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Abstract

Many 3-D object recognition strategies use aspect graphs to
represent objects in the model base. A crucial factor in the
success of these object recognition strategies is the accurate con-
struction of the aspect graph, its ease of creation, and the extent
to which it can represent all views of the object for a given setup.
Factors such as noise and non-adaptive thresholds may intro-
duce errors in the feature detection process. This paper presents
a characterization of errors in aspect graphs, as well as an al-
gorithm for estimating aspect graphs, given noisy sensor data.
We present extensive results of our strategies applied on a rea-
sonably complex experimental set, and demonstrate applications
to a robust 3-D object recognition problem.

Keywords Aspect Graph, Feature Detection Errors, Noisy
Sensor Data, Aspects, Classes, Aspect Graph Construction Al-
gorithm

I. INTRODUCTION

Many 3-D object recognition strategies use aspect graphs ([1],
[2], [3], [4], [5], [6], [7])- Any object recognition strategy, based
on single or multiple views, requires robust identification of a
view of the given object. The success of such a strategy crucially
depends upon its ability to model and account for feature de-
tection errors. This paper presents a new algorithm for aspect
graph generation with noisy active sensors.

View-based 3-D object recognition strategies are based on
representation schemes such as appearance-based parametric
eigenspaces [8], and aspect graphs. The former method is as-
sociated with problems such as segmenting the object from the
background, high storage requirements, and a time-consuming
(though off-line) training phase. Further, an aspect graph-based
approach is more general in that appearance-based information
can also be used to construct an aspect graphs.

Depending on the method used to construct them, aspect
graphs may be classified as: Exact aspect graphs, and Approx-
imate aspect graphs (hereafter, AAGs)

Analytical approaches are used to construct exact aspect
graphs — directly from object shapes and surface character-
istics. A limitation of such an approach is its applicability
to only a specific class of objects — transparent smooth ob-
jects([9]), piecewise-smooth objects and algebraic surfaces([10]),
curved objects([11]), 2.5-D polyhedra under orthographic pro-
jection([12]), arbitrary polyhedra under orthographic projec-
tion([13]), convex polyhedra under perspective projection([14]),
arbitrary polyhedra under perspective projection([15]) and ob-
jects with moving parts([16]). In the context of aspect graphs,
an ‘error’ is a non-conformance of the observed feature data at
a position in the viewpoint space with the one predicted by the
aspect graph. Algorithms for aspect graph construction from
CAD data generally do not address the issue of errors in as-
pect graphs. For analytical approaches, one would need very
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precise models of not only the noise process, but also the sen-
sors and detectors, and the imaging process. Lu, Shapiro and
Camps consider a very restricted class of feature detection er-
rors in [17]. Even the elaborate feature modeling and predic-
tion module in PREMIO [18], [19] is not able to account for
many physical effects. The scale space approach of Eggert et
al. [20], [21] and Pae and Ponce [22] model some types of errors
through the notion of scale. Wilkes, Dickinson and Tsotsos [23],
[24] present a computational model for view degeneracy. Wein-
shall and Werman [25] analytically derive the ‘view stability’
and ‘view likelihood’ measures for two feature-based 2-D met-
rics. These approaches do not account for all types of errors in
aspect graphs. Further, the work on exact aspect graphs con-
centrates solely on their construction, rather than their use in
a recognition task [26].

g

IMAGE SEEN BY THE CAMERA

(a)

RS T
ASPECT 6
CLASS?2 [I:I] 0.
ASPECT 7 OBJECTON ™.
- TURNTABLE -~ ASPECTA
) CLASS?2
ASPECT 8 41—~ - ASPECT 3
CLASS3 E[ ,,,,,,,,,,,,,, J:D CLASS1
ASPECT O] ™ Nl
LA - i ¥ ASPECT 2
- ~ 'CLASS?
ASPECT 10
CLAGS 2 [I:D -
ASPECT 1
CLASS 1
(b)
Al A6 Al
(AZ A3 A4 A51A7 A8 A9 AlO)\

KEY: Ai = ASPECTIi

[] ctass1 [l cLAss2  [[] CLASS3
()
QQG‘ with Sfliegr-ee ‘téssslla‘t)lnn .
Class 3 | 4
Class 2
a 1eg 158 [=:1] 258 pel=1:] 358

F\r’\gular‘ Position of Observation Site Cin degrees)

Fig. 1. (a) An example of the 1-DOF case; (b) the object with its aspects
and classes; (¢) Gantt chart representation of the aspect graph; and (d)
an AAG of the object, shown as a class-distribution

AAG construction approaches usually tessellate the viewpoint
space into uniform partitions. A site is a representative view-
point for a partition, at which sensor data is collected. Adjacent
viewpoints which give the same appearance of the object with
respect to a feature set, are grouped together to form an aspect.
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Fig. 2. (a) An example of the 3-DOF case; (b) The tessellated viewing

sphere, and (c) its flattened-out representation; and (d) the object with
its aspects and classes

Examples of partitioning strategies, and related issues are [27],
[28], [3], [29], and [26]. The uniform partitioning approach is
independent of the object shape and structure, the sensor, or
the feature set. Using an AAG, it is possible to get information
about noise and other feature detection errors from observed
data directly. No related work accounts for feature detection
errors in aspect graph construction. The authors in [3] mention
only one type of error — errors on aspect boundaries.

This paper characterizes different types of errors in AAGs.
We present an algorithm to construct an aspect graph, given
noisy sensor data obtained from sites in the viewpoint space.
We consider the uniform partitioning approach in this paper.
The approach is independent of the specific features used. We
propose a function to evaluate the output of aspect graph con-
struction algorithms. We present results of over 100 experiments
showing the effectiveness of our strategies. We use AAGs thus
constructed in our work on robust 3-D object recognition us-
ing the same noisy feature detectors — details of which may be
found in [5], [6] and [7].

The organization of the paper is as follows: Section II presents
a characterization of errors in raw aspect data. We present our
algorithm for aspect graph construction in Section ITI, as well as
our evaluation function for comparing aspect graph construction
algorithms. We present results of extensive experimentation in
Section IV. Section V gives a brief overview of the applica-
tion of our AAG construction algorithm to robust 3-D object
recognition. In the concluding section, we summarize the salient
features of our scheme.
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Fig. 3. Representation of a 3-DOF AAG: for aspect a;

II. AAGs, ERRORS IN RAw AspECT DATA

Koenderink and van Doorn [30] define aspects as topologi-
cally equivalent classes of object appearances. Ikeuchi and co-
workers generalize this definition to the output of different types
of sensors [31]. An aspect is a collection of contiguous sites in
viewpoint space which correspond to the same set of features. A
Class (or, Aspect-Class) is a set of aspects, equivalent with
respect to a feature set.

With the uniform partitioning approach, construction an
AAG requires visiting each site in the tessellated viewing space
around the object. In this paper, we consider the two cases,
with different degrees of freedom (hereafter, DOF) between the
object and the sensor: (i) the sensor can move around the ob-
ject in a circle (1-DOF case), and (ii) a sphere (3-DOF case).
Figure 1(a) shows an example of the 1-DOF case, along with an
image taken by the camera (orthographic projection assumed).
Figure 1(b) shows an example of an object with its associated
aspects and classes. Figures 1(c) and 1(d) depict two ways of
representing a 1-DOF aspect graph. Figure 1(c) shows a Gantt
chart - each aspect of the object is represented by a shaded rect-
angle, proportional to its angular extent on the flattened-out
perimeter of the viewing circle. Different shading patterns rep-
resent different classes. We may also represent an aspect graph
as a plot of the class at each viewing position. The x-axis repre-
sents different viewing positions on the flattened-out perimeter
of the viewing circle, while the non-metric y-axis represents dif-
ferent classes as different heights. Figure 1(d) shows an AAG of
the example object represented as a class-distribution. We use
a circular linked list as the data structure to represent an AAG.
Each node (an aspect) stores information such as its associated
class and its angular extent.

Figure 2 shows the corresponding examples for the 3-DOF
case. The viewing space is a tessellated sphere (Figure 2(b)).
Aspects and classes of this object are depicted in Figure 2(d),
for one octant of the viewing sphere. We use the icosahedron-
based tessellation algorithm of Chen and Kak [29]. We use
a weighted graph as the data structure to represent a 3-DOF
AAG (Figure 3). Each node represents an aspect. An adjacent
node is one with which it shares a common boundary (in the
tessellated viewing space). The weight of the link between them
is the length of this common boundary.

Factors such as noise and non-adaptive thresholds may cor-
rupt the output of a feature detector. The result is an incor-
rect feature at a viewpoint. Let the term ‘raw aspect data’ de-
note the collection of features obtained at the set of sites in the
tessellated viewing space. We refer to aspects and classes ob-
tained from raw aspect data as aspect-candidates and class-
candidates, respectively. Thus, we can have erroneous aspect-
candidates and class-candidates, but no erroneous aspects and
classes. Let us use the terms A and C to denote the set of
all aspect-candidates and the set of all class-candidates, for a



particular model base, respectively.
function:

We define the following

CLASS_CAND : A—C
Thus, for an aspect-candidate «, the function CLASS _CAND(a)

returns its corresponding class-candidate. We use the notation
A. to denote the set of all aspect-candidates corresponding to
class-candidate ¢. Formally,

Ac2{a € A| CLASS_.CAND(a) =¢,  c€C}

A. A Classification of Errors in Raw Aspect Data

An error-free AAG has aspects, whose corresponding angu-
lar extents are not too small in size. The discontinuities in the
smoothness correspond to aspect boundaries. Thus, an error-
free AAG is characterized by piecewise continuity in the class-
candidate labels. We base our error classification on experi-
mental observations — the feature data obtained with an active
sensor. We first present an intuitive explanation behind our er-
ror classification. An error corresponds to a small region whose
class-candidate label is different from the labels in its neighbour-
hood. Our error classification considers the sizes of the error
region, and the properties of the class-candidates in the error
region compared to those in their neighbourhood. Raw aspect
data can contain a small error region sandwiched between two
large aspect candidates. If the surrounding aspect-candidates
have different class-candidates, the error could indicate a transi-
tion between two aspects. If the surrounding aspect-candidates
have the same class candidate, we could have cases when some
erroneous class-candidate ¢ may occur as error regions exclu-
sively in regions corresponding to a particular class ¢’ of an
exact aspect graph. This could be due to characteristics of
the particular experimental setup — sensor response character-
istics, sensor positioning, lighting arrangements, the imaging
process and the feature detection mechanism. We term this
phenomenon as an association error. For large error regions
may contain a large proportion of small regions corresponding
to the same class-candidate — an indication that they were all
part of the same aspect. Such considerations form the basis of
our classification of errors in AAGs into Types I — V.

For the 1-DOF case, the space of viewpoints is a circle. Three
parameters characterize an aspect-candidate a — its correspond-
ing class-candidate CLASS_CAND(«), its angular extent 0, (in
terms of the number of sites it occupies), and its position in the
aspect graph. In order to characterize an error region, we need
to define size parameters. We define the following terms:

Omin : the minimum extent which an aspect-candidate
must have to be called a Valid aspect-candidate
O, : the minimum extent which an aspect-candidate
must have to be called
a Prominent aspect-candidate (0, > Onin)

A = { a]| Ba > Omin,where a € A}

A class-candidate present at a large number of sites is not likely
to correspond to an error. We would like to identify those class-
candidates which correspond to aspects in an error-free aspect
graph — valid class-candidates. If a class-candidate is not a
valid class-candidate, the total number of sites corresponding
to it would be less than a threshold, Ny,;n. Further, A = ¢
i.e., it has no valid aspect candidate corresponding to it. We
clarify the significance of having two separate parameters Ny,in
and O,in. Nmin is a property of a class-candidate, whereas
Onmin is a property of an aspect-candidate. The presence of
closely-spaced small fragments (aspect-candidates which are not
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Fig. 4. A pictorial representation of some types of errors (Different shad-
ing patterns represent different aspect candidates): the 1-DOF case

valid i.e., extents < Opin) corresponding to the same class-
candidate c is an indication of the presence of an aspect in the
corresponding error-free aspect graph. Thus, ¢ can still be a
valid class-candidate, if its total number of occurrences is not
less than Ny,in. We provide further explanations in the context
of a Type II error, below.

We classify errors in aspect data into five categories. The
classification is based on the width of the region R between two
valid aspect-candidates, their properties, and the properties of
the (non-valid) aspect-candidates present in region R.

Type I Error A Type I error is present as a small transition re-
gion between two aspects of the corresponding error-free aspect
graph. This corresponds to the “border effect” in [3]. In the
raw aspect data, a Type I error can be described as follows:
(Figure 4(a) illustrates an example of this type of error for the
1-DOF case.)

eai 3 eaj Z emin

CLASS_CAND(a;) # CLASS_CAND(a;), and
Z 0u;, < Omin, V ar between a; and a;

Ak

Here, a; and a; are two valid aspect-candidates belonging to
different class-candidates such that there is a small region of
width < O,,in between them.

Type II Error First, we characterize the region in which a Type
IT error can lie. Type II errors can be present in a small isolated
error region inside an aspect of the corresponding error-free as-
pect graph. Figure 4(b) shows an example of such a region
In the raw aspect data, we observe a small region of width <
Omin in between two valid aspect-candidates a; and aj. The
two enclosing aspect-candidates a; and a; correspond to the
same class-candidate (say, ¢’). Formally,

1. eaiyeaj Z emin

2. Eak Bar, < Omin V ar between a; and a;

3. CLASS_CAND(a;) = CLASS_CAND(a;) =¢
We now define a Type II (association) error. For the small en-
closed error region, those aspect-candidates constitute a Type
II error, whose class-candidates observed are associated with
the class-candidates of the enclosing aspect-candidates. Let us
consider aspect-candidates a, in the small enclosed region (de-
scribed above). We may describe this as follows:



1. EaEAC 0o < Npmin, where CLASS_CAND(ax) = ¢

2. A7 =¢, and

3. P(c actual | Cobservea) > a threshold Th, 0 < Ty < 1
For an aspect-candidate ar to constitute a Type II error, its
corresponding class-candidate ¢ should not be a valid class-
candidate. In other words, the class-candidate c¢ is observed
at less than N, sites in the tessellated viewing space. Fur-
ther, the relative extent to which its corresponding valid aspect-
candidates (if any) occupy the viewpoint space is also low. The
most important condition for a Type II error is the third one
— given that this class-candidate c is observed, the probabil-
ity that it actually is another class-candidate ¢, is high. Our
algorithm for AAG construction (Section III-B) describes the
process of keeping estimates of association error probabilities.
A particular object in the model base may have a distinctive fea-
ture, or a combination of features that permit it to be clearly dis-
tinguished from other models. Additionally, this may be present
over a small range of viewing angles. Conditions 2 and 3 taken
together allow for such cases to be treated as aspects, and not
as errors. For a distinctive feature, one would expect either the
total number of sites at which the class-candidate is observed,
to be greater than the N,,;, threshold; or the class-candidate
to have most of its aspect-candidates with extent not less than
Opin. Both the above conditions may also be simultaneously
true. If none of these conditions hold, the distinctive aspect will
be treated as an error condition.

Type III Error A small isolated error region inside a region cor-
responding to an aspect of an error-free aspect graph (as defined
above) may contain either Type II or Type III errors. For a
Type 11 error, the only requirement is P(c’ aetuar | Cobserved) <
T}, i.e., the probability of recognizing class candidate c as ¢’ is
minimal.

Type IV Error Due to noise, an aspect of an error-free AAG
could be fragmented such that the raw aspect data has closely
spaced aspect-candidates with the same class-candidate (Fig-
ures 4(c) shows an example of this situation). Such regions
contain Type IV and Type V errors. Formally, Type IV and
Type V errors can be present in a ‘large’ region between two
valid aspect-candidates:

1. 0a), < Omin, V ar between a; and a;

2. Eak eak 2 emzn
In other words, no aspect-candidate ay in the region is a valid
aspect-candidate. However, the size of the entire region > 0y,
As aspect-candidate a constitutes a Type IV error if the follow-
ing error conditions hold:

1. maxgea, 03 > Omin, where CLASS_CAND(a) =c¢

2. 3y € Gy : CLASS_CAND(v) = CLASS_CAND ()
Here, term A. denotes the set of all aspect-candidates corre-
sponding to class-candidate c. G, denotes the set of all aspect-
candidates in the neighbourhood of aspect-candidate a.
This type of error considers those aspect-candidates which
themselves do not have enough extent to be considered valid
aspect-candidates. However, there are other valid aspect-
candidates associated with this class-candidate, elsewhere. In
Figure 4(c), aspect-candidate o shows an example of a Type
IV error. A Type IV error indicates that the aspect-candidates
with the same class-candidate may be part of a single aspect.
Type V Error Like Type IV errors, Type V errors too can be
present in a ‘large’ region between two valid aspect-candidates
(as defined above). An aspect-candidate o constitutes a Type
V error if either

e VY€ Gy, CLASS_.CAND(v) # CLASS_CAND(a), or

e 3y € Ga : CLASS_CAND(y) = CLASS_CAND(«), but
maxgea, 0 < Omin, where CLASS_CAND(a) =c
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Fig. 5. A pictorial representation of some types of errors (Different shad-
ing patterns represent different aspect candidates): the 3-DOF case. (a)
Type I error, (b) A region with Types II & III Errors, and (c¢) Types IV
and V Errors. The thick dashed curve encloses aspect-candidates in the
region of interest R.

In Figure 4(c), aspect-candidate 3 illustrates an example of a
Type V error. Type V errors are very difficult to correct since
they give very little indication as to which aspect (in the corre-
sponding error-free aspect graph) they might have come from.

For the 3-DOF case, an error region R consists of either a sin-
gle small aspect-candidate, or a group of adjacent small aspect-
candidates (the regions bounded by thick dashed curves in Fig-
ure 5.) The terms corresponding to 6o, Omin and ©, are wa,
Qmin and Q,, respectively. We need to look at neighbourhood
relationships of R with its adjacent aspect-candidates. Let B(c)
denote the set of sites on the boundary of aspect-candidate a.
We recall the weighted graph representation of an AAG (Sec-
tion II). In this context, we define the following terms:

W(ai,az) 2 min(|S1[, |S2]), (|| denotes cardinality)
Si={s|se€ NEIGH(s"),s' € B(a:)} N B(ai+1) mod 2),

ADJ(a) £ {8 | W(a, B) # 0}, (i.e., nodes linked to )

The five-category error classification for the 3-DOF case follows
on lines similar to the 1-DOF case. This is based on the size
of an aspect-candidate, its boundary relations with adjacent
aspect-candidates (relative size of the common boundary), and
relations with aspect-candidates in its neighbourhood. We only
present examples here using figures (Figure 5(a), (b) and (c)).
[32] presents a complete mathematical description for the 3-
DOF case.

III. AAG CONSTRUCTION FROM ERRONEOUS RAW ASPECT
DATA

Let us define the terms ‘smoothness’ of model base
data(S(A)), and the total model base error(£(A)) as follows:

S(A)
E(A)

(1/M) ) El]\il ch'zl d(cijv CijJrl)
(1/M)- 3201, 305, dleij, Dig)

where M is the number of objects in the model base and G is
the number of tessellated viewpoints for the aspect data. Here,
D;; refers to the original raw aspect data at the jth site in
model number i. ¢;; is the corresponding class-candidate label
assigned to it by the AAG construction algorithm. d(, ) denotes
the distance between two class-candidates. Depending on how
class-candidates are defined, this distance may be the ‘distance’
between two graphs representing topological relations, or the
Euclidean distance between two normalized feature vectors.

> >

A. A New Ewvaluation Function for AAGs

As mentioned in Section II-A, an error-free AAG has aspects,
whose corresponding extents are not too small in size. Further,



an error-free AAG is characterized by piecewise continuity in the
class-candidate labels (as in Figure 1(d)). Fidelity to the origi-
nal data is another desirable feature. In view of these conflicting
requirements, we define the ‘Demerit Coefficient’ n(M, i, ) for
the AAG of model i in model base M as a non-convex sum
of three terms. The third term penalizes too many prominent
discontinuities in the aspect data. p;; is defined to be 1 at if
the distance between class-candidate labels at two adjacent sites
d(cij,cij+1) > threshold 7, and 0 otherwise. The first term,
thus takes the piecewise smoothness criterion into account. The
second term considers the fidelity between the original class-
candidate at a site D;; and the one assigned to the site by the
algorithm ¢;;. p, v and o are constants.

uZ(l — pij) d(cij, cij+1) + Vzd(cij,Dij) + UZPH
i i i

(For our experimentation, we have chosen the constants u, v
and o such that all the three terms have the same order of
magnitude.) We define the Demerit Coeflicient for the set of
AAGs for the entire model base as the average of the Demerit
Coefficients of the M individual models’ AAGs, using the same
constants and threshold for each model:

M

MNMmodel base(MyT) é (1/M) ZW(MJ,T)

i=1
B. AAG Construction Algorithm

This section proposes a low order polynomial time-complexity
algorithm for building an AAG from noisy aspect data in the
1-DOF case. Extensive experiments with two model bases (Sec-
tion IV) shows that the output of the algorithm to have far lower
values of the Demerit Coefficient compared to the noisy data
input to it. Section III-B.5 briefly describes the corresponding
algorithm for the 3-DOF case.

B.1. ASSOC_TABLE & Association Probability Estimates.
The algorithm maintains estimates of the probability with which
one class-candidate is observed as another. For example, one ex-
pects valid class-candidates to be observed correctly with a high
probability. To keep estimates of these association values, the
algorithm uses an N¢ X N¢ matrix, the ASSOC_TABLE. The
[i][j]th entry stores a relative count of the number of times class-
candidate c; is observed as ¢;. We use the ASSOC_TABLE
estimates for our work on robust 3-D object recognition (Sec-
tion V).

We have a chicken-and-egg problem here. Proper
ASSOC_TABLE estimates of P(c gctual | Cobservea) would be
available only after the completion of the algorithm execu-
tion. However, the algorithm needs proper (qualitative) es-
timates of P(c/actual | Cobservea) for various processing opera-
tions. Hence at each stage, we need a good current estimate of
P(c wetuat | Cobserved) values. Therefore, we structure the phases
in our algorithm in such a way that we fulfill this requirement.

Figure 1(c) shows the AAG of a polyhedral object. Figure 6
shows an example of this AAG corrupted with errors. With
reference to this example, we discuss the three phases of our
algorithm as follows:

B.2. Algorithm Phase I. Phase I of our algorithm is primar-
ily concerned with identification of valid class-candidates. The
algorithm clusters the raw aspect data into aspect-candidates
using a 1-D version of Horn’s sequential labeling algorithm
([33]). Prominent aspect-candidates correspond to valid class-
candidates. We initialize the ASSOC_TABLEi][i] entries for

Fig. 6. The AAG of Figure 1(c) corrupted with errors. Some error regions
are shown marked as A, B, C and D (Details in text).

such class-candidates ¢ with the sum of the extents of all promi-
nent aspect-candidates corresponding to ¢. Hence for such an
AAG, this phase is expected to identify most of the valid class-
candidates for the given model base. Phase I does not remove
any errors from the raw aspect data. This phase requires one
pass through the raw aspect data at each site for each model in
the model base.

B.3. Algorithm Phase II. Phase II is primarily concerned with
identification of prominent aspect-candidates after removing in-
terspersed errors. In this phase, we consider small isolated re-
gions between two valid aspect-candidates. We specifically con-
sider the case when the two aspect-candidates correspond to the
same class-candidate. In Figure 6 for example, Phase IT consid-
ers regions marked A and B. We handle Type II and Type III
errors in this phase. In this phase, we consider pairs of proxi-
mal valid aspect-candidates, with the same class-candidate,
say c. We define a pair of valid aspect-candidates (a;,a;) as
proximal valid aspect-candidates if

o, € (0,0min) V ar between a; & a;in the direction
of traversal of the aspect-candidate list.

For each pair of proximal valid aspect-candidates with the same
class-candidate separated by a gap of width < ©,,i,, we inte-
grate both the valid aspect-candidates and those in between
them, into one. For the class-candidates corresponding to the
valid aspect-candidates, we increment the ASSOC _TABLE]i][i]
count by the size of the aspect-candidates. For the aspect-
candidates a, between a; and aj, the algorithm updates the
entry corresponding to CLASS_CAND(ax) being observed as
CLASS_CAND(a;) by the size of aspect-candidate aj. Phase II
of our algorithm removes Type IT and Type III errors. (Whether
the isolated error removed is a Type II or Type III error will
be clear from the ASSOC_TABLE conditional probabilities).
Our experimentation shows that these estimates of association
errors made in Phase II are reasonably correct.

B.4. Algorithm Phase III. The third phase of our algorithm
handles the rest of the raw aspect data. There are two passes
through Phase III. The first is a logical pass, done in order to get
further (better) estimates for ASSOC_TABLE entries. Figure 7
gives an outline of the steps performed in this phase.

In Phase III again, we consider pairs of proximal valid aspect-
candidates a; and a;. Depending on the gap between a; and a;
in the direction of traversal, we consider two cases:

Case 1: gap(ai,a;) < Omin
In such a case, we cannot have any valid aspect-candidate in
between a; and a; (such as region C in Figure 6). For this
reason, we obtain the minimum square-error decision boundary
for the region of gap ¢ (0 < Omin). We now take the minimum-
error decision boundary considering the association information
collected thus far. Of the two decision boundaries calculated so
far, the algorithm takes the one with the minimum error. This
process has quadratic (O(62)) time complexity as one has to



ALGORITHM: Phase_III

(x Two passes are made through Phase_III. *)
(x After the first(LOGICAL) pass, keep ASSOC_TABLE *)
(* unchanged. Then, make the second (ACTUAL) pass. *)
FOR EACH model IN model_base REPEAT the following step
FOR EACH proximal valid aspect_candidate pair {ai,a;} DO
(x consider region from a; to a; *)
IF gap(ai, @;) < Omin THEN
BEGIN (* create single decision boundary *)
a. get the minimum-error decision boundary from
raw aspect data; and considering
ASSOC_TABLE info for each class_candidate
b. of the two, select the one which incurs min sq error
integrate aspect_candidates from a; till just before
before the decision boundary, into a;; and those
between the decision boundary & a;, into aj;
END (* create single decision boundary *)
ELSE
BEGIN (* handle large region *)
1. create normalized freq histogram for class_candidates
2. (¥ — First Rule — *)
IF max(histogram) > To AND
the corresponding class_candidate
== CLASS_CAND(a;) == CLASS_CAND(aj) THEN
integrate all aspect._candidates from a; to a; into a;;
RETURN;
3. (x — Second Rule — %)
FOR EACH histogram entry > T3 DO
IF the corresponding class_candidate == CLASS_CAND
of any/both surrounding aspect_candidates THEN
integrate aspect_candidates in between to that/those
surrounding aspect_candidate(s); RETURN;
4. x( — Third Rule — %)
FOR EACH class_candidate c with histogram entry > T4 DO
FOR EACH pair of aspect_candidates (ap,a;) between
a; and aj, with class_candidate c¢
IF gap(ay,a;) < THEN
integrate aspect_candidate from ap to a; into ax;
ELSE
IF current_size(ar) < ©,,;, THEN UNDO changes to ag;
5. FOR EACH remaining region between a; and a; DO
create single decision boundary (* as in steps a - d *)
END (* handle large region *)

Fig. 7. The Algorithm: Phase ITI

calculate the error for the entire region considering all possible
positions of the decision boundary. We can thus remove Type
I errors.

Case 2: gap(ai,a;) > Omin

Region D in Figure 6 shows an example of this situation. Here,
we have a trade-off between the optimality of the algorithm
in terms of one parameter affecting the optimality in terms of
another. Taking a single decision boundary for a large region
may not just be time-consuming, but also may not be optimal
since there may be one or more aspects in the region under
consideration. To handle these cases, we try heuristic rules 1 -
3 (details in Figure 7). These are based on the relative frequency
of occurrence for different class-candidates in the region under
consideration, and their neighbourhood relations. If one of them
succeeds, we exit and consider the next pair of proximal valid
aspect-candidates. Otherwise, we try the next one. These rules
aim at removing Type IV errors, and some Type V errors. After
trying out region growing, we may be still be be left with regions
between a; and a; unaccounted for. We get a single minimum
square-error decision boundary for all such regions, as in Case
I above.

Fig. 8. Model Base I: The objects (in row major order) are heli_1, heli_2,
plane_1, plane_2, plane_3, plane_4, and biplane.

B.5. Algorithm for 3-DOF AAG Generation. Our 3-phase al-
gorithm for the 3-DOF case follows exactly on the same lines as
the 1-DOF algorithm — [32] contains a detailed description of the
same. As mentioned in Section II, we use an icosahedron-based
geodesic tessellation (Figure 2(b), (c)) of the viewing space for
the 3-DOF case. We formulate an algorithm whose time com-
plexity is linear in the size of the AAG. We use the weighted
graph representation of an AAG (Section II), and the related
definitions (Section II-A). The algorithm considers the size of
different aspect-candidates, and their relationships with neigh-
bouring aspect-candidates. For the first phase, we formulate a
raster-scan method to cluster the raw aspect data in a spherical
array (Section II) into aspect-candidates, based on the similarity
between neighbouring views, in terms of the features observed
(Section III). The algorithm then considers regions R (Sec-
tion II-A) and looks at their neighbouring regions. The second
phase removes Type II and IIT errors, while the third phase
tackles Type IV and V errors. The erroneous aspect-candidates
are identified on the basis of their relative size, the weight of
their links with adjacent nodes in the graph representation of
the AAG, and the similarity of their class-candidates with those
of their neighbouring nodes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents experimental results with two model
bases for the 1-DOF case. We also present results of experi-
ments for the 3-DOF case, with synthetic data. Though our
formulation is independent of any specific feature set, we use
simple image features for our experimentation. We base our
choice on the following issues.

It is difficult to extract topological information from im-
ages [34]. Nearly all object recognition systems which use aspect
graphs, use simple image features e.g., Hutchinson and Kak [2]
(faces of a polyhedral object which are segmented from range
images), Ikeuchi and Kanade [28], [35] use a binary feature vec-
tor based on the visibility of faces, Gremban and Ikeuchi [3]
use information about the number and other features of specu-
larities, and Chakravarty and Freeman [1] use a feature vector,
whose components are the number of junctions of each of the 8
types. PREMIO [18], [19] uses topological information. How-
ever, it suffers from the overhead of having to match two hier-
archical topological descriptions. Dickinson and co-workers [4],
[36] use an Aspect Prediction Graph — their method has two
important shortcomings. First, volumetric primitives are asso-
ciated with a high feature extraction cost. In addition to the
tracking overhead, the system performs many redundant image
processing operations — in many successive images, when the
aspect of the object remains unchanged.

A. The 1-DOF Case: Ezperimental Results

Our experimental setup has a camera connected to a MA-
TROX Image Processing Card and a stepper motor-controlled



Fig. 9. Model Base II: The objects (from left) are Oy, Oz, O3, Oa, Os,
Og, O7 and Og, respectively.

turntable. The turntable moves by 200 steps to complete a 360
degree movement. We have experimented extensively with two
object sets as model bases. Some details of the object sets are
as follows:

1. Model Base I: 7 Aircraft Models

We use as features, the number of horizontal lines ({h)), the
number of vertical lines ((v)), and the number of circles ({c)).
We represent a class-candidate as (hvc). We have chosen this
relatively feature-rich model base to demonstrate the effective-
ness of our system on raw aspect data with very low smoothness
in the raw aspect data. Figure 8 shows the objects in this model
base.

2. Model Base II: 8 Polyhedral Objects

We use as features, the number of horizontal lines ((h)),
the number of vertical lines ({v)), and the number of non-
background segmented regions in an image({r)). We represent
a class-candidate as (hvr). The raw aspect data for this model
base has higher smoothness compared to the aircraft models.
We have chosen this model base to compare the results of our
system with those on the other model base. Figure 9 shows the
objects in this model base.

We use hough transform-based line and circle detectors. For
getting the number of regions in the object, we use sequential
labeling on a thresholded gradient image.

Let the term ‘Input Smoothness’ (S(I)) refer to the smooth-
ness expression (Section III). for the raw aspect data. Thus,
cij is Dj; here i.e., the raw aspect data item for the ith model
at site number j. Similarly, we use the term ‘Output Smooth-
ness’ (S(0)) to refer to the smoothness expression for the out-
put of the aspect graph construction algorithm. Thus, c;; refers
to the class-candidate label assigned to the jth site in the ¢th
model by the algorithm.

The aspect data for Model Base I (aircraft models) has a
very high values of the Demerit Coefficient 1model base and S(I)
as compared to the aspect data for the other. Hence, we first
present results of 100 experiments with the first model base.
Each experiment considers a set of raw aspect data from each
object in the model base. Then, we compare some figures with
those of Model Base II (polyhedral objects).

Output of the Aspect Graph Construction Algorithm:

Figure 10 shows a comparison of the raw aspect data and the
output of our algorithm, for one instance of the aspect data for
object plane_2 in Model Base I. A visual inspection of the lower
graph shows that the aspects produced are prominent and not
too large in number, the graph is piecewise smooth and at the
same time, fidelity to the original data is high. Figure 11 shows
an example for Model Base II.

Input and Output Smoothness:

Figure 12(a) shows a comparison of the input and output
smoothness for 100 sets of aspect data for the aircraft model
base. The mean smoothness values for the input and output
data are S(I) = 138.85 and S(O) = 20.99, while the variances
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Fig. 10. Raw aspect data and the output of our algorithm: plane_2,
Model Base I. On the y-axis, each class-candidate is represented by an
index. Different heights represent different class-candidates. The tessel-
lated viewing space has 200 sites.
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are 4.51 and 0.74 respectively. This clearly shows that S values
have greatly decreased. Even though the raw aspect data has a
large variation in S values, the variation in in § values for the
output data is very small.

Total Model Base Error:
£ is a measure of fidelity of the output data to the input raw
aspect data. Figure 12(b) shows the variation in £ with the
input smoothness for the 100 data sets.

Number of Aspects
Figure 13(a) shows the number of aspects obtained as a result
of applying the algorithm on 100 instances of raw data for the
model base. The figure shows the variation in the number of
aspects with the input ‘smoothness’ for the 100 data sets.

Demerit Coefficients for Input and Output Aspect Data:
Figure 13(b) shows the variation of the Demerit Coefficient for
the input aspect data, with the Demerit Coefficient for the out-
put of the AAG construction algorithm for the 100 data sets.
Our AAG construction algorithm greatly reduces the Demerit
Coefficient. Further, the variation in the Demerit Coefficient
for the output data is quite less compared that for the input
raw aspect data.

Single decision boundary (percentage of sites):
The only part of our algorithm which has quadratic time com-
plexity is where a single decision boundary has to be taken
over a set of adjacent sites. The rest of it runs in linear time.
Figure 14(a) shows the percentage of sites where a single de-
cision boundary had to be taken, for 100 sets of aspect data.
This is quite low (mean=29.47%, variance=1.85), even for as-
pect data with high S(I) values. This shows the efficiency of
our algorithm, since one of the desirable characteristics of an
AAG construction algorithm is that it should be fast i.e., have
low-order polynomial time complexity.

Correctness of Phase II ASSOC_TABLE estimates:
The ASSOC_TABLE maintains estimates of the proba-
bility with which one class-candidate is observed as an-
other(Section III-B). If ASSOC_TABLE]Ji][j] remains above a
threshold after Phase II as well as after Phase III (or equiva-
lently, below it after both phases) — we refer to this as ‘correct-
ness’. Figure 14(a) shows the variation in percentage correctness
of Phase II estimates, with the input ‘smoothness’ for 100 data
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Fig. 11. Raw aspect data and the output of our algorithm: Og, Model

Base II On the y-axis, each class-candidate is represented by an index.
Different heights represent different class-candidates.
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Fig. 12. (a) Variation in input ‘smoothness’ with the output ‘smooth-
ness’, and (b) Variation in the total model base error with the input
‘smoothness’, both for 100 data sets
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Fig. 13. (a) Variation in the number of aspects with the input ‘smooth-

ness’, and (b) Variation in the Demerit Coefficient for the input raw aspect
data, with the Demerit Coefficient for the output of the input raw aspect
data: for 100 data sets
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Fig. 14. (a) Percentage of sites where a single decision boundary had to

be taken, and correctness in Phase II estimates in the ASSOC_TABLE
(b) Percentage reduction in total model base error with ASSOC_TABLE
data

Model Base I Model Base II
PARAMETERS Mean Var. Mean Var.
S(I) 138.85 | 4.51 43.99 0.47
S(0) 20.99 0.74 18.93 0.34
£(A) 111.49 | 5.01 27.97 1.35
# aspects 94.51 4.55 80.5 1.12
n (input data) 242.84 7.32 67.69 2.59
7 (output data) 34.13 1.17 28.99 0.48
O. D. B. 29.47% 1.85 7.47% 0.41
Correctness 91.91% 4.46 94.74% 3.72
Err. redn. 9.18% 2.08 4.85% 0.37
TABLE I

SUMMARY OF AAG CONSTRUCTION ALGORITHM PERFORMANCE PARAMETERS
FOR THE TWO MODEL BASES: THE 1-DOF cAsSge. ‘O.D.B.” DENOTES THE
PERCENTAGE OF THE TOTAL AAG SIZE WHERE AN OPTIMAL DECISION
BOUNDARY NEEDED TO BE TAKEN (DETAILS IN SECTION III-B.4). THE TERM
‘CORRECTNESS’ DENOTES THE CORRECTNESS OF PHASE II ASSOC_TABLE
ESTIMATES ‘ERR. REDN.” DENOTES THE PERCENTAGE REDUCTION IN THE
MODEL BASE ERROR IF ASSOC_TABLE ESTIMATES ARE USED.

sets.

Percentage reduction in model base error:

If P(cactual | Chpserveq) (Section II-A) is above a particular
threshold, we use this fact in order to obtain a minimum-error
decision boundary (Section III-B.4), Our experiments show that
this reduces the total model base error, £. The model base er-
ror £(A) is reduced if one used the association data from the
ASSOC_TABLE. Figure 14(b) shows the percentage reduction
in error for 100 instances of model base data.

Comparison of performance factors on two model bases:
Table I shows the comparison between the two model bases. The
figures for Model Base I are for 100 experiments, whereas those
for Model Base II are for 4. Though the feature detectors used
for the two model bases are different, the range of values taken
by the feature-classes for the two model bases are comparable.

The raw aspect data from objects in the first model base has
more errors than that from the second. In spite of this, the
output smoothness obtained in both cases is comparable, and
small, especially for the first case. Since the S(I) for the first
model base is large, its model base error £ is large compared
to the corresponding data for the second model base. The first
model base is such that the number of aspects is larger than that
obtained for the second model base. Due to the large S(I) values
for the first model base, the variance in the number of aspects is
larger in the first case. The Demerit Coefficient for the output
data is much less than that for the input data. Since the second



Model Base I Model Base II
|| Mean | Variance || Mean | Variance ||
Type 1 1.03% 0.19% 3.97% 0.03%
Type 11 1.19% 0.27% 0.19% 0.00%
Type III 1.87% 1.26% 0.50% 0.00%
Type IV 11.60% 1.45% 0.46% 0.02%
Type V 19.38% 0.62% 2.09% 0.02%
TABLE II

A COMPARISON OF THE RELATIVE EXTENTS OF DIFFERENT TYPES OF ERRORS IN
AAGS IN TERMS OF THE PERCENTAGE OF THE TOTAL NUMBER OF SITES
(‘SIZE’), AND THE RELATIVE PERCENTAGES OF THE ERRORS (‘RELATIVE SIZE’)
(SEcTION II)

»~

A

Fig. 15. The CAD model of a polyhedral object, for experimentation
with the 3-DOF case

model base data has less feature detection errors, the percentage
of sites in the AAG where a single decision boundary had to be
taken is less than the corresponding value for the first model
base. The correctness of Phase II ASSOC_TABLE estimates
is more for the second model base, since the first one has more
errors. Hence, the variance in the correctness values is more for
the first model base compared to the second. Both cases show a
reduction in model base error if the ASSOC_TABLE estimates
are used to determine the correct class-candidate at a site.
A Comparison of Different Types of Errors

Table II presents a relative comparison of the different categories
of errors (Section II) for the two model bases. We list the mean
and variance for each type of error for the 100 data sets in
the first model base, and the 4 data sets for the second. We
emphasize here that the relative importance of different types of
errors may vary across different model bases, and feature sets.
For a particular setup and a set of models, a particular error
type may be more prominent compared to others. For example,
while a Type V error is more common for the first model base, a
Type I error is more common for the second. However, from the
point of view of robust object recognition, it is equally important
to account for all types of errors.

B. The 3-DOF Case: Ezperimental Results

For our experiments with the 3-DOF case, we have used CAD
data for a polyhedral object(Figure 15) to construct it’s AAG.
We use as features:

1. The number of corners with the number of incident edges as
2, 3, 4 and 5, respectively, and

2. The number of faces of the object visible in the given view

Thus, a 5-dimensional vector of the above features represents
a class. For the tessellation of the viewing space around the
object, we choose Q=14 as the frequency of geodesic division.
Thus, there are 1962 sites in the viewpoint space.

Fig. 16. Raw aspect data with 30% noise, and the output of our algorithm

for the 3-DOF case (Spherical array representation). Different colours

represent different class-candidates.

In order to generate the experimental data sets, we have per-
turbed the aspect data with different amounts of random noise.
We randomly chose k% of the total 1962 sites for changing their
class-candidate data. Each feature at such a site was replaced
by a random number (in the range of the observed values of the
feature in the aspect data obtained from the CAD model), We
obtained 8 different data sets by taking k = 0, 1, 5, 10, 15, 20,
25, and 30, respectively.

Figure 16 shows a comparison of the raw aspect data with
30% noise, and the output of our algorithm, in the spherical
array representation. The lower figure shows prominent aspects
created by our algorithm. Table III shows the results of running
our algorithm on these data sets. The first column describes the
results obtained by processing the aspect data directly obtained
from the CAD model. The n(I) value corresponding to this 0%
error column represents the quality of the original aspect data
with respect to the desirable criteria mentioned in Section III-
A. Examining the data in the table, we make the following
observations. As we increase the amount of added noise to the
aspect data, §(I) and n(I) obviously increase. However, the in-
crease in the §(0) and n(O) values is considerably less. In fact,
the values of n(0O) show that there has been considerable im-
provement in the quality of the output data in spite of the noise
added (e.g., the results for 20%, 25% and 25% noise.) In spite of
varying the amount of noise added to the raw aspect data from
1 to 30%, the number of aspects does not vary greatly. The
variation in the number of aspects obtained can be attributed
to the fact that the sites for the injection of noise have been ran-
domly chosen. The percentage of sites where an optimal deci-
sion boundary would need to be taken is only a small percentage
(under 6%) of the total number of sites. To avoid the exponen-
tial time complexity of taking an optimal decision boundary,
we perform the following compromise — We consider the errors
induced when the region R is assigned the class-candidates cor-
responding to each adjacent aspect-candidate. We also consider
the error considering the ASSOC_TABLE estimates, and take
the lower of the two. The correctness of Phase II estimates of
association pairs is high, above 86%. The table also shows fig-
ures for the reduction in the total model base error due to the
use of ASSOC_TABLE estimates.

V. APPLICATION TO ROBUST 3-D OBJECT RECOGNITION

Our work on isolated 3-D object recognition ([5], [6], [7])
uses the output of our AAG construction algorithm, and the



NOISE

0% [ 1% | 5% | 10% [ 15% [ 20% | 25% | 30%
S(I) 1405.71 | 1578.89 | 2281.07 | 2945.86 | 3338.91 | 3629.05 | 4347.85 | 4344.85
S(0) 1183.51 | 1203.18 | 1208.42 | 1306.09 | 1238.04 | 1605.85 | 1619.39 | 1817.89
£(A) 329.31 | 411.99 | 851.48 | 1370.09 | 1661.98 | 1893.88 | 2385.50 | 2204.72

# aspects 59 59 57 56 57 61 63 60
n(I) 2762.44 | 2979.42 | 3857.72 | 4621.23 | 5090.32 | 5419.53 | 6212.21 | 6239.06
7(0) 2427.16 | 2469.35 | 2457.10 | 2553.13 | 2504.53 | 2846.96 | 2962.20 | 3214.79
O.D.B. 4.08% | 5.05% | 418% | 586% | 540% | 336% | 581 % | 535 %
Correctness | 97.78 % | 88.68 % | 90.79 % | 88.31 % | 87.84 % | 86.25 % | 95.00 % | 86.42 %
Err. redn. | 000% [ 018% [ 0.00% | 001% | 070% | 025% | 0.00% | 0.60 %

TABLE III

SUMMARY OF AAG CONSTRUCTION ALGORITHM PERFORMANCE PARAMETERS FOR ASPECT DATA PERTURBED BY DIFFERENT AMOUNTS OF NOISE: THE 3-DOF CASE.

THE PARAMETERS ARE THE SAME AS IN TABLE I.

ASSOC_TABLE estimates. To the best of our knowledge, our
work on 3-D object recognition is the only one that accounts for
feature detection errors at both stages — model base construc-
tion, and the object recognition.

The above papers present a probabilistic framework for recog-
nition and planning. Our hierarchical knowledge representa-
tion scheme encodes domain knowledge and relations between
objects(0;), their aspects, classes and feature data. We use
the ASSOC_TABLE estimates to compute the probability with
which a feature appears as another. A given view of an object
corresponds to a class. Given a view of a 3-D object, our prob-
ability calculation scheme (using ASSOC_TABLE estimates)
maps the features for the view, onto the correct class. It then
maps class probabilities onto object probabilities. If the proba-
bility of no object is above a predetermined threshold, the next
view planning algorithm plans the best view to distinguish be-
tween the competing aspects at a stage. We demonstrate that
our recognition strategy works correctly even under processing
and memory constraints due to the incremental reactive plan-
ning strategy.

Figure 17 shows two examples of experiments with objects
from the aircraft model base. For Figure 17, the initial class
could have come from 10 aspects. In Figure 17(b), the shadow of
the left wing on the fuselage of the aircraft, the feature detector
detects 4 vertical lines instead of 3, the correct number. (This
line is not shown superimposed, for clarity.) ASSOC_TABLE
estimates enable the system to recover from this feature detec-
tion error.

A. The Effect of Errors on Recognition Performance

An AAG consisting of raw aspect data has a very large num-
ber of aspects associated with it. Many of these correspond to
feature detection errors, and are very small in size. Hence, the
degree of ambiguity associated with a view will be very large,
as compared with the case when an error-free AAG is used. Er-
rors due to noise often do not occur at a fixed position in an
AAG. Hence in a recognition experiment, what may be actu-
ally observed at a viewpoint may not correspond to what it was
when the raw aspect data was collected. Our algorithms not
only aim at reconstructing the corresponding error-free AAG,
they also store estimates of feature detection errors. We use
these estimates to recover from cases of feature detection er-
rors in our object recognition algorithm [5], [6], [7]. Table IV
presents the results of experiments comparing the recognition
performance with raw aspect data, and the output of our 1-DOF
AAG construction algorithm. For the 83 experiments with the
polyhedral objects, the number of cases of feature detection er-
rors is nearly comparable (24 and 26, respectively for the raw

Model Base II Model Base I
Raw AAG Raw AAG
Feature det. errors 24 26 T 40
Cases of Recovery - 6 - 16
Cases of Failure 24 20 T 24
Im. Proc. Opns. (avg.) 2.322 2.242 2.368 1.784
Search tree nodes (avg.) | 450.373 | 136.468 | 264.684 | 24.431
TABLE IV

A COMPARISON OF OUR OBJECT RECOGNITION ALGORITHM (CITATIONS IN TEXT)
ON RAW ASPECT DATA (‘RAW’) AND THE OUTPUT OF OUR AAG CONSTRUCTION
ALGORITHM (‘AAG’), FOR THE TWO MODEL BASES (MODEL BASE II:
POLYHEDRAL OBJECTS, AND MODEL BASE I: AIRCRAFT MODELS)

aspect data, and the AAG constructed using our algorithm).
However, there are 6 cases of recovery from feature detection
errors in the latter, which is not so for the raw aspect data.
The average number of image processing operations is more for
the raw aspect data (2.322), as compared with 2.242 for the
latter. The average number of search tree nodes for the raw
aspect data is about 3 times the corresponding value for the
output of our AAG construction algorithm. has a high value of
Demerit Coefficient Nmodet base and S(I). The number of fea-
ture detection errors is significantly higher for the raw aspect
data — 77, as compared with 40 for the latter. Further, there
are 16 instances of recovery from feature detection errors with
the latter, using the ASSOC_TABLE estimates to advantage.
The average number of image processing operations for the two
types of inputs are 2.368 and 1.784, respectively. The average
number of search tree nodes is significantly higher for the raw
aspect data — nearly 11 times the corresponding value for the
output of our AAG construction algorithm.

VI. CONCLUSION

This paper presents an integrated approach for handling fea-
ture detection errors for use in robust active 3-D object recog-
nition. First, we present a new algorithm for AAG construction
with noisy feature detectors. We propose an evaluation func-
tion for comparing the output of different AAG construction
algorithms. We characterize the suitability of a feature detec-
tor for aspect graphs — in terms of the entire setup, and the
given model base. We consider both the 1-DOF as well as the
3-DOF case. No related work has addressed these issues. We
present the results of extensive experimentation on a reasonably
complex experimental set, in support of our strategy. Since it
is not possible to prevent feature detection errors, our strategy
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Fig. 17. Some experiments with objects in the aircraft model base, with
the same initial class. The numbers above the arrows denote the num-
ber of turntable steps. (The figure in parenthesis shows an example of
recovery from feature detection errors)

can be used for efficient and robust 3-D object recognition.
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