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ABSTRACT
The paper proposes an analytical modeling of im-
portant parameters in a melody-based Query-by-
Humming system, and proposes a new function
to characterise the performance of such systems.
Results of experiments with analytical models, as
well as an actual QBH system give results consis-
tent with empirical results mentioned in the liter-
ature.

1. INTRODUCTION

Most Query-by-Humming (hereafter, QBH) sys-
tems operate on the pitch contour alone [1], [2], [3],
[4], [5], [6], [7], as opposed to those that operate
on other features of audio input, such rhythm [8].
However, there have been few approaches to ana-
lytical modeling and performance analysis of QBH
systems. Performance analysis methods primarily
consist of identification of errors [9] and gross re-
trieval statistics (Precision and Recall) [10]. As far
as analytical modeling is concerned, related work
in the area has only considered the use of a 3-
, 5- or 7-level pitch contour [4], [3], [6] - this is
usually based on empirical studies. To the best
of our knowledge, our earlier work [11] has been
the only attempt to derive such an estimate using
analytical methods. We extend the ideas of our
earlier work to build a more complete and com-
prehensive analytical study of QBH systems. We
develop a new coefficient to evaluate the perfor-
mance of a QBH system. Our results of experi-
ments with analytical models, as well as an actual
melody database give results consistent with those
in the existing literature.

1.1. Representation; Performance Measures

We assume that all notes in a musical piece lie
only on a quantised set of absolute pitch values
(in Hz). A common representation assumes the
interval between two such adjacent values to be a
‘semitone’, and an ensemble of 12 such pitch values
or notes is an ‘octave’ [2]. A logarithmic scale is
convenient for this purpose, with a least count of a
semitone. As in the work of Kim et al. [4], we deal
with relative notes as opposed to absolute notes.
This imparts invariance to pitch transposition i.e.,
the same melody correctly sung at two different
musical scales have the same representation.

Kageyama et al. [7] and Ghias et al. [5] propose
the use of static heuristic thresholds for splitting
the melodic contour into the desired number of lev-
els. Sonoda et al. [6] propose the use of dynamic
determination of thresholds for a 3-level contour.
Kim et al. [4] consider empirical evidence to decide
on choosing the number of levels of quantisation,
k. Our earlier work [11] proposes a method to
derive the optimal number of quantisation levels,
given statistics about the melodies in the database,
and sample user query statistics. One of the main
limitations of this approach was its applicability
to a uniform quantisation. In the current paper,
we remove this and build a generic framework, ap-
plicable to any general case of quantisation. We
further generalise our work to handle query strings
of any length, and propose a coefficient to char-
acterise the performance of a QBH system. We
compare our results with existing measures of per-
formance.



2. STATEMENT OF THE PROBLEM

We consider a range of relative notes R. We as-
sume that the finest level of quantisation will give
rise to N relative notes, lying between two lim-
its r0 and rN , respectively1. Given a N− level
quantisation, we wish to divide this range into k
intervals (using k− 1 markers between r0 and rN )
- The aim is to find an optimal value for k. Two
desirable requirements governing the choice of a
suitable value of k are:

• Fidelity : a desirable requirement is to have
a close match between the hummed contour,
and a close one from the database.

• Robust Matching : a strategy should ideally
have adequate robustness to cater to differ-
ent untrained singers, who may occasionally
go off-key.

The task at hand is to find this optimal value of
k, as described above. In the following section,
we propose a new function to account for these
mutually contradictory requirements, a minimum
of which will result in an optimal value of k.

3. THE DEMERIT COEFFICIENT

We define the Demerit CoefficientMD(k, µ) for
a Database of songs D, as follows:

MD(k, µ)
4
= µFD(k) + (1− µ)RD(k) (1)

Here, FD(k) and RD(k) represent the Fidelity
and Robust-Match functions, respectively, which
we define in the following sections, below. (Sec-
tion 3.1 and Section 3.2, respectively.) µ is an
arbitrary scalar coefficient which specifies the re-
quired relative percentage of the two constituent
terms in the expression for MD(k, µ). The task
at hand is to find argmink MD(k, µ) i.e., that
value of k for which MD(k, µ) achieves a mini-
mum value.

1The conversion between the two discrete scales [r0, rN ]
and [r′−N/2, r

′
N/2] is a straightforward linear and invertible

function. Throughout this paper, we use the two inter-
changeably.

Commonly used methods of dividing the rel-
ative note axis include having uniform quantisa-
tion, static heuristic thresholds as in the systems of
Kageyama et al. [7] and Ghias et al.[5], or dynam-
ically determined thresholds of Sonoda et al. [6].
The cases of uniform quantisation and that of Son-
oda et al. are opposite in character. The advan-
tage of the former is the relative simplicity, since
it involves a smaller number of parameters. The
latter seeks to divide the intervals into equal prob-
ability masses - optimal for the particular system
in question. In this paper, we show results of our
formulation using both the above cases - one can
handle the case of static heuristically determined
thresholds on similar lines. We first propose our
framework for the equal probability mass formula-
tion of Sonoda et al. [6]. In Section 4, we present
our formulation attuned to the simpler case of uni-
form thresholds.

We assume the k intervals to be numbered 0 to
k−1, with k+1 markers m[i] appropriately placed
(according to the strategy used for splitting the
relative note axis) in the range r0 to rN . The ith
interval characterised by the range of relative notes
rj : m[i] ≤ rj < m[i + 1]. We define pD[x] as the
discrete probability of a particular relative note x.
This is a characteristic of a particular a character-
istic of the particular database, and depends its
constituent songs. Figure 1 shows samples of such
curves from our database of songs, as well as an
MIT database [4]. For the equal probability mass
formulation of each interval, we have

∑
m[i]≤x<m[i+1]

pD[x] =
1
k
, ∀ i, 0 ≤ i ≤ k − 1 (2)

3.1. The Fidelity Term FD(k)

We define the Fidelity Term FD(k) as follows:

FD(k)
4
=

1

F̂D(k)
[
∑
∀ x

[x− ind[x]]2 pD[x]]1/2 (3)

Here, the summation is over all relative notes x in
the songs in the given database D, and pD[x] de-
notes the discrete probability of a particular rela-
tive note x. We define the Interval Indicator Func-
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(a)

(b)

Figure 1: Distribution of relative notes: pD[·] for
(a) our database, and (b) an MIT database (taken
from [4])

tion ind[x] for a relative note x as follows:

ind[x]
4
= max

j
m[j]; m[j] ≤ x (4)

In other words, ind[x] indicates the left relative
note which characterises an interval - if ind[x] =
m[s] for a given relative note x, the interval of
relative notes rj in consideration is m[s] ≤ rj <

m[s + 1]. F̂D(k) is a normalising factor. We may
take this as maxj |m[j +1]−m[j]|, 0 ≤ j ≤ (k−1)
for example, or simply the maximum of the terms
being summed up.

Having k intervals implies that for a given rel-
ative note x, all relative notes rj lying in the dis-
crete interval m[s] ≤ rj < m[s + 1] would be
characterised by a point, which we consider (with-
out loss of generality) as being the left limit of
the interval. Thus, FD(k) is a measure of the av-
erage deviation of relative notes which would get
classified by the k-level system as being in its cor-

responding interval.

3.2. The Robust-Match Term RD(k)

We define the Robust-match term RD(k) as fol-
lows:

RD(k)
4
=

1

R̂D(k)

∑
∀ x

[
∑

y

(y − x)2 pU
x [y]]1/2 pD[x]

(5)
The outer summation is over all relative notes x

Figure 2: The probability mass function pU
x [y] for

relative notes in our database (The Robust-Match
Function RD(k), Section 3.2)

in the songs in the given database D. The sum-
mation for y is over all relative notes which are
not in the same interval as the relative note x i.e.,
{r0 ≤ y < m[s]} ∪ {m[s + 1] ≤ y ≤ rN}. Here,
m[s] is the same as that used in the previous sec-
tion (Section 3.1) i.e., we take ind[x] as m[s] for
a given relative note x, so that the notes rj in the
same relative note interval as x have m[s] ≤ rj <

m[s+1]. Here, R̂D(k) is the normalisation factor.
We may take this to be R−maxj |m[j +1]−m[j]|
for instance, or simply the maximum of the terms
being summed up. pU

x [·] is the one-dimensional
probability mass function of all user query rela-
tive notes for a given relative note x. (Figure 2
shows the probability mass function of pU

x [·] for
different relative notes x, in our database)

We note that pU
x [·] accounts for typical user

characteristics for a given relative note x. QBH
systems typically employ common techniques of
Melodic contour matching such as those based on
Dynamic Programming [12]. The optimal match
gives us a correspondence between the notes of
the query melodic string, and a database entry -
the reference contour. We use this information to
build up our pU

x [·] estimates. The use of the pU
x [·]



function also subsumes the concept of melodic sim-
ilarity based on chords [13].

3.3. Finding the Optimal k

We differentiate Equation 1 with respect to the
two variables k and µ, and set these to zero. We
can find out the value of k from the partial differ-
entiation with respect to µ. We evaluate |FD(k)−
RD(k)| for varying values of k, and check for min-
ima close to zero. Further, we can find the optimal
value of µ by numerical differentiation. We eval-
uate | δMD(k,µ)

δk | for δk = 1 (the smallest possible
discrete change in k), and find out the value of µ,
for which |δMD(k, µ)| is minimum. This is the
required value of µ.

We have experimented with statistics from an
existing QBH system TANSEN [3], as well as with
representative models. Our database has 201 song
phrases, with an average of 26.52 notes in each.
We have built up the pU

x [·] statistics from 936 user
queries. The solid curve in Figure 3(a) shows a
plot of |FD(k) − RD(k)| for varying values of k.
The optimum corresponds to k = 3 and µ = 0.01.
The portions of flatness in the curve are due to
the nature of the floor function in lk and hence,
|FD(k)−RD(k)| as well. For our experimentation,
we have considered both the normalisation factors
F̂D(k) and R̂D(k) as the maximum term in the
respective summations.

A set of analytical models permits one to ex-
periment by changing various system parameters.
From Figures 1 and 2, we can approximate the
pD[·] curve by a suitable Gaussian, and pU

x [·] as
a Gaussian with standard deviation proportional
to x. Figure 3(b) shows the corresponding plot,
which gives the optimal values of k and µ as 5 and
0.01. The solid curve in Figure 4 shows the varia-
tion in the optimal value of k with the variance of
the pD[·] Gaussian for this case (equal probability
mass).

4. UNIFORM QUANTISATION OF THE
RELATIVE NOTE AXIS

For the case of uniform quantisation, we define lk
as the ‘length’ of an interval along the relative note

(a)

(b)

Figure 3: The optimal k for the equal probability
mass case (solid curve) and the uniform quantisa-
tion case (broken curve): |FD(k) − RD(k)| vs. k
for (a) actual database statistics; and (b) analyti-
cal simulation: pD[·] and pU

x [·] as Gaussians

axis, as follows: lk
4
= b(rN − r0)/kc, where the b c

notation denotes the largest integer smaller than
the number. For the uniform quantisation case,
we define the Fidelity Term FD(k) as follows:

FD(k)
4
=

1

F̂D(k)
[
∑
∀ x

[x− lk(x div lk)]2 pD[x]]1/2

(6)
We may take the normalising factor F̂D(k) as lk−1
for example, or simply the maximum of the terms
being summed up. The definition of the Robust-
Match term remains unchanged (Equation 5) in
the uniform quantisation case. Only the definition
of the intervals is different, here. The inner sum-
mation (for y) is for all relative notes which are
not in the same interval as the relative note x i.e.,
{r0 ≤ y < lk(x div lk)} ∪ {lk(x div lk + 1) ≤
y ≤ rN}. In this case, we may the normalising
factor R− lk (= rN − r0 − lk), or simply the max-
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Figure 4: Variation of the optimal k for different
σ values: simulation, with pD[·] assumed to be a
Gaussian. Solid curve shows the equal probabil-
ity mass case, and the broken one, the uniform
quantisation case.

imum of the terms being summed up. Our previ-
ous work [11] deals with the uniform quantisation
case in detail. In Figures 3(a) and (b), and 4, the
broken curve shows the uniform quantisation case.
The optimal values of k and µ for this case for ac-
tual data and simulated data are 3 and 0.01 for
both cases, respectively.
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