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ABSTRACT

This paper analyses factors affecting the perfor-
mance of a melodic contour-based QBH system,
and presents an analytical model for the same.
We present a constrained optimisation framework
to find the optimal values of performance-affecting
system parameters.

1. INTRODUCTION

Pitch contour is often the feature of choice for
Query-by-Humming (hereafter, QBH) systems [1],
[2], [3], [4], [5], [6], [7]. However, very few ap-
proaches consider evaluating the performance of
QBH systems. Meek and Birmingham [8] identify
different types of errors in QBH systems. Com-
monly used performance metrics include Precision-
and-Recall [9] and Mean Reciprocal Rank (MRR) [8],
[10]. Precision-and-Recall analyses involve rele-
vancy issues, for which one either needs subjective
estimates, or estimates based on a match function,
which is often database- and application-specific.
The Mean Reciprocal Rank (hereafter, MRR) is a
measure of overall systems performance, and not
just the performance to a single specific query.
The rank refers to the rank of the correct item (this
needs ground-truth information) in a list sorted
according the a relevancy measure. Unlike the
Precision-and-Recall statistics, MRR computations
do not require a knowledge of database-specific in-
formation such as the total number of relevant ref-
erences in an entire database.

A common representation for a musical piece
is a quantised set of relative notes [4], with a con-

venient least count, such as a semitone. An im-
portant problem in QBH system efficiency is de-
termining the optimum number of levels k in the
relative note contour. Kageyama et al. [7] and
Ghias et al. [5] use static heuristic thresholds for
splitting the melodic contour into the desired num-
ber of levels. Sonoda et al. [6] propose the use of
dynamic determination of thresholds for a 3-level
contour. Kim et al. [4] consider empirical evidence
to decide on choosing the number of levels of quan-
tisation, k. To the best of our knowledge, our ear-
lier preliminary work in this area [11], [12] are the
only ones which address the above problems. Two
requirements for selecting k are contradictory:

• Fidelity: The quantisation level determines
the closeness of a match between two melodic
contours. Lower the amount of quantisation,
greater is the chance of two different melodic
contours matching.

• Robust Matching: Untrained singers occa-
sionally go off-key, so a lower quantisation
level makes a system more robust in this re-
gard.

The aim of this paper is three-fold:

1. To find the optimum quantisation level k for
varying problem specifications

2. To identify parameters which affect the per-
formance of a melodic contour-based QBH
system, and

3. To propose a coefficient to evaluate the per-
formance of such QBH systems



Figure 1: Distribution of relative notes: pD[·] for
(a) our database, and (b) an MIT database [4]

Our first work in the area [11] examines finding the
optimal k for the case of uniform quantisation of
the relative note axis. Our next paper [12] presents
some preliminary results with extending the ideas
to any general method of quantisation. We ex-
tend the ideas in our earlier papers to propose a
novel coefficient to quantify the performance of a
QBH system. In this paper, we experiment with
some underlying basic parameters (the quantisa-
tion level k and string matching algorithms) and
study their effect on the system performances: all
with an actual QBH system, TANSEN [3]. We
compare our results with those obtained using MRR
statistics on the same QBH system.

2. THE DEMERIT COEFFICIENT

We consider a range of relative notes R. We as-
sume that the finest level of quantisation will give
rise to N relative notes, lying between two lim-
its r0 and rN , respectively1. Given a N− level

1The conversion between the two discrete scales [r0, rN ]
and [r′−N/2, r

′
N/2] is a straightforward linear and invertible

function. Throughout this paper, we use the two inter-
changeably.

quantisation, we wish to divide this range into k
intervals (using k−1 markers between r0 and rN )

We define the Demerit CoefficientMD(k, µ)
for a Database of songs D, as follows:

MD(k, µ)
4
= µFD(k) + (1− µ)RD(k) (1)

Here, FD(k) and RD(k) represent the Fidelity
and Robust-Match functions, respectively. µ
is a normalised linear combination variable. The
task at hand is to find argmink MD(k, µ) i.e.,
that value of k and µ for which MD(k, µ) achieves
a minimum value.

We assume the k intervals to be numbered 0
to k − 1, with k + 1 markers m[i] placed accord-
ing to a particular strategy: uniform quantisation
(hereafter, UQ), equal probability mass (hereafter,
EPMQ) [6], or heuristically placed [7], [5]. Our
earlier work [12] deals with all three cases. The
ith interval is characterised by the range of rela-
tive notes rj : m[i] ≤ rj < m[i + 1]. We define
pD[x] as the discrete probability of a particular
relative note x. This is a characteristic of a par-
ticular a characteristic of the particular database,
and depends on its constituent songs. Fig. 1 show
samples of such curves from our database of songs,
as well as an MIT database [4]. We define The
Fidelity Term FD(k) as:

FD(k)
4
=

1

F̂D(k)
[
∑
∀ x

[x− ind[x]]2 pD[x]]1/2 (2)

Here, the summation is over all relative notes x in
the songs in the given database D, and pD[x] de-
notes the discrete probability of a particular rela-
tive note x. We define the Interval Indicator Func-
tion ind[x] for a relative note as centroid of the
interval in which it lies. F̂D(k) is a normalising
factor. We may take this as maxj |m[j+1]−m[j]|,
0 ≤ j ≤ (k − 1) for example, or simply the maxi-
mum of the terms being summed up.

We define the Robust-Match Term RD(k)
as:

RD(k)
4
=

1

R̂D(k)

∑
∀ x

[
∑

y

(y − x)2 pU
x [y]]1/2 pD[x]

(3)
The outer summation is over all relative notes
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Figure 2: The probability mass function pU
x [y] for

relative notes in our database

x in the songs in the given database D. The
summation for y is over all relative notes which
are not in the same interval as the relative note
x i.e., {r0 ≤ y < m[s]} ∪ {m[s + 1] ≤ y ≤
rN}. R̂D(k) is the normalisation factor. We may
take this to be R −maxj |m[j + 1] −m[j]| for in-
stance, or simply the maximum of the terms being
summed up.pU

x [·] (Fig. 2) is the one-dimensional
probability mass function of all user query rela-
tive notes for a given relative note x. We note
that pU

x [·] accounts for typical user characteristics
for a given relative note x. QBH systems typically
use different melodic contour matching Dynamic
Programming-based approximate string matching
(also referred to as the ‘String Edit Distance Prob-
lem’) is a widely researched area in itself [13], [14].
These typically assign a unit cost to each inser-
tion, deletion and substitution (except in the case
of an exact match, where the substitution cost is
zero). The optimal match for such an algorithm
gives us a correspondence between the notes of the
query melodic string, and a reference one in the
database. We use this information to build up our
pU

x [·] estimates.The use of the pU
x [·] function also

subsumes the concept of melodic similarity based
on chords [15]. From Eqns. 2 and 3, we observe
that the particular String Edit Distance function
used will affect only the Robust Match term. In
this paper, we have experimented with the Leven-
stein Distance (Fig. 2 uses this), the Normalised
Edit Distance [14], and computational variants us-
ing heuristics specific to a QBH problem. The
heuristics change the cost, and introduce compu-
tational efficiency. We use four such heuristics: to
incur an appropriate cost if the query string begins
before the first reference syllable, and incur no cost

if: the user starts after the first reference syllable;
the user ends before the last reference syllable; or
continues after the last reference syllable. We ex-
amine the role of these parameters in computing
the optimal value of k, in the following section.

2.1. Finding the Optimal Operating Point:
The Role of Various Parameters

We need to take partial derivatives in Eqn. 1 with
respect to the two variables k and µ, and set them
to zero. We find the optimal k as:
kopt

4
= arg min∀k |FD(k) − RD(k)|. Further, we

can find the corresponding optimal value of µ by
evaluating | δMD(k,µ)

δk | for δk = 1 (the smallest pos-
sible discrete change in k) for k = kopt. We can
check for a minimum either using a second deriva-
tive test, or by evaluating the function itself. In
case of no local minima, we check for absolute min-
ima of the function near the boundary values of k
and µ.

3. EXPERIMENTAL RESULTS

We have experimented with statistics from an ex-
isting QBH system TANSEN [3]. The reference
database consists of a set of 300 songs from Hindi
films. We present results of 1220 queries on the
database. In Fig. 3, we find the optimal value of
k for various values of the String Edit Distance.
For our representative QBH system TANSEN [3],
we do not observe much difference in the nature of
these plots, and we get the optimal value of k to be
4 and 3 for the UQ and EPMQ cases, respectively,
for the particular form of the String Edit Distance.
Fig. 3 also shows the corresponding values of µ.

Fig. 4 compares our results with those of a
gross measure, MRR. It is interesting to note that
while the MRR peaks at k = 9 for the UQ case,
the peak at 3 exactly corresponds to what we get
through our optimisation procedure. However, we
again emphasise that MRR is a gross parameter
and is independent of the specific problem it is be-
ing used for, and the specific system parameters.
Our analysis examines various system parameters
in depth, and is the consequence of an analytical
model, and optimising a suitable cost function.



4. CONCLUSIONS

This paper presents an analysis of factors affect-
ing the performance of a melodic contour-based
QBH system. We propose a performance evalu-
ation methodology that does not involve a gross
system-independent statistics such as in Precision-
and-Recall and MRR. While MRR statistics also
consider a match based on a distance function,
our Demerit Coefficient goes much further in mod-
elling the performance of the QBH system in terms
of its parameters. We also propose a constrained
optimisation framework to find the optimal values
of performance-affecting system parameters.
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µ=0.52(UQ),
0.22(EPMQ)

µ=0.52(UQ),
0.22(EPMQ)

µ=0.52(UQ),
0.69(EPMQ)

µ=0.52(UQ),
0.67(EPMQ)

Figure 3: |FD(k) − RD(k)| plots using UQ and
EPMQ and the corresponding µ values for (from
top to bottom), the Levenstein Distance: without,
and with heuristics (Sec. 2); Normalised Edit Dis-
tance, without, and with heuristics, respectively.
The trends in all cases are similar, kopt = 4 (UQ)
and 4 (EPMQ).

(a)

(b)

Figure 4: Variation of MRR with the number of
quantisation levels for a set of 292 queries with (a)
Uniform, and (b) Equal Probability Mass Quanti-
sation, respectively.


