and N . Two desirable requirements
governing the choice of a suitable value of k are:

1The conversion between the two discrete scales [r0, rN]
and [r′−N/2, r

′
N/2] is a straightforward linear and invertible

function. Throughout this paper, we use the two inter-
changeably.

• Fidelity: a desirable requirement is to have
a close match between the hummed contour,
and a close one from the database. A desir-
able requirement is to have a unique repre-
sentation for each song in the database.

• Robust Matching: a strategy should ideally
have adequate robustness to cater to differ-
ent untrained singers, who may occasionally
go off-key.

The task at hand is to find this optimal value of k,
as described above. Clearly, these are contradic-
tory requirements. A large value of k will ensure
that the query melodic contour can be matched
with greater precision to one in the database, thus
reducing chances of a false match. However, the
resultant error-resilience reduces, and vice versa.

In view of these contradictory requirements,
we propose a new function, a minimum of which
will result in an optimal value of k. We define the
Demerit Coefficient MD(k, µ) for a Database
of songs D, as follows:

MD(k, µ)
4
= µFD(k) + (1− µ)RD(k) (1)

Here, FD(k) and RD(k) represent the Fidelity
and Robust-Match functions, respectively, which
we define below. µ is an arbitrary scalar coeffi-
cient which specifies the required relative percent-
age of the two constituent terms in the expres-
sion for MD(k, µ). The task at hand is to find
argmink MD(k, µ) i.e., that value of k for which
MD(k, µ) achieves a minimum value.

We define lk as the ‘length’ of an interval along
the relative note axis, as follows: lk

4
= b(rN −

r0)/kc, where the b c notation denotes the largest
integer smaller than the number. In the following
sections, we define FD(k) and RD(k).

2.2. The Fidelity Term FD(k)

We define the Fidelity Term FD(k) as follows:

FD(k)
4
=

1

F̂D(k)
[
∑

∀ x

[x− lk(x div lk)]2 pD[x]]1/2

(2)
Here, the summation is over all relative notes x

in the songs in the given database D, (div denotes

(a)

(b)

Figure 1: Distribution of relative notes: pD[·] for
(a) our database, and (b) an MIT database (taken
from [8])

integer division i.e., the quotient) and pD[x] de-
notes the discrete probability of a particular rela-
tive note x. This is a characteristic of the partic-
ular database, and depends its constituent songs.
Figure 1 show samples of such curves from our
database of songs, as well as an MIT database [8].
F̂D(k) is a normalizing factor. We may take this
as lk − 1 for example, or simply the maximum of
the terms being summed up.

Having k intervals implies that for a given rel-
ative note x, all relative notes y lying in the dis-
crete interval lk(x div lk) ≤ y < lk(x div lk + 1)
would be characterized by a point, which we con-

sider (without loss of generality) as being the left
limit of the interval. Thus, FD(k) is a measure
of the average deviation of relative notes which
would get classified by the k-level system as being
in it’s corresponding interval. For a system to have
greater fidelity of a perfectly-sung melody to one
stored in the database, the FD(k) term should be
small. Otherwise, other melodies with each corre-
sponding relative note lying in the same interval
as the target song, would get wrongly identified as
the one in question. We note that the above defi-
nition for FD(k) is quite restrictive in the sense of
seeking a match between two melodic contours of
the same length. Section 4 looks at extensions of
this approach to deal with the most general case.

2.3. The Robust-Match Term RD(k)

We define the Robust-match term RD(k) as fol-
lows:

RD(k)
4
=

1

R̂D(k)

∑

∀ x

[
∑

y

(y − x)2 pU
x [y]]1/2 pD[x]

(3)
The outer summation is over all relative notes x

Figure 2: The probability mass function pU
x [y] for

relative notes in our database (The Robust Match
Function RD(k), Section 2.3)

in the songs in the given database D. The sum-
mation for y is over all relative notes which are
not in the same interval as the relative note x i.e.,
{r0 ≤ y < lk(x div lk)} ∪ {lk(x div lk + 1) ≤
y ≤ rN}. Here, R̂D(k) is the normalization factor.
We may take this to be R− lk (= rN − r0− lk), or
simply the maximum of the terms being summed

(a)

(b)

Figure 3: The optimal k: A plot of |FD(k) −
RD(k)| vs. k (a) analytical simulation: pD[·] and
pU

x [·] as Gaussians (Section 3.1); and (b) Actual
database statistics (Section 3.2)

up. Here, pU
x [·] is the one-dimensional probability

mass function of all user query relative notes for
a given relative note x. (Figure 2 shows the prob-
ability mass function of pU

x [·] for different relative
notes x, in our database) It is important to note
that while the Fidelity term FD(k) depends only
on the distribution of relative notes of songs in a
given database D, RD(k) depends on the statistics
of the distribution of typical user queries, as well.
The motivation behind taking pU

x [·] into account
is the fact that casual users often go off-key when
the change in notes is quite drastic. The above
formulation handles such an observation as statis-

tics, and uses it to advantage in finding a suitable
value of k (our ultimate objective). Clearly, a high
value of FD(k) would imply more robustness of the
matching procedure to notes sung off-key by a ca-
sual user.

3. EXPERIMENTAL RESULTS AND
DISCUSSION

We approach the problem using methods of varia-
tional calculus. We need the value of k for which
the Demerit Coefficient is minimum for a given
database D of songs (Equation 1). We differenti-
ate this with respect to the two variables k and µ,
and set these to zero. We can find out the value of
k from the partial differentiation with respect to
µ. We evaluate |FD(k)−RD(k)| for varying values
of k, and check for minima close to zero. Further,
we can find the optimal value of µ by numerical
differentiation. We evaluate | δMD(k,µ)

δk | for δk = 1
(the smallest possible discrete change in k), and
find out the value of µ, for which |δMD(k, µ)| is
minimum. This is the required value of µ. For our
experimentation, we have considered both the nor-
malization factors F̂D(k) and R̂D(k) as the max-
imum term in the respective summations. A sys-
tem designer may like to have a control over the
relative proportion of FD(k) and RD(k) for a par-
ticular database. In our formulation, the flexibil-
ity in choosing the normalization factors takes this
desirable aspect into account.

3.1. Studies with Representative Models

An examination of Figure 1 reveals that it is rea-
sonable to use a Gaussian to approximate pD[·],
the distribution of relative notes for songs in a
database. Figure 2 shows the function for actual
values corresponding to our song database. Sec-
tion 2.3 gives the motivation for having a pU

x [·]
modeling. Casual users often tend to go more off-
key with increasing values of relative notes, irre-
spective of the direction of change. Owing to these
reasons, we model pU

x [·] as a Gaussian with stan-
dard deviation proportional to x. Choosing pD[·]
to be a Gaussian close to our actual pD[·] curve
(Figure 1(a)), we obtain the optimal values of the

Figure 4: Variation of the optimal k for different
σ values: simulation, with pD[·] assumed to be a
Gaussian.

parameters k and µ as 6 and 0.01. Figure 3(a)
shows a plot |FD(k) − RD(k)| for varying values
of k. The portions of flatness in the curve are due
to the nature of the floor function in lk and hence,
|FD(k)−RD(k)| as well.

A set of analytical models permits one to ex-
periment by changing various system parameters.
For example, we have varied the variance of the
pD[·] Gaussian to test its effect on the optimal k
value. Figure 4 shows this variation.

3.2. Studies with Data from an Actual Melody
Retrieval System

We have experimented with a melody database [6],
[7] of 69 Hindi film song phrases, with an average
of about 10 notes in each, sung by one reference
singer and 3 casual singers. Figure 3 (b) shows the
corresponding |FD(k)−RD(k)| curve for different
values of k. In this case, the optimum corresponds
to k = 5 and µ = 0.01.

4. CONCLUSIONS

In this paper, we propose a new analytical ap-
proach for obtaining important parameters of a
QBH system. We identify these, and present an
analytical study of the performance of the QBH
systems with respect to these parameters. Ex-
isting systems choose these parameters heuristi-

cally - our results are in accordance with these.
We present results of experimentation with simu-
lated data, as well as an actual melody database
of a QBH system. Future work includes extending
the idea of the Fidelity term FD(k) to deal with
varying query lengths in a Dynamic Programming-
based framework.

REFERENCES

[1] T. Kageyama, K. Mochiezuki, and
Y. Takashima, “Melody Retrieval with
Humming,” in Proc. ICMC, 1993, pp.
349 – 351.

[2] A. Ghias, J. Logan, D. Chamberlin, and B. C.
Smith, “Query By Humming - Musical Infor-
mation Retrieval in an Audio Database,” in
Proc. ACM Multimedia, 1995.

[3] R. J. McNab, L. A. Smith, I. H. Witten, C. L.
Henderson, and S. J. Sunningham, “Toward
the Digital Music Library: Tune Retrieval
from Acoustic Input,” in Proc. ACM Digital
Libraries, 1996.

[4] Midilib, http://www-
mmdb.iai.unibonn.de/forschungprojekte/
midilib/english.

[5] Tuneserver, http://tuneserver.de.

[6] M. Anand Raju and P. Rao, “Towards an
Automatic Melody Retrieval System,” in
Proc. National Conference on Communica-
tions (NCC), 2002.

[7] M. Anand Raju, B. Sundaram, and P. Rao,
“TANSEN: A Query-By-Humming based Mu-
sic Retrieval System,” in Proc. National Con-
ference on Communications (NCC), 2003.

[8] Y. E. Kim, W. Chai, R. Garcia, and B. Vercoe,
“Analysis of a Contour-based Representation
for Melody,” in Proc. International Symposium
on Music Information Retrieval (ISMIR), Oc-
tober 2000.

[9] T. Sonoda, M. Goto, and Y. Muraoka, “A
WWW-based Melody Retrieval System,” in
Proc. ICMC, October 1998, pp. 349 – 352.

