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Abstract

In many cases, a single view of an object may not contain sufficient features to recognize it unam-
biguously. This paper presents a new on-line recognition scheme based on next view planning for the
identification of an isolated 3D object using simple features. The scheme uses a probabilistic reasoning
framework for recognition and planning. Our knowledge representation scheme encodes feature-based
information about objects as well as the uncertainty in the recognition process. This is used both in the
probability calculations as well as in planning the next view. Results clearly demonstrate the effectiveness

of our strategy for a reasonably complex experimental set.
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I. INTRODUCTION

In this paper, we present a new on-line scheme for the recognition of an isolated 3D
object using reactive next view planning. A hierarchical knowledge representation scheme
facilitates recognition and the planning process. The planning process utilizes the current
observation and past history for identifying a sequence of moves to disambiguate between
similar objects.

Most model-based object recognition systems consider the problem of recognizing ob-
jects from the image of a single view ([1], [2], [3], [4]). However, a single view may not
contain sufficient features to recognize the object unambiguously. In fact, two objects may
have all views in common with respect to a given feature set, and may be distinguished
only through a sequence of views. Further, in recognizing 3D objects from a single view,
recognition systems often use complex feature sets [2]. In many cases, it may be possible
to achieve the same, incurring less error and smaller processing cost using a simpler feature
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set and suitably planning multiple observations. A simple feature set is applicable for a
larger class of objects than a model base-specific complex feature set. Model base-specific
complex features such as 3D invariants have been proposed only for special cases so far
(eg. [3]). The purpose of this paper is to investigate the use of suitably planned multiple

views and 2D invariants for 3D object recognition.

A. Relation with other Work

With an active sensor, object recognition involves identification of a view of an object
and if necessary, planning further views. Tarabanis, Allen and Tsai [5] survey the field
of sensor planning for vision tasks. We can compare various active 3D object recognition

systems on the basis of the following four issues:

1. Nature of the next view planning strategy.

The system should plan moves with maximum ability to discriminate between views com-
mon to more than one object in the model base. The cost incurred in this process should
also be minimal. The system should, preferably be on-line and reactive — the past and
present, inputs should guide the planning mechanism at each stage.

While the scheme of Maver and Bajcsy [6] is on-line, that of Gremban and Ikeuchi [7] is
not. Due to the combinatorial nature of the problem, an off-line approach may not always
be feasible.

2. Uncertainty handling capability of the hypothesis generation mechanism.

The occlusion-based next view planning approach of Maver and Bajcsy [6], as well as that
of Gremban and Ikeuchi [7] are essentially deterministic. A probabilistic strategy can make
the system more robust and resistant to errors compared to a deterministic one. Dickinson
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et al. [8] use Bayesian methods to handle uncertainty, while Hutchinson and Kak [9] use
the Dempster-Shafer theory.

3. Efficient representation of domain knowledge.

The knowledge representation scheme should support an efficient mechanism to generate
hypotheses on the basis of the evidence received. It should also play a role in optimally
planning the next view.

Dickinson et al. [8] use a hierarchical representation scheme based on volumetric primitives,
which are associated with a high feature extraction cost. Due to the non-hierarchical
nature of Hutchinson and Kak’s system [9], many redundant hypotheses are proposed,
which have to be later removed through consistency checks.

4. Speed and efficiency of algorithms for both hypothesis generation and next view planning.
It is desirable to have algorithms with low order polynomial-time complexity to generate
hypotheses accurately and fast. The next view planning strategy acts on the basis of these
hypotheses.

In Hutchinson and Kak’s system [9], although the polynomial-time formulation overcomes
the exponential time complexity associated with assigning beliefs to all possible hypothe-
ses, their system still has the overhead of intersection computation in creating common
frames of discernment. Consistency checks have to be used to remove the many redundant
hypotheses produced earlier. Though Dickinson et al. [8] use Bayes nets for hypothesis
generation, their system incurs the overhead of tracking the region of interest through

successive frames.

The next view planning strategy that this paper presents is reactive and on-line — the
evidence obtained from each view is used in the hypothesis generation and the planning
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process. Our probabilistic hypothesis generation mechanism can handle cases of feature
detection errors. We use a hierarchical knowledge representation scheme which not only
ensures a low-order polynomial-time complexity of the hypothesis generation process, but
also plays an important role in planning the next view. The hierarchy itself enforces
different constraints to prune the set of possible hypotheses. The scheme is independent
of the type of features used, unlike that of [8]. We present results of over 100 experiments
with our recognition scheme on two sets of models. Extensive experimentation shows
the effectiveness of our proposed strategy of using simple features and multiple views for

recognizing complex 3D shapes.

The organization of the rest of the paper is as follows: Section II presents our knowledge
representation scheme. We discuss hypothesis generation for class and object recognition
in Section III. Section IV describes our algorithm for planning the next view. In Section V
we demonstrate the working of our system on two sets of objects. We summarize the salient

features of our scheme and discuss areas for further work in the concluding section.

II. THE KNOWLEDGE REPRESENTATION SCHEME

A view of a 3D object is characterized by a set of features. With respect to a particular
feature set and over a particular range of viewing angles, a view of a 3D object is inde-
pendent of the viewpoint. Koenderink and van Doorn [10] define Aspects as topologically
equivalent classes of object appearances. Ikeuchi and co-workers generalize this definition
— Object appearances may be grouped into equivalence classes with respect to a feature
set. These equivalence classes are aspects [11]. In this context, we define the following
terms:
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6

Class A Class (or, Aspect-Class) is a set of aspects, equivalent with respect to a feature
set.

Feature-Class A Feature-Class is a set of equivalent aspects defined for one particular

feature.

Figure 1 shows a simple example of an object with its associated aspects and classes. The
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CLASS1
~" OBJECTON ™.
' TURNTABLE - AGhECTA
ASPECT 6 7 S T ASPECT 3
CLASS3 E:[ -------------- JI' CLASS1
ASPECT 7 » ~ L
CLASs1 =] v ASPECT 2
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ASPECT 8 1
CLASs o LT
ASPECT 1
CLASS 1

Fig. 1. Aspects and Classes of an object

locus of view-directions is one-dimensional and we assume orthographic projection. The
basis of the different classes is the number of horizontal lines(h) and vertical lines(v) in
a particular view of the object. Thus, a class may be represented as (hv). There are six
aspects of the object shown, belonging to three classes. In this example, for simplicity we

assume only one feature detector so that each feature-class is also a class.

We propose a new knowledge representation scheme encoding domain knowledge about
the object, relations between different aspects, and the correspondence of these aspects
with feature detectors. Figure 2 illustrates an example of this scheme. We use this
knowledge representation scheme both in belief updating as well as in next view planning.
Sections IIT and IV discuss these topics, respectively. The representation scheme consists
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Fig. 2. The knowledge representation scheme: an example

of two parts:

1. The Feature-Dependence Subnet

In the feature-dependence subnet

o F represents the complete set of features {F;} used for characterizing views

« A Feature node Fj is associated with feature-classes fjy.

Factors such as noise and non-adaptive thresholds can introduce errors in the feature
detection process. Let pj; represent the probability that the feature-class present is fj,
given that the detector for feature Fj detects it to be fj;. We define p;;, as the ratio of
the number of times the detector for feature F} interprets feature-class fj; as f;i, and the
number of times the feature detector reports the feature-class as fj;. The F}; node stores
a table of these values for its corresponding feature detector.

« A class node C; stores its a priori probability, P(C;). A link between class C; and
feature-class fj, indicates that fj; forms a subset of features observed in C;. This ac-
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counts for a PART-OF relation between the two. Thus, a class represents an n-vector
[fij1 f2jo --- [fnj.]- Since a class cannot be independent of any feature, each class has n
input edges corresponding to the n features.

2. The Class-Aspect Subnet

The class-aspect subnet encodes the relationships between classes, aspects and objects.

« O represents the set of all objects {O;}

« An object node O; stores its probability, P(0;)

« An aspect node a;; stores its angular extent 6;; (in degrees), its probability P(a;;), its
parent class C}, and its neighbouring aspects

o Aspect a;; has a PART-OF relationship with its parent object O;. Thus, 3-tuple
( O;, Cj, 0 ) represents an aspect. Aspect node a;; has exactly one link to any ob-

ject (O;) and exactly one link to its parent class C;.

III. HYyPOTHESIS GENERATION

The recognition system takes any arbitrary view of an object as input. Using a set
of features (the feature-classes), it generates hypotheses about the likely identity of the
class. This is, in turn used for generating hypotheses about the object’s identity. The
interaction of the hypothesis generation part with the rest of the system is shown in
Figure 3. Hypothesis generation consists of two steps namely, Class Identification and

Object Identification

A. Class Identification, Accounting for Uncertainty

Our algorithm suitably schedules feature detectors to perform probabilistic class iden-
tification. In what follows, we discuss its various aspects. Figure 4 presents the overall
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Fig. 3. Flow diagram depicting the flow of information and control in our system

algorithm.

A.1 Ordering of Feature Detectors

A proper ordering of feature detectors speeds up the class recognition process. At
any stage, we choose the hitherto unused feature detector for which the feature-class
corresponding to the most probable class has the least number of outgoing arcs i.e., the
least out-degree. This is done in order to obtain that feature-class which has the largest
discriminatory power in terms of the number of classes it could correspond to. For example,
in Figure 2 if all feature detectors are unused and Cy has the highest a prior: probability,
F3 will be tried first, followed by F, and F}, if required.
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A.2 Class Probability Calculations Using the Knowledge Representation Scheme

We obtain the a priori probability of class C; as:

P(Cy) =3 [P(Op) - 3 P(ap|Op)] (1)

p

Here, aspects a,, belong to class C;. Let Np;, N¢ and N, denote the number of feature-
classes associated with feature detector F}, the number of classes, and the number of
aspects, respectively. P(a,,|O,) is 6,,/360. We can compute P(C;) from our knowledge
representation scheme by considering each aspect node belonging to an object and testing
if it has a link to node C; — this takes O(N¢g + N,) time. (The N term is for the
initialization of class probabilities to 0.)

Let the detector for feature Fj report the feature-class obtained to be f;;. Given this

evidence, we obtain the probability of class C; from the Bayes rule:

P(C;) - P(fr]Cy)

P(Cilfik) = Y mlP(Cr) - P(fik|Con)]

(2)

P(f;x|C;) is 1 for those classes which have a link from feature-class f;. It is O for the rest.
The computation of Equation 2 takes O(N¢) time — this is done for each feature-class.
Hence, the computation of P(f;;|C;) for all feature-classes f;; for feature detector F; takes
time O(Np, - N¢).

For an error-free situation, P(C;|f;x) is P'(C;), the a posteriori probability of class C;.
However, due to errors possible in the feature detection process, a degree of uncertainty is

associated with the evidence. The value of P'(C;) is, then:

P'(Cy) = ;P(Oi|fjl) " Djik (3)
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11
where fjs are feature-classes associated with feature Fj. According to our knowledge
representation scheme, only one feature-class under feature Fj , say f;, has a link to
class C;. The summation reduces to one term, P(Ci|f;r) - pjrk. Thus, our knowledge

representation scheme also enable recovery from feature detection errors.

ALGORITHM identify_class

1. compute_a_priori_class_probabilities();
(x Fgq. 1; Section III-A.2 Part 1 *)
2. fd := identify feature_detector_to_use();
(*x Section III-A.1 *)
3. fcl := get_feature class(image,fd);
(x Use £d on the image, identify feature class *)
4. compute_a_posteriori_class_probabilities(fcl);
(x Eqs. 2,3; Section III-A.2 Part 2 *)
5. IF the probability of some class is above a
predetermined threshold THEN
pass this class as evidence to the
object recognition phase, EXIT
6. IF all feature detectors have been used
AND the probability of no class is above
the threshold THEN EXIT
7. GO TO Step 2

Fig. 4. The Class Recognition Algorithm

B. Object Identification

Based on the outcome of the class recognition scheme, we estimate the object probabil-

ities as follows. Initially, we calculate the a priori probability of each aspect as:
P(aj,k,) = P(0;,) - P(a,i,]0;,) (4)

If there are N objects in the model base, we initialize P(O;,) to 1/N before the first
observation. For the first observation, P(a;,x,|0Jp) is 0;,k,/360. a priori aspect probability
calculations take O(N,) time.

For any subsequent observation, we have to account for the movement in the probability
calculations. For example, a particular movement may preclude the occurrence of some
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aspects for a given class observed. The value of P(a;,i,|0;,) is given by Equation 5 below:

P(a;,k,105,) = ¢j,k,/360 (5)

where ¢, (¢jk, € [0,0;,k,]) represents the angular range possible within aspect a;,,
for the move(s) taken to reach this position. Due to the movement made, we could have
observed only m (0 < m < r) aspects out of a total of r aspects belonging to class C;.
Let the class recognition phase report the observed class to be C;. Let us assume
that C; could have come from aspects a;,x, , Gjoky 5 - - - Qjkn, Where all ji, jo, ... Jm are

not necessarily different. We obtain the a posterior: probability of aspect a;,;, given this

evidence using the Bayes rule:

P(ajlkl) j P(Ci|ajlkz)

P(a,,|C;) =
( y,kl| ) ;nzl[P(ajpkp) . P(Oi|ajpkp)]

(6)

P(Cilaj,) is 1 for aspects with a link to class C;, 0 otherwise. Finally, we obtain the a

posteriori probability

P(0;,) =Y P(aji|C;) (7)

l

where aspects a;,, belong to class Cj.

If the probability of some object is above a predetermined threshold(experimentally
determined, eg. 0.87 for Model Base I), the algorithm reports a success, and stops. If not,
it means that the view of the object is not sufficient to identify the object unambiguously.
We have to take the next view.

In our hierarchical scheme, the link conditional probabilities(representing relations be-
tween nodes) themselves enforce consistency checks at each level of evidence. The feature
evidence is progressively refined as it passes through different levels in the hierarchy, lead-
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13
ing to simpler evidence propagation and less computational cost. This is an advantage of

our scheme over that proposed in [9].

IV. NEXT VIEW PLANNING

The class observed in the class recognition phase could have come from many aspects
in the model base, each with its own range of positions within the aspect. Due to this
ambiguity, one has to search for the best move to disambiguate between these competing
aspects subject to memory and processing limitations, if any. The parameters described
above characterize the state of the system. The planning process aims to determine a
move from the current step, which would uniquely identify the given object. We pose the
planning problem as that of a forward search in the state space which takes us to a state
in which the aspect list corresponding to the class observed has exactly one node. We use
a search tree for this purpose. A search tree node represents the following information:
(Figure 5(a)) the unique class observed for the angular movement made so far, the aspects

aspect aj; belonging W
to clasgs C '

Bij+1

i ‘J HREGUE aspect

ye £
1
- 20
i
‘%:‘:._____%__ llllll e
The cumms L The current viewpoint can be
T [ M EEY] ent \"ICWF)U‘IHI. can be in this anguiug- range

in this angular range

(a) (b)

Fig. 5. (a) The notation used (Section IV) (b) A case when our algorithm is not guaranteed to succeed

(Section IV-A)
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14
possible for this angle-class pair, and for each aspect, the range of positions possible
within it (v;; — 7). 7 and 7;; denote the two positions within aspect a;; where the
current viewpoint can be, as a result of the movement made thus far. Here, 7, < 7;; and
Vij» Vij € [0, 6;;], where 6;; is the angular extent of aspect a;;. A leaf node is one which
has either one aspect associated with it or corresponds to a total angular movement of

360 degrees or more from the root node.

Figure 6 shows an example of a partially constructed search tree. From a viewpoint, we

[Cl (B YY) ; g Vaz:Yia] ;8] Yoz Yao] )]

/\

2 (C(aalveva; a14[v14 vi) o

/

Q
8
i
</
K‘:

Fig. 6. A Partially Constructed Search Tree

categorize possible moves as follows.

Primary Move A primary move represents a move from an aspect by «, the minimum
angle needed to move out of it.
Auziliary Move An auxiliary move represents a move from an aspect by an angle corre-

sponding to the primary move of another competing aspect.

Let of; and of; represent the minimum angles necessary to move out of the current assumed

aspect in the clockwise and anti-clockwise directions, respectively. Three cases are possible:

1. Type I move: «;; and «of; both take us out of the current aspect to a single aspect

ij
in each of the two directions — a;, and a,q, respectively. We construct search tree nodes
corresponding to both moves.

2. Type II move: Exactly one out of of; and of; takes us to a single aspect a;,. For the
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other direction, the aspect we would reach depends upon the initial position (€ Vi vf]])
in the current aspect. We construct a search tree node corresponding to the former move.
3. Type III move: Whether we move in the clockwise or the anti-clockwise direction,
the aspect reached depends on the initial position in the current aspect. We choose the
move which leads us to the side with the largest angular range possible in any reachable

aspect.

We expand a non-leaf node by generating child nodes corresponding to primary moves
for all competing aspects in its aspect list. We can also generate additional child nodes
by considering auxiliary moves. We assign a code to each move, a higher code to a less
preferred move. We assign a code 0 to Type I and II primary moves and 1 to Type II
auxiliary moves. Type III primary moves moves get a code of 2, and Type III auxiliary
moves, 3. The weight associated with a node is 4° - Code, where i is the depth of the
node in the search tree. We use three levels of filtering to determine the best leaf node.
First, we consider those on a path from the most probable aspect(s) corresponding to the
previously observed node. Among these, we consider those having paths of least weight.

From these, we finally select one with the minimum total movement.

A. The Planning Process and Object Recognition

In our object identification algorithm, aspect and object probabilities are initialized to
their a priori values. We use our class identification algorithm(Section III-A) to identify
the class corresponding to this view of the object. It then calculates the a posteriori object
probabilities. If the probability of some object is above a predetermined threshold, then
the algorithm declares that object as being present and exits. Else, the algorithm initiates
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the search process to get the best distinguishing move to resolve the ambiguity associated
with this view. It then decides on the best move and takes the next view. All the above
steps starting at the class identification phase are repeated. Figure 7 presents our overall
object identification algorithm in detail. Figure 3 shows the interaction of the next view

planning part with the rest of the system.

ALGORITHM identify_object

(x === FIRST PHASE ------ *)

1. initialize object_probabilities();

(* Initialize to 1/N *)
image:=get_image_of_object();
3. class:=identify _class(image) ;

(* Section III-A *)
IF class=UNKNOWN THEN exit;
search_tree_root:=construct_search_tree node(class,0);
5. compute_object_probabilities(search tree_root);

(x FEgs. 6,7 *)

6. IF the probability of some object is above a
predetermined thresh. THEN exit & declare success;
7. expand_search tree node(search tree_root,0,class);
(x Section IV *)
best_leaf :=get_best_leaf node(search tree root);

(k —————- SECOND PHASE ——---- *)
previous:=search tree_root;
expected:=best_leaf;

8. angle:=compute_angle to_move by(expected,previous);
make movement (angle) ;
image:=get_image of _object();
9. class:=identify class(image) ;
IF class=UNKNOWN THEN exit;
10. new_node:=construct_search_tree node(class,angle);
11. compute_object_probabilities(new_root);
12. IF the probability of some object is above a
predetermined thresh. THEN exit & declare success;
13. expand_search tree node(new_node) ;
best_leaf :=get_best_leaf node(newnode) ;
previous:=newnode;
expected:=best_leaf;
14. GO TO step 8

N

o

Fig. 7. The Object Recognition Algorithm

Search tree node expansion is always finite due to the following reasons: The number
of aspects is finite, and no aspect is repeated along a search tree path. Further, even
if competing objects have the same aspects, search tree expansion stops when the total
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movement along a path is 360°. Primary moves eliminate redundant image processing
operations, while auxiliary moves enable better aspect resolution. Our planning scheme
is global — its reactive nature incorporates all previous movements and observations both
in the probability calculations (Section III-B) as well as in the planning process. Our
robust class recognition algorithm can recover from many feature detection errors at the
class recognition phase itself(Section III-A.2). If the view indeed corresponds to the most
probable aspect at a particular stage, then our search process using primary and auxiliary
moves is guaranteed to perform aspect resolution and uniquely identify the object in the
following step, assuming no feature detection errors. Even if the view does not correspond
to the most probable aspect, the list of possible aspects a view could correspond to is
refined at each observation stage. The planning process is initiated with the new aspect

list. This illustrates the reactive nature of our planning strategy.

Assuming no feature detection errors, our algorithm is guaranteed to succeed except in
three cases. The first is for objects with the same aspect structure(i.e. the layout of classes
in the aspect graph) but different aspect angles. Further, our strategy does not handle the
case when the aspect angles are greater than or equal to 180 degrees. Figure 5(b) shows
an example of the third case. Let us suppose that we have to move anti-clockwise. Let v
denote the angular extent of the smallest aspect observed so far. The current viewpoint
lies in this angular range. Let a;;;1 be a unique aspect for the assumed object. The
anti-clockwise movement will be by an angle ¢ +w. If ¢ +w > 0,11, we may miss this
unique aspect altogether.
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B. Bounds on the Number of Observations

It is instructive to consider bounds on 7T,,,(n), the number of observations required to
disambiguate between a set of n aspects (corresponding to the initially observed class).
For a simple case to serve as a benchmark, let us assume the number of aspects reachable
from any aspect as 1, and no movement or image processing errors. We also assume no
errors in either movement or image processing. We choose a move that partitions the
initial aspect set into more than one equivalence class. If the size of the aspect list in
one such equivalence class is j, the expected additional number of observations is Ty,4(7),

S Tuwg ()

where j € [1,n). We have T,4(n) = 1 + ===, and T,,,(1) = 1. By induction, we

n—1

can show that T,,,(n) = O(log.n).

V. RESULTS AND DISCUSSION

Our experimental setup has a camera connected to a MATROX Image Processing Card
and a stepper motor-controlled turntable. The turntable moves by 200 steps to complete
a 360 degree movement. We use simple and robust features with low feature extraction
cost, compared to systems using complex features (eg. [8] uses volumetric primitives).

We have experimented extensively with two object sets as model bases. We have chosen
such objects in our model base that most of them have more than one view in common. The
list of possible aspects associated with one initial view is quite large. Our experiments
have been with both strategies — to have primary moves alone, and both primary and

auxiliary moves for expanding the search tree node corresponding to an observation.

1. Experiments with Model Base I
(Polyhedral Objects): We use as features, the number of horizontal and vertical lines
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((hv)), and the number of non-background segmented regions in an image((r)) We repre-
sent a class as (hvr). We use a Hough transform-based line detector [12]. For getting the
number of regions in the image, we perform sequential labeling(connected components:
pixel labeling) [12] on a thresholded gradient image. We have chosen this model base so
that most objects have more than one view in common — the degree of ambiguity associ-

ated with a view is very large. Figure 8 shows the objects in this model base. Figures 9

Fig. 8. Model Base I: The objects (from left) are O, Os, Os, Oy4, Os, Og, O7 and Og, respectively.

and 10 show some experiments with the objects in the first model base. For Figure 9,
the initial class observed in each case is (232), while it is (221) in Figure 10. We make the
following observations:

Primary and Auziliary Moves: In most cases, the number of image processing steps re-
quired is less in the latter case compared to the former. When memory and search time
are limited, the planning process may use primary moves alone. An interesting case is
observed in Figures 10(c) and (f) - an opportunistic case when the number of steps with
primary moves is less than the one with both primary and auxiliary moves. At step 2,
the move planned was not for the aspect eventually observed in step 3. Due to the move,
however the sequence of moves turns out to be unique for object Oj.

Ordering of feature detectors: The third image in Figure 9(a) shows an advantage of our
scheduling of feature detectors. The line detector reports the feature-class present to
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be (23). For the objects in our model base, this could correspond to classes (232) and
(233). Our probability calculations account for the movement taken around the object.
The probability of class (232) for the movement made so far exceeds the class probability
threshold(0.87). Hence, the system does not need to use the other feature detector.
Recovering from feature detection errors: The second image in Figure 9(a) shows a situ-
ation where the system recovers from an error in the feature detection process. Due to
the thresholds we use, the correct class is (221). The line detector, however reports the
probabilities of classes (221) and (231) as 0.004 and 0.856, respectively. The probability
of no class is above the threshold. The other feature detector is now scheduled, which
reports the number of regions to be 1. The probability calculations of Equation 3 result
in the probabilities of the two as 0.997 and 0.002, respectively.

Variation of object probabilities: Figure 11 shows the variation in object probabilities with
each observation. The two cases shown here are for the moves in Figure 9(a) and Fig-
ure 10(b). The latter shows an interesting case. Aspects belonging to class (221) occupy
a large extent for object O4. The sequence of moves till observation 3 could correspond
to Oy, Os, Og and O7; with probabilities 0.877,0.102, 0.014 and 0.007 respectively. The
reactive nature of our strategy ensures a correct and progressively refined aspect list cor-
responding to each observation (sizes: 17, 8, 6, 4 and 1, respectively). The move leading
to observation 4 reduces the number of competing aspects from 6 to 4. The aspects, the
angular extents possible within the aspects and hence their probabilities depend upon the
sequence of moves from the initial viewpoint. The probabilities of O4 and Oy are 0.740
and 0.225, respectively. The sequence of moves leading to observation 5 is unique only for

Os, identifying it uniquely.
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Some sample search tree details: We now consider some cases in detail. For each row in
Figure 9, the initial view could have come from 18 aspects belonging to objects in our model
base and for Figure 10, the corresponding number is 17. For the strategy involving primary
moves alone, the total number of search tree nodes generated for Figures 9(a), 9(b), 10(a)
and 10(b) are 53, 48, 34 and 48, respectively. For the strategy involving both primary and
auxiliary moves (Figures 9(c), 9(d), 10(d) and 10(e)), the corresponding numbers are 324,
279, 127 and 127, respectively. Let us consider Figure 10(e). The algorithm plans a move
of 77 steps. The second observation reports the number of aspects possible as 6. The next
move by 72 steps corresponds to a unique aspect.

Awverage number of observations for a given number of competing aspects: The upper
part of Table I gives an idea of the average number of observations for a given number of
competing aspects for the experiments with the first model base. The average is computed

over 46 experiments.

TABLE I
THE AVERAGE NUMBER OF MOVES FOR A GIVEN NUMBER OF COMPETING ASPECTS

Model Base I: Polyhedral Objects
Number of Average number of observations
Competing Aspects | Primary Moves | Pri. & Aux. Moves
5 2.00 2.50
17 3.09 3.07
18 4.00 3.38
Model Base II: Aircraft Models
Number of Average number of observations
Competing Aspects | Primary Moves | Pri. & Aux. Moves
4 2.00 2.00
5 2.00 2.09
7 2.00 2.00
9 2.00 2.00
10 2.67 2.67

2. Experiments with Model Base 11
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(Aircraft Models): We use the number of horizontal and vertical lines ((hv)), and the
number of circles({c)) as features. We represent a class as (hvc). We use hough transform-
based line and circle detectors [12]. We have chosen this relatively feature-rich model base
to demonstrate the effectiveness of our system using simple features and multiple views.
Figure 12 shows the objects in this model base.
For most of the 58 experiments (Figures 13, 14 and 15), the number of observations
required with primary moves alone, is the same as that considering auxiliary moves also.
This can be attributed to the lower degree of uncertainty associated with a view for
an object in this model base(a maximum of 10), compared to that for the first(18). The
second images in Figures 14(a), (b) and (d) show cases where the system does not need to
use the second feature detector. In the first image in Figure 13(b), due to the shadow of
the wing on the fuselage of the aircraft, the feature detector detects 4 vertical lines instead
of 3, the correct number. Our recovery mechanism (Section III-A.2) corrects this error.
For the experiments shown in Figure 14, the number of search tree nodes constructed
for primary moves alone is 14, whereas the corresponding number for both primary and
auxiliary moves is 125. The corresponding numbers for the experiments in Figure 15 are

14 and 41, respectively.

VI. CONCLUSIONS

This paper presents an integrated approach for the recognition of an isolated 3D object
through on-line next view planning using probabilistic reasoning. Our knowledge represen-
tation scheme facilitates planning by exploiting the relationships between features, aspects
and object models. The recognition scheme has the ability to correctly identify objects
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even when they have a large number of similar views. If a feature set is not rich enough
to identify an object from a single view, this strategy may be used to identify it from
multiple views. We demonstrate that the proposed recognition strategy works correctly
even under processing and memory constraints due to the incremental reactive planning
strategy. No related work has addressed this problem.

While we use simple features for the purpose of illustration, one may use other features
such as texture, colour, specularities and reflectance ratios. Over 100 experiments demon-
strate the effectiveness of using simple features and multiple views even on a relatively
complex class of objects with a high degree of ambiguity associated with a view of the
object. Our experiments show that one may use simple features to recognize objects with
complex 3D shapes (as in Figure 12).

Major areas for further work include multiple object recognition and searching for an
object in a cluttered environment. This would require suitably incorporating occlusion
handling techniques (eg. those in [13]). An extension of this work would take movement

errors into account.
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PRIMARY MOVES ALONE

) (232) =% (231(221)) =3 (232) =25 (221) =15 (232)

(232) (221) (221) (221)

PRIMARY AND AUXILIARY MOVES

c) (232) =13 (232) =% (221)

(d) (232) =% (221) =% (221) =% (221)

Fig. 9. Some experiments with Model Base I: initial class (232). The objects are O3((a), (c)) and O4((b),
(d)), respectively. The numbers above the arrows denote the number of turntable steps. A negative
sign indicates a clockwise movement. (The figure in parenthesis shows an example of recovery from

feature detection errors)
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PRIMARY MOVES ALONE

(221) (221) (423)

(b) Os: (221) 255 (221) 225 (221) =5 (221) =58 (221)

50 (221) 25 (232) % (232)
PRIMARY AND AUXILIARY MOVES

(221) (221) (423)
(221) (221) (322)

7138

£) O: (221) -5 (232) =28 (232) L5 (221) 25 (232)

Fig. 10. Some experlments with Model Base I: initial class (221). The numbers above the arrows denote

the number of turntable steps. A negative sign indicates a clockwise movement
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Fig. 11. Variation of object probabilities: two examples

Fig. 12. Model Base II: The objects (in row major order) are heli_1, heli_2, plane_1, plane_2, plane_3,

plane_4, and biplane.
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a) biplane: (332) =% (420)
b) plane_1: (342(332)) =2

(c) plane_1: (332) 2%

(410)

S (410)

(d) heli_1: (332) =% (540)

(332) (510) (510)

Fig. 13. Experiments with the initial class as (332). (The figure in parentheses shows an example of

(e) heli_2

recovery from feature detection errors). In each of these cases, the results for planning with primary

moves alone, and those for both primary and auxiliary moves are identical
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PRIMARY MOVES ALONE

(c) plane_1: (411) =% (332)

PRIMARY AND AUXILIARY MOVES

(e) plane_2: (411) =% (215(214))

(f) plane_1: (411) =% (332)

Fig. 14. Experiments with the initial class as (411). (The figure in parentheses shows an example of

recovery from feature detection errors).
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PRIMARY MOVES ALONE

(a) plane_1: (410) =5 (411)

(b) plane_1: (410) =23 (411)

(c) plane_4: (410) =23 (212)
PRIMARY AND AUXILIARY MOVES

d) plane_1: (410) =3 (411)
(e) plane_1: (410) =5 (411)

+

epe

(f) plane_4: (410) =2 (212)

Fig. 15. Experiments with the initial class as (410)
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