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Abstract

Most model-based 3-D object recognition systems use information from a single view
of an object. However, a single view may not contain sufficient features to recognize
it unambiguously. Further, two objects may have all views in common with respect
to a given feature set, and may be distinguished only through a sequence of views.
A further complication arises when in an image, we do not have a complete view of
an object. In this thesis, we propose two new on-line schemes for the recognition of
an isolated 3-D object using reactive next view planning. The first one is based on
aspect graphs, and the second is based on parts, and inner camera invariants. Both

use an uncalibrated camera and simple features. We briefly describe them as follows:

Aspect Graph-based reactive object recognition An aspect constitutes a set
of equivalent views of an object, with respect to a set of features. An aspect
graph has nodes for an aspect, and links between adjacent aspects. We propose
an integrated scheme for constructing aspect graphs from noisy feature detec-
tors, and using them for recognizing isolated 3-D objects. Our aspect graph
construction scheme accounts for errors in raw aspect data. Our system han-
dles feature detection errors not only in the aspect graph construction process,
but also in the object recognition stage, both of which use the same feature de-
tectors. We propose a novel object recognition algorithm which uses the output
of the aspect graph construction algorithm. It is not dependent on any specific
feature set. The object recognition algorithm uses a probabilistic hypothesis

generation mechanism. Our hierarchical knowledge representation scheme fa-

vii
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Abstract

cilitates recognition and the planning process. The planning process is reactive
- it utilizes the current observation and past history for identifying a sequence
of moves to disambiguate between similar objects. We show results of aspect
graph construction on more than 100 sets of noisy aspect data. The results of
over 100 recognition experiments using the same noisy feature detectors, on two

sets of models, show the effectiveness of our proposed scheme.

Part-based reactive object recognition For situations in which a complete view

of a 3-D object may not be visible, we propose a new reactive, planning-based
recognition algorithm which uses probabilistic reasoning. This algorithm is
based on parts of an object and their relationships. We use a novel method
of complete 3-D pose estimation using image-based measurements which are
invariant to the internal parameters of a camera. While the earlier part of our
work assumes an orthographic camera, we have formulated inner camera invari-
ants for the more general projective case. For this problem also, we formulate
a hierarchical knowledge representation scheme. The results of a large number
of experiments with 2-D parts show the effectiveness of our approach in recog-
nizing fairly complex 3-D objects, and localizing the camera with respect to the

objects.

We demonstrate that by using reactive next view planning in conjunction with

suitable representation schemes, it is possible to recognize 3-D objects with reasonably

complex shapes, using simple features.
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Chapter 1

Introduction

3-D object recognition involves identifying 3-D objects from a (2-D) image or a se-
quence of such images. Such a process involves extracting features from images, and
comparing them with a stored representation of the object. Recognizing 3-D objects
from images is a difficult problem, primarily because of the inherent loss of informa-
tion in the projection from 3-D to 2-D. Further, the image of a 3-D object depends
on factors such as the camera viewpoint and the viewing geometry. The difficulty
of the recognition problem increases in the presence of noise in the feature detection

process.

Fundamental to the 3-D object recognition problem is the recognition of a view of
the given object. Thus, one needs features that are invariant to the camera viewpoint
and the viewing transformation. For some special classes of objects such as rotation-
ally symmetric objects, a single view may contain sufficient features for recognizing
it. However, a single view-based approach may not be applicable for most objects

due to the asymmetrical nature of their shape.

A further complication arises in the recognition problem if two or more objects
have a view in common with respect to a feature set. Such objects may be distin-
guished only through a sequence of views. As a simple example, let us consider a set

of 3-D objects. Let us consider the number of horizontal and vertical lines, as features.



2 Chapter 1: Introduction

“'

(a)

(b)

Figure 1.1: (a) The given complete view of an object, and (b) the objects which this

view could correspond to

Figure 1.1(a) shows a given view. On the basis of the chosen features, this view could
correspond to any of the objects in Figure 1.1(b). In other words, with each of the
objects of Figure 1.1(b), it is possible to obtain a view in which we would detect only
two horizontal and two vertical lines. Hence, it is not possible to determine which

object the given view corresponds to, given only the single view in Figure 1.1(a).

A further complication arises when in an image, we do not have a complete view
of an object. Figure 1.2(a) shows such an example. Such a view could have come
from any of the three models, different views of which are shown in Figure 1.2(b), (c)
and (d), respectively. Again, the identity of object cannot be uniquely determined
from this one view. Further, even if the identity of the object were known, the same
configuration of parts could occur at more than one place in the object. In that case,

it is not possible to know the exact pose of the camera with respect to the object.

In these situations, multiple observation-based recognition strategies are needed.
This may be important for a robot navigating in an environment with at least some
known objects. In this thesis, we address this problem of recognizing 3-D objects

through suitable planning of multiple observations.
A multiple observation-based strategy also requires a suitable representation scheme

— with which the recognition scheme needs to match image-based information. One

needs to maintain a relationship between different views of an object. Domain knowl-
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Figure 1.2: (a) The given view of an object: only a portion of it is visible. This could

have come from any of the models, different views of which are shown in (b), (c) and

(d), respectively
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edge representation, in turn depends on various factors — whether an image contains
the complete object or only a portion of it, the number of degrees of freedom between
the camera and the object, and the camera projection model assumed. In the context
of planning the next view, one needs a sensor which can be positioned using vision-
guided feedback. Such a sensor is called an active sensor, and recognition systems
using such sensors are referred to as active recognition systems.

Generating hypotheses about the identity of a view, and next view planning —
both form an integral component of an active recognition system. Both use the
knowledge representation scheme and the information from the current view of the
object to generate hypotheses about the likely identity of the object and its pose. The
system plans the next move, if the current view does not have enough information for
unambiguous recognition of the object. The input to an object recognition system is
through sensors. Factors such as noise and non-adaptive thresholds may corrupt the
output of a feature detector. Such a system should have some robustness to feature

detection errors, built into it.

1.1 Problems under Investigation

In this thesis, we propose two new on-line schemes for the recognition of an isolated
3-D object using reactive next view planning. The first scheme is based on aspect
graphs, and the second is based on parts, and inner camera invariants. Both use an
uncalibrated camera and simple features. We briefly describe the specifications of the

two problems, as follows:

1.1.1 Aspect Graph-based Reactive Object Recognition

Two or more objects could have a view in common, with respect to a set of features
(as in Figure 1.1). Figure 1.3 shows a fixed camera observing an object kept on a

turntable. We need to take at least one more view around the object, in order to
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Figure 1.3: A fixed camera observing an object on a turntable
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Figure 1.4: Regions corresponding to viewpoints around the object, where the view

is the same with respect to a feature set.

recognize it unambiguously. However, a random sequence of views may not serve the
purpose since these random views could also correspond to more than one object.
This would incur a high image processing and movement cost. Figure 1.4 shows the
partitioning of the space of viewpoints around the object. For all viewpoints in such a
partition (an aspect), the view of the object is the same with respect to a feature set
(the number of horizontal and vertical lines, in this example). It would be wasteful to
have image processing operations for two or more viewpoints within the same aspect.
One needs a representation scheme for an object, which accounts for the relationship
between different appearances of an object — an aspect graph. The first task at hand
is to construct an aspect graph for each object in the model base, given a set of
feature detectors. Given an aspect graph for each such object, the recognition task

involves planning a move to recognize the object unambiguously, subject to possible
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memory and processing constraints.

For this problem, we present the following:

A classification of errors in raw aspect data.

A new algorithm to construct an aspect graph, given raw aspect data collected

using noisy feature detectors.
e A function to evaluate the output of aspect graph construction algorithms.
e An evaluation function for the suitability of a feature detector.

e An aspect graph-based hierarchical knowledge representation scheme. This is

not dependent on any particular feature set.

e A novel robust, reactive recognition algorithm based on next view planning.
The algorithm uses probabilistic reasoning. For recognition, we use the same

noisy feature detectors that were used at the aspect graph construction stage.

e Results of more than 100 experiments for both aspect graph construction, and

recognition. These demonstrate the effectiveness of our proposed strategies.

1.1.2 Part-based Reactive Object Recognition

Not only could a view correspond to more than one object, the entire 3-D object itself
may not lie in the camera’s field of view. Only a portion of the entire object may be
visible. Such a view may or may not contain any identifiable parts. Figure 1.2 shows
an example where the given configuration of parts could correspond to more than one
object. Figure 1.5 shows a robot with a camera fixed on it, observing a building. This
robot can move translationally along all three axes, and also rotate along the Y-axis.
Even if the identity of the object were known, the pose of the camera with respect
to the object is not known uniquely. For this, the robot may position itself so as to

observe the rightmost window. This sequence of moves may be unique to distinguish
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Figure 1.5: A robot with an attached camera, observing a building. The entire object
does not fit in the camera’s field of view. Not only is the identity of the object

unknown, the robot also does not know its pose with respect to the object.
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the building (from other buildings in the model base), as well as to determine its pose
with respect to the building.

In this thesis, we present the following:

e Inner camera invariants: a powerful tool for pose estimation using an uncali-

brated projective camera.
e A part-based hierarchical knowledge representation scheme.

e A novel part-based on-line recognition algorithm to recognize a 3-D object. The
algorithm uses probabilistic reasoning. The strategy makes no assumptions
about the field of view of the camera, and is robust to some feature detection

errors and small errors in movement.
e Results of numerous experiments in support of our proposed strategies.

In this thesis, we show that the use of reactive next view planning and suitable
representation strategies enables us to recognize 3-D objects with fairly complex shapes,

even if we use simple features.

1.2 Outline of the Thesis

This thesis is divided into 7 chapters. Chapter 2 introduces the need for multiple view-
based 3-D object recognition systems. Next, we classify various multi-view active 3-D
object recognition systems with respect to their representation schemes and the scope
or nature of their designated tasks. We then describe the motivation for the work in
this thesis. We compare and contrast existing systems with our work. Finally, we
summarize the salient features of our proposed strategies.

In Chapter 3, we first present a classification of different types of errors in raw
aspect data. We consider the 1-DOF (single rotational degree of freedom) case, as well
as the 3-DOF (all three rotational degrees of freedom) case. We propose a function

to evaluate the output of different aspect graph construction algorithms. Finally,
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we present a new approach to constructing aspect graphs from erroneous raw aspect
data.

The aspect graph constructed using our algorithm in Chapter 3 serves as an in-
put to our aspect graph-based object recognition algorithm. Chapter 4 describes our
object recognition strategy in detail, which uses the same noisy feature detectors for
the object recognition task. We propose a new hierarchical knowledge representation
scheme. This plays an important role in the probabilistic hypothesis generation mech-
anism, as well as in planning the next view. The planning process uses information
from the current observation, as well as the past history for planning a sequence of
moves to identify the given object uniquely.

Chapter 5 introduces image-based measurements which are invariant to the inter-
nal parameters of the camera. We propose these inner camera invariants as a tool for
pose identification and structure estimation. We use inner camera invariants for the
situation when the internal parameters of the camera are not only unknown, but also
may be varied — on purpose, or unintentionally.

These are used for our part-based object recognition algorithm, described in Chap-
ter 6. Here, we consider the case when the entire object does not fit in the camera’s
field of view. This chapter presents a new on-line recognition scheme for the recog-
nition and pose estimation of an isolated 3-D object, in such circumstances. The
scheme also uses a probabilistic reasoning framework for recognition and planning.
Our knowledge representation scheme encodes part-based information about objects
as well as the uncertainty in the recognition process. This is used in the probability
calculations, as well as in planning the next view.

Chapter 7 presents conclusions and scope for further work in the area.
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Chapter 2

Recognition of 3-D Objects using

an Active Sensor

2.1 Introduction

An active sensor is one which can be used in a purposive manner. In this chapter,
we review two important applications of an active sensor. We first survey important
approaches to active 3-D object recognition. Next, we review existing approaches to-
wards another important application of an active sensor namely, that of scene analysis

and interpretation.

2.1.1 3-D Object Recognition

3-D object recognition is the process of identifying 3-D objects from their images by
comparing image-based features, or image-computable representations with a stored
representation of the object. (For detailed surveys of 3-D object recognition and
related issues, see [16], [45], [157] and [165].) Various factors affect the strategy used
for recognition, such as the type of the sensor, the viewing transformations, the type
of object, and the object representation scheme. Sensor output could be 3-D range

images, or 2-D intensity images. 3-D range images can be obtained from the output

11
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of a light stripe range finder, for example. 2-D images may be obtained from various
means such as CCD cameras, infra-red devices, X-ray images, or from other devices
operating on different ranges of the electromagnetic spectrum. 3-D objects may be
classified as rigid, articulated, or deformable. In rigid objects, the distance between
any two object points remains fixed. Articulated objects such as a pair of scissors,
consist of various rigid parts. These objects, however permit the movement of one
part of the object with respect to other parts. Deformable objects are those that are
not covered under any of the two above categories. Examples include clouds, jelly, or
clay.

3-D object recognition from 2-D intensity images is a difficult task, primarily be-
cause of the inherent loss of information between a 3-D object and its 2-D image. The
appearance of the object depends on factors such as the viewing geometry, illumina-
tion and viewpoint. The presence of noise in the feature detection process increases
the difficulty of the recognition problem.

In this survey, we primarily concentrate on 2-D intensity images taken with cam-
eras. The work in this thesis is restricted to the recognition of rigid 3-D objects from

2-D intensity images.

2.1.2 The Need for Multiple Views

Most model-based 3-D object recognition systems consider the problem of recognizing
objects from the image of a single view of an object ([16], [45], [213], [143]). Due to
the inherent loss of information in the 3-D to 2-D imaging process, one needs an
effective representation of properties (geometric, photometric, etc.) of objects from
images which are invariant to the view point, and should be computable from image
information. Invariants may be colour-based (e.g., [84]), photometric (e.g., [149]) or
geometric (e.g., [213]).

Burns, Weiss and Riseman prove a theorem in [30] that geometric invariants can-

not be computed for a set of 3-D points in general position, from a single image.
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Invariants can only be computed for a constrained set of 3-D points. One can impose
constraints on the nature of objects to compute invariants for recognition [144] — this
severely restricts the applicability of the recognition system to only a specific class of
objects. Some classes of objects for which geometric invariants have been proposed,

are:
e Canal surfaces [158], [159],
e Rotational symmetry [144], [199], [213],
e Repeated structures (bilateral symmetry, translational repetition) [213]

While invariants may be important for recognizing some views of an object, they
cannot characterize all its views — except in a few specific cases, as mentioned above.
We often need to recognize 3-D objects which because of their inherent asymmetry,
cannot be completely characterized by an invariant computed from a single view. For
example, certain self-occluded features of an object can become visible if we change
the viewpoint. In order to use multiple views for an object recognition task, one needs
to maintain a relationship between different views of an object, possibly described by
image-computable invariants.

A single view may not be sufficient to recognize an object unambiguously. In fact,
two objects may have all views in common with respect to a given feature set, and
may be distinguished only through a sequence of views. In [94], the authors cite a
simple example of a sedan and a station wagon having indistinguishable front ends,
but different side views. A further complication arises when in an image, we do not
have a complete view of an object. The partial view of the object could correspond
to more than one portion of the object. Thus, it is not possible to know the pose
of the camera with respect to the object. Figures 1.1 and 1.2 in Chapter 1 show an
example each, of these two situations.

There may be another motivation for using multiple views in a recognition task.

In recognizing 3-D objects from a single view, recognition systems often use complex
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feature sets ([45]). Complex features such as 3-D projective invariants have been
proposed only for special cases so far (e.g., [213], [46]). In many cases, it may be
possible to achieve the same, incurring less error and smaller processing cost using a
simpler feature set and suitably planning multiple observations. A simple feature set
is applicable for a larger class of objects than a model base-specific complex feature
set.

A requirement for a Multi-view object recognition system is the availability of a
sensor that can be purposively controlled — an active sensor. We discuss active sensors

in the following section.

2.1.3 Active Sensors

An active sensor may be defined as follows:

Active Sensor An active sensor is one that can be purposively controlled. An Ac-
tive Vision system has the ability to control the sensor parameters such as
the orientation with respect to an object. Thus, vision-guided feedback may be
used to position such a sensor. Such a system has other parameters that may
be purposively varied, such as the focus, zoom, aperture and vergence (in two-
camera system). Some specialized sensors have anthropomorphic properties,

such as foveal attention mechanisms.

Some important papers proposing and elucidating the concepts of active vision and
related paradigms, are the work of Aloimonos et al. [3], [1], [2]; Bajcsy et al. [7],
[6]; Ballard [8]; Ballard and Brown [10]. Crowley [49] presents an on-line tutorial on
active vision. A collection of representative papers in various areas of active vision
is [18].

Swain and Stricker [189] survey a wide gamut of vision tasks which may be per-
formed with an active sensor. They mention that active vision broadly encompasses

attention, selective sensing in space, resolution and time. This may be achieved by
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modifying physical camera parameters, or the way the data from the camera is pro-

cessed.

The output of a camera usually contains a huge amount of data. An active sensor is
capable of selective sensing. Hence, an attention mechanism may use an active sensor
for signal selection in space, velocity and distance (e.g., foveal processing, tracking an
object, and focusing on regions of interest). Gaze control is a possible application —
active manipulation of the imaging system in order to acquire images that are directly
suited to the tasks being performed. Gaze control could be used for low level vision
(e.g., Murray et al. [147], Crowley et al. [51]), as well as for high level vision (e.g.,
Rimey and Brown [172]). Thus, an active mechanism could be used to overcome a
limited field of view of a camera. A related application is next view planning. Vision
is a spatio-temporal process — events are distributed in time as well as space. Cost and
complexity considerations often require a system to be focussed on restricted regions
of a scene. Further, the current view available to a system may not even contain
sufficient information for the vision task. Thus, deciding on where to look next may
be task driven, feature driven, or context driven. Thus, a sequence of such sensing
operations may be required. Sequential processing has the additional advantage of
efficiency through directed analysis — results of each step guide subsequent steps.
Object recognition and scene analysis are two example of such a vision task. Another
example of an active vision task is eye-hand coordination [47]. An active vision system
is often used in conjunction with robotic manipulators equipped with tactile and force

sensors [189].

Tarabanis, Allen and Tsai [191] survey the field of sensor planning for vision tasks.
They define the problem as follows: Given information about the environment (e.g.,
the object and the sensors), and information about the vision task (e.g., detection
of certain object features, object recognition, scene analysis), the task at hand is to
develop strategies to automatically determine parameter values in order to achieve the

task, to a required degree of satisfaction. They classify problems into three classes:
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1. object feature detection,
2. object recognition and localization, and
3. scene reconstruction.

We discuss these issues in the following sections.

Object Feature Detection

Object feature detection seeks to automatically determine vision sensor parameter
values for which particular features satisfy particular constraints when imaged. These
features belong to a known object in a known pose [191]. In addition to the general
survey on sensor planning, the authors lay specific emphasis on systems for object
feature detection systems. (A separate paper [192] presents the authors’ own MVP
system in detail.)

A related topic is planning for complete sensor coverage of 3-D objects. A recent
work in the area is that of Roberts and Marshall [173], who present a viewpoint
selection scheme for complete surface coverage of 3-D objects. They also propose
a strategy for selecting a number of views that allow each object face to be viewed
according to specified constraints on viewpoints and other features. The authors show
results with a fixed camera and turntable. Some important earlier work in the area
include those of Cowan and Kovesi [48], Tarbox and Gottschlich [193] and Mason and
Grun [138].

Object Recognition and Localization, and Scene Reconstruction

In the above classification of Tarabanis, Allen and Tsai [191], the last two categories
are more related to a recognition and interpretation task. We adopt a similar classifi-
cation scheme, with a slightly different interpretation of the above two terms. Given
an active sensor and a set of feature detectors, the fundamental problems involved in

a multiple view-based recognition system are
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e the design of a suitable modeling and representation scheme, and

e an identification mechanism which can exploit properties of the sensing process

and the modeling scheme.

Based on the representation scheme and the scope or nature of the recognition strat-

egy, we classify different multi-view recognition systems into two categories:
1. Object recognition systems, and
2. Systems for scene analysis

In the first class of systems, we consider systems whose aim is to primarily recognize
a given object and its pose. Such systems typically assume that the entire object is
visible in a given view. In the second class of scene analysis systems, we consider
systems whose aim is to explore and and analyze a given scene. Such a scene may
contain one or more objects, known or unknown. In such cases, the entire scene to
be analyzed may not be visible in one view — the sensor may ‘see’ only a part of it
at a time. While recognition may not be a primary aim of such systems, they may
involve recognition of some components of a scene. We describe these two categories

in detail in Sections 2.2 and 2.4, respectively.

2.2 Active Object Recognition Systems: A Survey

In this section, we survey different existing active object recognition systems. An
active object recognition system needs to have a representation scheme to store infor-
mation about the 3-D structure of an object. First, we review different representation
schemes. Subsequently, we review different recognition schemes and their character-

istics.
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2.2.1 Representation Schemes

Object representation schemes used for model-based object recognition systems in-
clude ([115]): wire-frame representations, constructive solid geometry (CSG), spatial-
occupancy representations (e.g., voxels, octrees), surface boundary representations,
generalized cone or sweep representation, skeleton representations, and aspect graphs.
Appearance-based approaches (e.g., [146]) to object recognition use appearance rather
than shape, for matching. However, only a few of the above approaches have been
used in multi-view object recognition systems. While wireframe models have an in-
herent ambiguity in interpretation, feature extraction is difficult in volume or surface-
based approaches. Skeleton representations and generalized cones are applicable for
recognition of only a specific class of objects.

We may also classify representation schemes on the basis of whether they represent
the entire object, or model its parts. We first discuss two important representation
schemes for active recognition systems, and then discuss part-based representation
schemes. We conclude this section with a discussion on different methods used to
handle uncertainty.

Most active object recognition systems consider either of the following three rep-

resentation schemes, or their variants:
e Appearance-based parametric eigenspaces
e Multidimensional Receptive Field Histograms
e Aspect graphs

These three are view-based — they encode information about different 2-D views of
a 3-D object. View-based recognition systems exist for recognizing objects from a
single view of the object. Breuel [25], [27], [26] analyzes view-based recognition and
compares its performance theoretically and empirically, with a common model for
3-D bounded error recognition [95]. He shows that the probability of false positive

and false negative matches in view-based recognition systems is not substantially
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different from the probability of simple errors in other commonly used recognition
systems. Furthermore, he derives an upper bound on the number of views needed to
be stored by a view-based recognition system in order to achieve zero probability of
negative matches. The author describes simulations and experiments on real images
to suggest view based recognition as a robust and simple alternative to 3-D shape-

based recognition methods.

Appearance-Based Parametric Eigenspaces

Murase and Nayar [146] propose the idea of appearance-based methods using para-
metric eigenspaces. A basic observation is that the shape and reflectance are intrinsic
properties, which are constant for a rigid object. However, the pose and illumina-
tion may vary from scene to scene. The authors propose a scheme to automatically
learn 3-D objects from their appearance in 2-D images. An important advantage of
this method is the ability to handle the combined effects of shape, pose, reflection
properties and illumination. Furthermore, it is possible to learn appearance-based ob-
ject representations off-line. For systems using such a representation, the recognition

problem becomes one of appearance matching, rather than shape matching.

Appearance-based methods require a large number of images of the object — with
different poses, and illumination conditions. The images of the objects are normalized
with respect to size and illumination conditions. Both in the pose and illumination
space, consecutive images are correlated to a large degree. Hence, a need arises
to compress the large set of images to a low-dimensional representation of object
appearance. Each normalized image is written as a column vector in raster scan
order. Next, the normalized images are stacked together , and the covariance matrix
is calculated. The first k eigenvectors are used to represent the stacked matrix of
images. This process is discussed in detail, in [146]. In the recognition phase, the
image vector is projected to the eigenspace. The object which has a minimum distance

between the projected image vector and its manifold, is considered to be present.
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Multidimensional Receptive Field Histograms

Multidimensional Receptive Field Histograms [179] are based on the idea that local
structure is an important component of the appearance of an object. The local
structure can be characterized by a vector of local features measured by local operators
such as Gaussian derivatives or Gabor filters. This technique represents appearances

of objects by the joint statistics of such local neighbourhood operators.

Aspect Graphs

Aspect graphs are a popular representation tool for 3-D object recognition systems.
Aspects represent object appearances that are equivalent with respect to a particular
set of features. An aspect graph consists of nodes which correspond to aspects.
Links between nodes represent transitions from one aspect to another. We examine a
number of aspect graph-based and related representations in Chapter 3 (e.g., [40], [82],
[58], [60], [59], [177], [93], [109], [110], [174], [135], [136], [36], [37], [145]). We consider
different kinds of aspect graphs and examine the advantages and disadvantages of
each. We also analyze existing approaches for handling errors in aspect graphs.

The aspect graph-based approach is more general than the other two approaches

in that appearance-based information may be used to construct an aspect graph.

Part-Based Representations

Object recognition systems use representations for the complete object. However,
there have been some instances where systems consider the representation of an ob-
ject in terms of its parts. Existing part-based recognition systems typically consider
the object to be wholly composed of identifiable parts. Here, we review two part-
based approaches. The first is based on volumetric primitives, and the second on
appearance-based parts. Existing part-based recognition systems usually use infor-
mation from only a single view. The works of Dickinson et al. [56], [57] are significant

examples of active recognition systems using a part-based representation.
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Here, we look at two part-based representations namely, geons and appearance-

based parts:

1. Geons
Biederman’s Recognition by Components theory [17] proposes the concept of
volumetric primitives, called geons (short for ‘geometric ions’). The Cartesian
product of contractive shape properties gives rise to this set of volumetric prim-
itives. Bergevin and Levine [13], [14], [15] propose methods of automatically
extracting geons from relatively perfect 2-D line drawings. Single view-based
recognition systems such as [15], [58], [60] and [59] use geons as representa-
tion tools. In [15], Bergevin and Levine propose a system for generic object
recognition from a single line drawing of an object, by parts. Dickinson and
co-workers [58], [60], [59] use an augmented aspect hierarchy using geons as
the basic volumetric primitives. They use this augmented aspect hierarchy for

active 3-D object recognition in [56] and [57].

2. Appearance-based parts
Another approach to part-based representation is that of Huang, Camps and
Kanungo [105], [35]. The authors define appearance-based parts as “polynomial
surfaces approximating closed, non-overlapping image regions that optimally
partition the image in a minimum description length (MDL) sense.” Their single
view-based recognition systems consider the advantages of appearance-based
representations. Additionally, the idea of recognizing parts and not the whole

object gives the system robustness to occlusion and segmentation variations.

Methods for Representing Uncertainty

Common methods for representing uncertainty are probability theory, the Dempster-
Shafer theory [55], [181], and fuzzy logic [210], [211]. A representation scheme based
on probability theory is a Bayes Net. (Bayes nets, and their variants are also known

as Belief networks, Bayesian networks, and probabilistic networks.) However, a Bayes



22 Chapter 2: Recognition of 3-D Objects using an Active Sensor

net is a far more general Al-based representation scheme (as against the above schemes
specifically used for modeling 3-D objects). A Bayes net (first proposed by Pearl
in [156]) is a graph which represents the joint probability distribution of a set of vari-
ables. Nodes in the graph represent variables, and directed links represent conditional
probabilities. The Bayes rule is used for updating the probabilities of nodes having a
particular label, given that successor nodes have particular labels. References [156],
[150], [176] describe Bayes nets in detail. Dickinson et al. [56], [57] use a variant of
a Bayes net for their recognition system (Rimey and Brown [172], [170], [171], [200]
use Bayes nets for scene analysis), while Hutchinson and Kak [106] use the Dempster-
Shafer theory to represent uncertainty. Some scene analysis systems use fuzzy logic
(e.g., [153]).

In the following section, we discuss more about different representation schemes,

in conjunction with the recognition strategies.

2.2.2 Recognition Strategies

We now present recognition strategies for some important active 3-D object recogni-

tion schemes. We classify these on the basis of the next view planning strategy:
1. Systems incorporating explicit planning algorithms, and
2. Systems which take the next view to minimize an ambiguity function

We discuss different schemes as follows. While the first two belong to the first category

above, the rest belong to the second.

Goldberg and Mason

Goldberg and Mason [92] investigate the problem of determining object pose. They
explore this problem in a Bayesian framework, using an object diameter function.
For polygonal objects, this is piecewise sinusoidal. During a squeeze grasp, the object

rotates to reduce its diameter, terminating in a local minimum. Such an operation
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reduces uncertainty. This also converts the diameter function into a piecewise con-
stant function, which is more amenable to analysis. They use breadth-first search to
expand the state space. Assuming a uniform distribution of initial poses and a fric-
tionless parallel jaw gripper, they demonstrate the automatic planning of a sequence

of grasps that optimize a robot’s expected throughput.

Gremban and Ikeuchi

Gremban and Tkeuchi [94] present a scheme for planning multiple views in an object
recognition task. They use Aspect-Resolution Trees built on the basis of aspect di-
agrams for planning multiple observations for object recognition. The authors show
results for a vision-based sensor, and a haptic sensor, and give examples of recognition
of objects based on sensors to detect specularities and their properties. These deter-
mine the aspects of the object. They consider this to be a challenging domain, since a
single image of a specular object yields very little information about the overall object
shape (specularity being a local phenomenon). Further, many different object poses
can yield the same pattern of specularities. The authors mention that it is possible
to configure parallel jaw grippers as sensors that report when a jaw has contacted an
object, and the distance between the jaws. With such a configuration, the gripper
can be used to measure object diameters. This information can be associated with

object poses.

Hutchinson and Kak

In their work on planning sensing strategies in a robot work cell with multi-sensor
capabilities, Hutchinson and Kak [106] use an aspect graph to represent informa-
tion about the objects in their model base. They present a system for dynamically
planning sensing strategies, based on the current best estimate of the world. They
automatically propose a sensing operation, and then determine the maximum ambi-

guity which would remain if the operation were applied. The system then selects the
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operation which minimizes the remaining ambiguity. They use the Dempster-Shafer

theory to combine evidence and analyze proposed operations.

Liu and Tsai

Liu and Tsai [134] describe a multiple view-based 3-D object recognition system.
Their setup has two cameras and a turntable. They use silhouettes as features. The
off-line model base construction involves taking silhouette views from a set of fixed
camera views. The system first reduces ambiguity by taking images from above the
turntable to normalize the shape of the top view, position the object centroid, and
align the principal axis of the object. The system then takes a side view, and analyzes
its features. The object is repeatedly rotated by 45° and this system repeats the above

process, till the object is recognized.

Callari and Ferrie

Callari and Ferrie [33] base their active object recognition system on mode-based
shape, pose and position reconstructions from range data. They estimate Bayesian
probabilities with neural networks. Their system takes the next view based on the

move which minimizes the expected ambiguity in terms of Shannon entropy.

Schiele and Crowley

Schiele and Crowley [180] develop an analogy between object recognition and the
transmission of information through a channel based on the statistical representation
of 2-D object appearances. They use multidimensional receptive field histograms.
Transinformation enables the determination of the most discriminative viewpoints.
The proposed strategy moves the camera to the most discriminant viewpoint of the

hypothesized object.
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Dickinson and co-workers

Dickinson and co-workers [56], [57] present an active object recognition scheme which
integrates attention and viewpoint control. Their representation scheme is similar
to that of Biederman [17]. The Cartesian product of contractive shape properties
gives rise to a set of volumetric primitives called geons. The authors consider three

properties:
1. cross-section shape,
2. axis shape, and
3. cross-section size variation

The earlier works of Dickinson et al. [58], [60], [59] consider a similar framework in
recognizing an object from a single view. The Cartesian product of the dichotomous
and trichotomous values of these properties give rise to a set of 10 volumes. They
consider 10 modeling primitives namely, 1. Block, 2. Tapered block, 3. Pyramid,
4. Bent block, 5. Cylinder, 6. Tapered cylinder, 7. Cone, 8. Barrel, 9. Ellipsoid, and
10. Bent cylinder. To construct objects, the volumes are simply attached to one
another.

The above recognition schemes use an augmented aspect hierarchy as their data
structure. Aspects are used to model the (typically small) set of volumetric part-
classes from which each object in the database is constructed. The augmented aspect
hierarchy considers relations between boundary groups (representing all subsets of
contours bounding the faces), the faces, the aspects, and finally, the volumetric prim-
itives themselves. The entities at each level are linked with one another. Each link is
associated with a conditional probability.

Dickinson et al. present a case for using regions. They use conditional probabilities
captured in the augmented aspect hierarchy to define a measure of average inferencing
uncertainty. On the basis of this, they conclude that the value of this parameter for

faces is less than that for boundary groups. It is pointed out that the advantage
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would be realizable if the cost of extracting the features corresponding to the two are
comparable.

Their attention mechanism exploits the augmented aspect hierarchy to map target
objects down to target faces. Target faces are in turn, compared to image faces. In
selecting which recovered face to focus attention on, they use a decision theoretic
approach using a Bayesian framework. They use a structure known as the aspect
prediction graph to drive the sensor to a new position from which an object’s part

can be disambiguated.

Borotschnig and co-workers

Borotschnig et al. [21] present an active 3-D object recognition system that uses
appearance-based information. They extend the idea of the off-line system of Murase
and Nayar [146] to an on-line case. They use a parametric eigenspace, and augment
it with probability distributions — to capture possible variations in the input images
due to errors. Their system chooses as the next view a move, which minimizes the

average entropy.

2.3 A Comparative Analysis of Active Object
Recognition Systems

Active recognition systems have been proposed which can work with different assump-
tions about the nature of the sensors and the environment, the degrees of freedom
between the object and the sensor, and the object models themselves. We discuss the

following issues with respect to different active 3-D object recognition systems:

1. Features used for modeling and view recognition
While many approaches such as those of Hutchinson and Kak [106] and Liu
and Tsai [134] use geometric features, the scheme of Gremban and Ikeuchi [94]

is independent of the features used. The latter present results with geometric
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and photometric information. Goldberg and Mason [92] use haptic features.
Appearance-based methods such as that of Borotschnig et al. [21] use pixel
information from an entire image. Dickinson et al. [56], [57] use volumetric
primitives, which are associated with a high feature extraction cost. The same

is true for the super-ellipsoids of Callari and Ferrie [33].

2. The system setup and viewing geometry
Existing systems such as those of Hutchinson and Kak [106], Liu and Tsai [134],
Callari and Ferrie [33], Dickinson et al. [56], [57], Gremban and Ikeuchi [94], and
Borotschnig et al. [21] assume that the object completely fits into the camera’s
field of view. Borotschnig et al. [21] assume a single degree of freedom between
the object and the sensor. While Gremban and Ikeuchi [94] have experimented
with such a case, they propose extensions to higher degrees of freedom. The
viewing geometry used for recognition using a single view is usually affine (such
as in [107]), or projective (as in [213]). Most multiple view-based approaches
using geometric features, implicitly or otherwise, assume the camera model to

be orthographic.

3. Efficient representation of domain knowledge
The knowledge representation scheme should support an efficient mechanism to
generate hypotheses on the basis of the evidence received. It should also play a

role in optimally planning the next view.

Dickinson et al. [56], [57] use a hierarchical representation scheme based on
volumetric primitives. Due to the non-hierarchical nature of Hutchinson and
Kak’s system [106], many redundant hypotheses are proposed, which have to
be later removed through consistency checks. Borotschnig et al. [21] use a
parametric eigenspace-based representation, which is associated with a high

storage and processing cost.

4. Speed and efficiency of algorithms for both hypothesis generation and next view
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planning
Hypothesis generation should be fast, and incur minimal error. The next view

planning strategy acts on basis of these hypotheses.

In Hutchinson and Kak’s system [106], the polynomial-time formulation over-
comes the exponential time complexity associated with assigning beliefs to all
possible hypotheses. However, their system still has the overhead of intersection
computation in creating common frames of discernment. Consistency checks
have to be used to remove the many redundant hypotheses produced earlier.
Though Dickinson et al. [56], [57] use Bayes nets for hypothesis generation, their
system incurs the overhead of tracking the region of interest through successive

frames.

. Nature of the next view planning strategy

The planning scheme should ensure adequate discriminatory ability between
views common to more than one object in the model base. The cost incurred in
this process should also be minimal. The system should, preferably be on-line
and reactive — the past and present inputs should guide the planning mechanism

at each stage.

While schemes such as those of Borotschnig et al. [21] are on-line, that of Grem-
ban and Tkeuchi [94] is not. An off-line approach may not always be feasible, due
to the combinatorial nature of the problem. An on-line scheme may result in
significant reduction of the search space. An on-line scheme has the additional

capability to react to unplanned situations, such as errors.

. Uncertainty handling capability of the hypothesis generation mechanism

Approaches such as those of Goldberg and Mason [92], Gremban and Tkeuchi [94],
and Liu and Tsai [134] are essentially deterministic. An uncertainty-handling
mechanism makes the system more robust and resistant to errors compared to

a deterministic one. Dickinson et al. [56], [57] and Borotschnig et al. [21] use
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Bayesian methods to handle uncertainty, while Hutchinson and Kak [106] use
the Dempster-Shafer theory. In the work of Callari and Ferrie [33], the ambigu-
ity in super ellipsoid-modeled objects is a function of the parameters estimated,
on the basis of which the next move is determined. Schiele and Crowley [180)]

use a transinformation-based mechanism to propose the next move.

2.4 Active Scene Analysis Systems: A Survey

The aims and domains of scene analysis systems are extremely diverse — even though
active sensing and recognition usually form a common thread in each of them. Given
their diverse natures, systems for scene analysis generally use specialized schemes for
knowledge representation. They use these in conjunction with the recognition and
analysis strategies. In this section, we review some important classes of scene analysis

systems, and their data representation and control schemes.

Next View Planning for Data Acquisition: Range Images

Maver and Bajcsy [141] present a strategy for next view planning which exploits
occlusion information. They consider a data acquisition problem where a sensor is
placed in an unknown environment it has to investigate with its sensors. Their system
works with range images obtained using a laser-camera triangulation system that can
measure the distance only of those portions of a 3-D scene that are simultaneously
illuminated by laser light, and visible to the camera. The system exploits character-
istics of the sensing process, to acquire yet-unknown 3-D information about the scene
of interest. The foci of attention are the occluded regions. Two types of occlusions
can be encountered in their system: either when the reflected laser light does not
reach the camera, or when direct laser light does not reach the scene surface.

A related approach is that of Massios and Fisher [139]. The authors also use range
images, and propose a quality criterion. This quality criterion aims at obtaining views

that improve the overall range data quality of the imaged surfaces.
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Another recent approach is that of Garcia, Veldzquez and Sappa [85]. They present
a two stage algorithm for determining the next view, using range images. The first
stage applies a voting scheme that considers occlusion edges. Most of the surfaces of
the scene are recovered this way. The second stage fills up the remaining holes through
a scheme based on visibility analysis. The idea of having the expensive visibility
computations at the end of the exploration process, is to increase the efficiency of the
scheme.

A related vision-based approach is one of recovering the surface shape with an

active sensor. We discuss this in the following section.

Active Recovery of Surface Shape using a Vision-Based Sensor

Kutulakos and Dyer [126] present an approach for recovering surface shape from an
occluding contour of an object, using an active sensor. They use the fact that if the
viewing direction is along a principal direction for a surface point whose projection
is on the contour, it is possible to recover the surface shape (curvature). In their
strategy, an observer purposefully changes its viewpoint in order to achieve a well-
defined geometric relationship with respect to a 3-D shape. They use only curvature
measurements on the occluding contour to recover qualitative shape information.

Similar work of this group may be found in [122], [128], [123], [127], [129], [124], [125].

Scene Geometry Interpretation and Exploration

Whaite and Ferrie [190] present a system for the interpretation of scene geometry
in the form of parametric volumetric models. They describe ambiguity as a local
probabilistic property of the misfit error surface in the parameter space of super-
ellipsoid models. This is an ellipsoid of confidence in which there is a given probability
that the parameters can be found. They project back the ellipsoid of confidence into
3-D space in order to obtain the shell in which the true 3-D surface most probably lies.

The construction of an uncertainty image demonstrates the notion of uncertainty as a
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local property of the fitted model’s surface. They propose a technique that uses this
information to plan for the next view — which minimizes the ambiguity of subsequent

interpretation. Their system uses 3-D range data collected with a laser range finder.

Marchand and Chaumette [137] present an autonomous active vision system for
3-D reconstruction of static scenes. They do not assume any prior knowledge of the
number, localization, and the dimension of the different objects in the given scene.
The authors handle the perception-action cycles at various levels: from the definition
of perception strategies for scene exploration, down to the automatic generation of
camera motions using visual servoing. A controlled structure-from-motion method is
used for reconstruction. This allows an optimal estimation of parameters of geometri-
cal primitives (the authors use the scene to be composed of polyhedra, cylinders and
line segments). The authors propose perceptual strategies which are able to appro-
priately perform a succession of such individual primitive reconstructions in order to
recover the complete spatial structure of the scene. They present two algorithms to
ensure exploration of the scene. The first is an incremental reconstruction algorithm
based on the use of a prediction/verification scheme involving decision theory and
Bayes nets. Such an arrangement allows the system to get a high-level description of
the observed part of the scene. The second algorithm is based on the computation of
new viewpoints for the complete reconstruction of the 3-D scene. The authors show

the results of experiments in a robotic cell in support of their proposed algorithms.

Systems for ‘Finding Waldo’: Incorporating Colour and Other Cues

Grimson and co-workers [96] present an attentive active visual system which integrates
visual cues to fixate candidate regions in which to recognize a target object. The
system combines colour and stereo cues to perform figure/ground separation. The
input to the system is a representation of the target model, which includes both colour
and shape information. The system scans the entire field of view with minimum

overlap of images. It takes a stereo pair of images and subsamples them to support
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a wide field of view with moderate resolution. Edge detection is the next step. A
knowledge of colour primitives of the target object helps in selecting salient regions in
each image — the system retains edges in only those regions. The next step is stereo
edge matching. The disparity associated with the match is used to verge the cameras
and extract a high-resolution pair of images. The matched edges, and those which
lie within a small distance of the matched ones, are input to an alignment-based
recognition method [107]. The authors demonstrate this system to quickly find a
small target in a cluttered environment by focusing its resources in areas most likely

to contain that target.

While the system of Ennesser and Medioni [76] is not an active recognition system,
some ideas they present may be used to advantage in a active vision system. They
present a method for selecting a set of likely locations of an object in a colour image.
It is based on matching local histograms with the model. The idea of interest is
their method of handling scale. Each local histogram begins with an initially small
size, and is intersected with the model according to its current size. If the initial
intersection is promising enough, the histogram is sequentially allowed to grow by a
fixed amount in each cardinal direction. This is done as long as this process does
not decrease the normalized intersection measure, after updating and rescaling to the
new size. The final area is removed from the image and memorized as a possible
candidate, while a new local histogram starts to grow next to it. The algorithm uses

heuristics to avoid local minima.

Systems for ‘Finding Waldo’ essentially rely on active visual search. The following
section describes an important paradigm in visual search namely, using intermediate

objects.

Using Intermediate Objects to Enhance Visual Search

Wixson and Ballard [207], [208] describe an active vision system that use intermediate

objects to improve the efficiency of visual search. They show examples of trying to
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search for an object using an active camera, whose internal and external parameters
can be varied, and which is also capable of foveal processing. They propose indirect
searches to be more efficient as compared to direct searches for an object, in two
cases. The first is when intermediate objects can be recognized at low resolutions
and hence found with little extra overhead. The second is when they significantly
restrict the area that must be searched for the target. Indirect searches use spatial
relationships between objects to repeatedly look for intermediate objects, and look
for the target object in the restricted region specified by these relationships. The
authors present a mathematical model of search efficiency that identifies the factors
affecting efficiency and can be used to predict their effects. They report that in typical

situations, indirect search provides up to about an 8-fold increase in efficiency.

Selective Attention for Scene Analysis

Rimey and Brown [170], [200], [171], [172] suggest the use of Bayes Nets for scene anal-
ysis through selective attention. They describe a select active vision, TEA-1 in [170],
[171], [172]. They mention that the efficiency of a selective vision system comes from
processing the scene only where necessary, to the level of detail necessary, and with
only the necessary operators. TEA-1 uses not only the prior knowledge of a domain’s
abstract and geometrical structure, but is also reactive — it also uses information from
a scene instance gathered during analysis. The knowledge representation is through
4 kinds of Bayes Nets, (the PART-OF net, the expected area net, the IS-A tree, and
the task net) which are used to store different kinds of domain knowledge. TEA-1
uses benefit-cost analysis for the control of visual and non-visual actions. The authors
show the application of TEA-1 in analyzing dinner table scenes. In [200], simulation
results are shown on a train scene with a train on a track, a train station, herds of

cows and barns.

Jensen, Christensen and Nielsen [114] adopt a similar approach. The conditional

probabilities for their Bayesian network is obtained by subjective assessment. They
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show results on a network for discrimination between a British and a Continental

breakfast table scene.

Dynamic Relevance in a Vision-Based Focus of Attention Strategy

Baluja and Pomerleau [11] use the concept of Dynamic relevance in their vision-
based focus of attention strategy. The system ascertains the relevance of inputs by
exploiting temporal coherence. In their system, relevance is a time-varying function of
the previous and current inputs. It dynamically allocates relevance to inputs by using
expectations of their future values. The expectation of what features will be there in
the next frame decides which portion of the next visual scene will be focussed on. The
system uses a neural network with an input layer, a hidden layer and two sets of units
in the output layer: one for the output, and one for the reconstructed inputs. The
weights between the input layer and the hidden layer, and those between the hidden
layer and the outputs are trained to reduce the task error alone. The weights between
the hidden layer and the reconstructed inputs are trained to reduce prediction error
only. The architecture further has a feedback between the reconstructed ‘next’ inputs,
and the input layer. The input layer actually uses the concept of a saliency map to
make the system use filtered inputs. Thus, the information that is not relevant to the
task will not be encoded in the hidden layer. The authors demonstrate the application
of their ideas in various environments — vision-based autonomous control of a land
vehicle, vision-based hand tracking in cluttered scenes, and the detection of faults in

the plasma-etch step of semiconductor wafers.

Visual Surveillance

Buxton and Gong [31] present a visual surveillance system for tracking moving objects
and interpreting their patterns of behaviour. They use conceptual knowledge of both
the scene and the visual task to provide constraints to the problem. The control of

the system is through dynamic attention and selective processing. The authors use
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belief networks to model dynamic dependencies between parameters involved in visual
interpretation. They present experimental results on a traffic surveillance application,
using a fixed pre-calibrated camera model and pre-computed ground plane geometry.
To recognize different objects in the scene, they use volumetric models. The system

tracks objects across frames.

Environment Map Building

Nashashibi and co-workers [148] describe a system for indoor scene terrain modeling
using multiple range images. This relies on two grid-based representations: the local
elevation map, and the local navigation map. The authors describe their interpolation
method to build their grid-based representation of the terrain — the local elevation
map. Elevation data are used to build a symbolic grid representation call the local
navigation map. Here, each terrain patch is assigned to a pre-defined class of terrain.

They do not assume any a priori world model or landmarks to be available.

Lebegue and Aggarwal [131] propose a scheme for the extraction an interpreta-
tion of of semantically significant line segments for a mobile robot. Their scheme
is particularly suited for environments which can be described by lines of particular
3-D orientations. The low-level processing stages are designed to increase the use-
fulness and the quality of the extracted features for a semantic interpretation. The
detection and interpretation processes provide a 3-D orientation hypothesis for each
2-D segment. This is used to estimate the robot’s pose, and delimit the free space
visible in the image. A motion stereo algorithm (3D structure from motion) uses
the orientation data to fully estimate the 3-D Euclidean structure of the scene. The
authors use a similar approach in their later work [132] to build a CAD model of the
environment.

Faugeras, Ayache and Faverjon [79] also use visual cues for map-building. This pa-
per proposes a method to build visual maps by combining noisy stereo measurements.

The authors propose the idea of a Realistic Uncertain Description of the Environment
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(RUDE) which incorporates local information — it is attached to a specific reference
frame, and incorporates both geometrical information, as well as the related uncer-
tainty information. They relate this to pixel uncertainty, and show how the RUDE
corresponding to different frames can be used to relate them by a rigid displacement,
and a measure of its uncertainty. Finally, they use the relations between frames to
update the associated RUDE and decrease the uncertainty. In a more recent work,
Faugeras [78] describes deterministic computational geometry-based methods for map
building.

Elfes [75] describes a sonar-based system for map building and navigation. The
system uses sonar data to build a multilevel description of the robot’s surroundings.
The system uses probability profiles to determine empty and occupied regions. The
author proposes a robust method to combine sensor information that may be er-
roneous, as well as have an uncertainty associated with them. This enables range
measurements from multiple points of view to be integrated into a sensor-level sonar
map. These are used for path planning and navigation. The probabilistic sensor-level
sonar maps serve as the basis of a multilevel description of the robot’s operating
environment.

Pagac, Nebot and Durrant-Whyte [155] propose an algorithm for map-building
using evidential reasoning. They use the Dempster-Shafer theory to fuse new sensor
information into the map. This evidential approach with its multi-valued hypotheses
allows quantitative analysis of the quality of the data. The authors show examples
on real world data in support of their algorithm.

While the above two approaches model uncertainty using probability theory and
the Dempster-Shafer theory, respectively, the approach of Oriolo, Ulivi and Vendit-
telli [153] uses fuzzy logic. They present a system for real-time map building and nav-
igation for autonomous robots in completely unknown environments. The approach
of the authors is based on the alternate execution of two fundamental processes — map
building, and navigation. Map building consists of collecting range measures using

the robot’s ultrasonic sensors and processing it in order to build a local representa-
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tion of the surrounding area. This representation is then integrated in the global map
constructed thus far, by filtering out insufficient or conflicting information. In the
navigation phase, an A*-based planner generates a local path from the current robot
position to the goal. The robot follows the path up to the boundary of the explored
area, terminating its actions if unexpected obstacles are encountered. The authors
present results with a NOM AD 200 mobile robot.

Zelinsky [212] presents an algorithm for mobile robot exploration in an unknown
environment. The robot maps the environment only to the extent necessary to achieve
the goal. The paper assumes tactile sensors. The algorithm uses a quad-tree data
structure to to model the plan of the environment, and uses the distance transform
methodology [20] to generate paths for the robot. The algorithm generates paths by
treating unknown regions in the environment as free space. As and when the robot
encounters obstacles, it updates its environment and the planning process modified.
The algorithm successively ensures that the lengths of the paths are optimized. The
author presents simulation results of the action of the algorithm.

Asada [5] extends the work of Elfes [75] and proposes a method for building a 3-D
world model for sensory data from from outdoor scenes. His system allows for other
sources of input data, such as range and video data. First, a range image (‘physical
sensor map’) is transformed to a height map (‘virtual sensor map’) relative to a
mobile robot. the height map is segmented into unexplored, occluded, traversable and
obstacle regions from the height information. The system classifies obstacle regions
into artificial objects or natural objects according to their geometrical properties such
as slope and curvature. Height maps are integrated into a local map by matching
geometrical parameters and updating region labels.

Thrun [194] presents an approach that allows mobile robots to automatically select
landmarks. Landmarks are chosen based on their utility for localization. He achieves
this task by training landmark detectors so as to minimize the a posteriorilocalization
error that the robot is expected to make after querying its sensors. The system trains

a set of neural networks, each of which maps sensor input to a single value estimating
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the presence or absence of a particular landmark. He shows that these approaches
outperform approaches in which a human operator hand-selects landmarks and trains
neural networks to recognize them. The author also applies the Bayesian approach
to control the direction of the robot’s camera. He shows that using active perception

helps in faster localization than with a static camera configuration.

In [196], Thrun, Burgard and Fox address the problem of building large-scale
geometric maps of indoor environments with mobile robots. In their experiments, they
investigate a restricted version of the map-building problem, where a human operator
tele-operates the robot through an environment. They pose the map-building problem
as a constrained, probabilistic maximume-likelihood estimation problem. They present
an algorithm for getting the most likely map from the data, as well as the most
likely path taken by the robot. They demonstrate experimental results in cyclic

environments of sizes up to 80 by 25 metres.

Map building strategies use two major paradigms to represent the environment —
grid-based, and topological. While grid-based methods produce accurate metric maps,
their complexity often prohibits efficient path planning. (Schiele and Crowley [178]
examine the problem of pose estimation using occupancy grids.) Topological maps
do not suffer from this problem. However, accurate and consistent topological maps
are often difficult to learn and maintain in large-scale environments. Thrun [195]
proposes an approach that integrates both paradigms. The approach learns grid-
based maps using artificial neural networks and Bayesian integration of sensor output.
Topological maps are generated on top of the grid-based maps by partitioning the
latter into coherent regions. The paper presents results for autonomous exploration,

mapping and operation of a mobile robot in populated multi-room environments.

Reactive Robot Navigation

Crowley [50] describes a navigation system based on a dynamically maintained model

(‘composite local model’) of the local environment. The system uses ultrasonic sen-
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sors. The composite local model integrates information from the ultrasonic range
sensors, the robot’s touch sensor, and a pre-learned global model, as the robot moves
through its environment. The system includes a technique for correcting odometric
errors. The robot learns the global model of its environment, and uses it for global
path planning.

Basri and Rivlin [12] present a method of representation that may be useful for
a reactive vision-based navigating robot. The authors extend the work of Ullman
and Basri [198] on recognition by a linear combination of models. They analyze
three basic tasks in autonomous robot navigation namely, localization, positioning
and homing. They define localization as the act of recognizing the environment i.e.,
assigning consistent labels to different locations. Positioning is the act of computing
the coordinates of the robot in the environment. Homing is the task of returning to
a previously visited position. The authors represent a scene as a set of 2-D views and
predict the appearances of novel views by linear combinations of the model views.
They assume weak perspective projection. For the case when the weak perspective
assumption is invalid, they propose using either a larger number of models, or an
iterative solution for perspective distortions. They present a method for localization
from only a single 2-D view without calibration. They have a similar method for
positioning, and a simple qualitative algorithm for homing.

Kosaka and Kak [120] present a fast vision-guided robot navigation system FINALE
using model-based reasoning and the prediction of uncertainties. Although this sys-
tem is primarily meant for a path planning task, many ideas presented here are
relevant for scene interpretation as well. The vision system maintains a model of
uncertainty and keeps track of the growth of uncertainty as the robot travels towards
the goal position. For example, the uncertainty with respect to a line is modeled as
the convex hull for the two ellipses of uncertainty at the end-points of the line. These
ellipses of uncertainty depend on the mean vector and covariances matrices of the
uncertainty in position associated with the end points of the line. The system uses

these uncertainty estimates to predict bounds on the locations and orientations of
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landmarks expected to be seen in a monocular image. This reduces the complexity
of searches for establishing correspondence between landmarks and image features.
There is a sequential reduction in uncertainty as each image feature is matched suc-
cessfully with a landmark, allowing subsequent features to be matched more easily.

Fennema et al. [81] describe an autonomous robot navigation system at the Uni-
versity of Massachusetts, Amherst. Model-based processing of the visual sensory data
is the primary mechanism used for controlling movement through the environment,
measuring progress towards a given goal, and avoiding obstacles. They assume a
partially modeled unchanging environment containing no unmodeled obstacles. the
system integrated perception, planning and execution of actions. The system models
the environment using a CAD modeler. The system uses reactive planning processes
that reason about landmarks that should be perceived at various stages of task execu-
tion. The correspondence information between image features and expected landmark
locations (the system uses line features) is used at several abstraction levels to ensure
proper plan execution. For example, when the image of a landmark moves differ-
ently from what is expected, the system makes corrections to the motor system. The
system proposes partially-developed tentative plans about what action to take next.
These are developed depth-first with less developed details away from the current
location. Failures trigger changes in plans at various levels. Landmarks selected from
the model are used to steer the robot.

Chenavier and Crowley [44] describe a method for position estimation for a mobile
robot, using vision-based and odometric information. The system uses landmarks
for correcting the position and orientation of a robot vehicle. There are numerous
other examples of landmark-based navigation strategies e.g., Levitt and Lawton [133],
Onoguchi et al. [152],

Mataric [140] integrates a map representation into a reactive, subsumption-based
mobile robot [28]. She presents an implementation on a mobile robot equipped with
a ring of sonar sensors and a compass, and programmed with a collection of simple

and incrementally designed behaviours. The robot performs collision-free navigation,
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dynamic landmark detection, map construction and maintenance, and path planning.
Given any known landmark as a goal, the robot plans and executes the shortest known
path to it. If the goal is not reachable, the robot detects failure, updates the map,

and finds an alternative route.

Burgard et al. [29] present a modular and distributed software architecture of
an autonomous interactive tour-guide robot. The architecture integrates localiza-
tion, mapping, collision avoidance, planning and various modules concerned with
user interaction and Web-based tele-presence. The authors demonstrate results of
the deployment of their system in a densely populated museum for a period of six

days.

Chen and Tsai [42] present a incremental-learning-by-navigation approach to vision-
based autonomous land vehicle (ALV) guidance in indoor environments. The ap-
proach consists of three stages — initial learning, navigation and model updating. In
the initial learning stage, the ALV is driven manually, and environment images and
other status data are recorded automatically. The authors then build the initial en-
vironment model off-line. In the navigation stage, the ALV moves along the learned
environment automatically. It locates itself by model matching (using multi-weighted
generalized Hough transform), and records necessary information for model updating.
The approach uses information about vertical lines. In the model-updating stage, the
system refines the learned model off-line. A more precise model is obtained after each
navigation-and-update iteration. The authors show results on a real ALV in indoor

corridors.

2.5 An Analysis of Scene Interpretation Systems

Similar to our analysis of object recognition schemes, we discuss some issues in the

context of scene analysis systems.
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1. Features used for modeling and view recognition

Existing scene analysis systems primarily work with geometric features, irre-
spective of whether they are obtained from a vision-based sensor, a range sen-
sor, a haptic sensor, or ultrasonic sensors. Systems such as that of Grimson et

al. [96] additionally use colour information.

. The system setup and viewing geometry

Object data acquisition systems, and systems for recovering surface shape, both
assume that the object completely fits into the sensor’s field of view. For the
other application areas, the entire scene may not fall within the sensor’s field
of view. The aim of these systems is to use the sensor in a purposive manner,
to fulfill its task. The sensors for scene analysis applications typically have
three translational and one rotational degree of freedom (e.g., navigational ap-
plications as in the system of Kosaka and Kak [120]). Some systems such as
those of Rimey and Brown [170], [200], [171], [172] do not make any explicit
assumptions about the viewing geometry. Systems such as that of Basri and
Rivlin [12] explicitly assume weak perspective projection, while those of Lebegue

and Aggarwal [131], [132] assume perspective projection.

. Representation of domain knowledge

Different scene analysis applications need different representation schemes to
fulfill their requirements. Rimey and Brown [170], [200], [171], [172] use Bayes
nets to represent domain knowledge, and encode task specifications. In their
system for 3-D reconstruction of static scene, Marchand and Chaumette [137]
propose a prediction/verification scheme using decision theory and Bayes nets.
The visual surveillance system of Buxton and Gong [31] uses many different
representations for its components, such as Bayes nets and ground plane maps.
Artificial neural networks form the architecture of systems that use some form

of learning, such as those of Baluja and Pomerleau [11], and Thrun [194].

As mentioned in Section 2.4, Active map-building strategies primarily consider
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grid-based maps (e.g., Nashashibi et al. [148], Elfes [75], Orioli et al. [153]) as
against topological maps (e.g., [209]). Thrun [195] proposes an approach that
integrates both paradigms. Basri and Rivlin [12] represent a scene in terms of
2-D views as against the representation of Marchand and Chaumette [137], who

use explicit 3-D geometric models.

4. Algorithms for hypothesis generation and next view planning
Algorithms vary according to the nature of the application. Systems may use
explicit scene information to compute the next view. The approach of Maver
and Bajcsy [141] uses occlusion information, while that of Kutulakos and Dyer
(e.g., [126] uses curvature measurements on the occluding contour. The strategy
may be based on minimizing an uncertainty function as in [190]. Grimson and
co-workers [96] use colour and stereo features in their multi-stage algorithm.
Rimey and Brown [170], [200], [171], [172] use a benefit-cost analysis to plan
actions. There may be a high-level general control paradigm, as in the approach
of Wixson and Ballard [207], [208]. Map-building algorithms primarily focus on
algorithms for integrating evidences taken at different points in space and time,
such as that in [196]. Reactive navigation strategies primarily focus on reaching
a goal, subject to positional uncertainty and navigational obstacles. The system
of Oriolo et al. [153] for example, is designed for a completely unknown and

unmodeled environment.

5. Nature of the next view planning strateqy
All systems described in Section 2.4 have an on-line component. The on-line
nature of such systems illustrates their reactive property — an essential require-

ment of an active scene analysis system.

6. Uncertainty handling capability
Some approaches such as that of Maver and Bajcsy [141] are deterministic.

Most systems handle uncertainty explicitly. Uncertainty representation schemes
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include probability theory (as in the work of Elfes [75]), Dempster-Shafer theory
(as in the system of Pagac et al. [155]), and Fuzzy logic (e.g. the real-time map

building and navigation system of Oriolo et al.).

2.6 The Thesis in Perspective

Sections 2.2 and 2.3 survey and analyze different active 3-D object recognition sys-
tems. We repeat the process for different scene analysis systems (Sections 2.4 and
2.5) due to the commonality of many issues in the two problems. Based on this survey

and analysis, we draw the following conclusions:

e Geometric features are useful in a recognition task. We may supplement them
with other features such as colour and photometric information. Some recogni-
tion systems are tightly coupled with the properties of the particular features
they use. However in some cases, we may have a system that is not explicitly

based on any particular set of features.

e The 1-DOF (rotational) case between the object and an orthographic camera
is an important and fairly complex problem. The complexity of the recognition
task increases with the number of degrees of freedom between the object and the
camera, and the increasing generality of the camera model — from orthographic

to projective.

e The knowledge representation scheme plays an important role in both generat-
ing hypotheses corresponding to a given view, as well as in planning the next

view.

e The domain of application influences the design of the recognition algorithm.
In general, the system should plan a minimal number of steps (each step corre-
sponds to an epoch where sensor data is processed) in order to achieve its goal.

Such a process is subject to memory and processing limitations, if any.
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e The next view planning strategy should preferably be on-line. The system
should balance plan-based schemes and pure reactive behaviour. A pure reactive
behaviour may veer a system away from its goal. On the other hand, the reactive

nature of a system allows it to handle unplanned situations.

e A system with uncertainty handling capability gives it an edge over one that

uses a pure deterministic strategy — the former is more robust to errors.

Now, we look at some issues that existing object recognition systems do not ad-

dress.
e Accounting for noise at the model-building stage
e The use of the same noisy feature detectors at the recognition stage

e Recognition of a 3-D object when the object does not fit in the camera’s field

of view

e Addressing cases when there is no assumption about a knowledge of internal
parameters of the camera, or their constancy. The internal parameters of a

camera may be changed either involuntarily, or done on purpose.

Motivated by these observations, we address two problems in the recognition of a 3-D
object using a planned sequence of multiple views. Both cases assume an uncalibrated
camera.

The first problem relates to the case of an aspect graph-based recognition scheme,
using noisy feature detectors. For this case, we assume that the entire object fits in

the camera’s field of view.

e We propose a new aspect graph construction scheme which accounts for errors
in raw aspect data. We handle both the single DOF (rotational) case, as well
as the 3-DOF one, in which all three rotations are permitted. For this problem,

we assume the camera model to be orthographic.
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We propose a function to evaluate the output of an aspect graph construction

algorithm.

Our system handles feature detection errors not only in the aspect graph con-
struction process, but also in the object recognition stage, which use the same
feature detectors. To the best of our knowledge, no related work addresses these

issues.

We propose a novel object recognition algorithm which uses the output of the

aspect graph construction algorithm, for the 1-DOF case.

The object recognition algorithm uses a probabilistic hypothesis generation
mechanism. The hypothesis generation mechanism has low-order polynomial-

time complexity.

Our hierarchical knowledge representation scheme facilitates recognition and the
planning process. The hierarchy itself enforces different constraints to prune the

set, of possible hypotheses.

The planning process is reactive - it utilizes the current observation and past
history for identifying a sequence of moves to disambiguate between similar

objects.

An important feature of our system is that it is independent of the type of

features used.

We show experimental results of recognizing fairly complex objects with a set

of simple features, and suitably planned multiple views.

For situations in which a complete view of a 3-D object may not be visible, we

propose a new recognition algorithm based on parts of an object and their relation-

ships.
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e We use a novel method of complete 3-D pose estimation using inner camera

invariants.

e Such an approach enables us to work with situations in which camera internal
parameters (such as the focal length, on which the field of view depends) may

change.

e While the earlier part of our work assumed an orthographic camera, we have
formulated inner camera invariants for the projective case, with a commonly

used camera model.

e For this problem also, we formulate a hierarchical knowledge representation

scheme.

e Our probabilistic recognition algorithm accounts for uncertainty in pose esti-

mation, movement, as well as in the feature detection process.

e For this problem, we use geometric features in conjunction with other features.

The parts may be 2-D or 3-D entities.

e We show the results of a number of experiments in support of our proposed
strategy. We demonstrate its robustness to certain classes of feature detection

errors, and small movement errors.

In this thesis, we show that using a combination of reactive next view planning and
suitable knowledge representation schemes, we can effectively recognize fairly complex

3-D shapes using simple features.
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Chapter 3

Constructing Aspect Graphs for
Object Recognition

Many 3-D object recognition strategies use aspect graphs to represent objects in the
model base. A crucial factor in the success of these object recognition strategies is the
accurate construction of the aspect graph, its ease of creation, and the extent to which
it can represent all views of the object for a given setup. Factors such as noise and
non-adaptive thresholds may introduce errors in the feature detection process. This
chapter presents a characterization of errors in aspect graphs, as well as an algorithm
for estimating aspect graphs, given noisy sensor data. We present extensive results
of our strategies applied on a reasonably complex experimental set. We demonstrate

its application to a robust 3-D object recognition method in Chapter 4.

3.1 Aspect Graphs

Any object recognition strategy, based on single or multiple views, requires robust
identification of a view of the given object. Aspect graphs are a convenient tool for
multi-view, viewer-centric representation of a 3-D object. Many 3-D object recogni-

tion strategies use aspect graphs (e.g., [40], [106], [94], [56], [57]). In this section, we

49
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discuss aspect graphs and related issues.

3.1.1 Aspects and Classes

We start with the definitions of the terms ‘Aspect’ and ‘Class’:

Aspect Koenderink and van Doorn [117], [118] define aspects as topologically equiv-
alent classes of object appearances. Chakravarty and Freeman [40] adopt a
similar approach in their definition of the ‘Characteristic Views’, and their uses
in object recognition. Since sensors may be of different types (geometric, pho-
tometric, etc.), Tkeuchi and co-workers generalize this definition — Object ap-
pearances may be grouped into equivalence classes with respect to a feature
set. These equivalence classes are aspects [93]. Thus, an aspect is a collec-
tion of contiguous sites in viewpoint space which correspond to the same set of

features.

Class A Class (or Aspect-Class) is a set of aspects, equivalent with respect to a

feature set. Thus, a class represents a set of features.

We illustrate these definitions with two simple examples. In these examples, we
consider the classical definition of the term aspect i.e., the one based on topology. For
the most general case, there may be 6 degrees of freedom (hereafter, DOF) between
the object and the sensor — three translational, and three rotational. We consider two
cases — one for a single rotational degree of freedom, and the second for all three rota-
tional degrees of freedom between the object and the sensor. Throughout this thesis,
we refer to these as the ‘1-DOF’ and the ‘3-DOF’ case, respectively. Figure 3.1(a)
shows an example of the 1-DOF case. The setup has an object on a turntable, which
can rotate about its spindle (the central axis). Let us consider as features, the number
of horizontal and vertical lines in an image of the object. We assume an orthographic
camera. For such a camera model, the polyhedral object has 10 aspects belonging

to 3 classes. Figure 3.1(b) shows these aspects along with their angular extents in
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(a)
ASPECT 5
ASPECT 6 CLASS1
ciass2 [ TH=——1..
ASPECT 7 —" OBJECTON
T % ASPECT 4
CLASS1 - TURNTABLE . ‘Gl ASS?
ASPECT 8 my------- g N . ASPECT 3
CLasss Ll 4N [ "cLass1
ASPECT 9 ~ L
CLASS 1 ¥ ASPECT 2
o 7 CLASS?2
ASPECT 107, e ”
CLASS 2
ASPECT 1
CLASS 1
(b)

Figure 3.1: (a) An example of the 1-DOF case (a single rotational degree of freedom

between the object and the camera), and (b) the object with its aspects and classes
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the viewing space around the object. In this example, the viewing space around the
object is a circle with the centroid of the object at its centre. The radius is the the
distance between the centre and the centre of the camera coordinate system.

Figure 3.2 shows the corresponding examples for the 3-DOF case. Figure 3.2(a)
shows the three rotational degrees of freedom between the object and the camera —
the latitude and longitude angles ¢ and ¢ respectively, and the rotation angle v of the
camera about its own axis. We assume an orthographic camera again. The viewing
space around the object is a sphere, with its centre coinciding with the centroid of
the object O. The radius of the sphere is the distance between the centre of the
sphere, and the centre of the camera coordinate system. Figure 3.2(b) shows some
aspects and classes of this object for a quadrant of the viewing space. The angles
corresponding to these aspects in this case are solid angles. Points A, B and C on the
viewing sphere represent aspects of one class. All points such as D which lie on the
equator of the viewing circle, (with the exception of points such as B and C' which
view a face of the cube head-on) represent another class. Points such as F" also belong
to the same class. E and its neighbouring points belong to another class. An aspect
corresponding to this configuration would correspond to the solid angle subtended by

the surface of the sphere bounded by (but not including) arcs AB, AC' and BC.

3.1.2 Aspect Graphs and their Classification

We define an aspect graph as follows:

Aspect Graph An aspect graph consists of nodes which correspond to aspects.
Links between nodes represent transitions from one aspect to another. A link is
often referred to as an accidental view, or a visual event ([73], [74]). An aspect
graph has a node for each aspect of the object, and a link for each possible

visual event.

An aspect graph partitions the space of viewpoints around an object into maximal

regions. Every viewpoint in each such region (an aspect) gives the same view of the
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Figure 3.2: (a) An example of the 3-DOF case (all three rotational degrees of freedom

between the object and the camera), and (b) the object with its aspects and classes
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object with respect to a particular feature set. An aspect is a general viewpoint
([73], [74]) — one from which an infinitesimal movement in any possible direction in
viewpoint space, results in a view that is equivalent to the original view. Changes in
the aspect (visual events) take place at the boundaries between regions. Two aspects
are connected by a visual event if and only if their corresponding regions are adjacent
in the viewpoint space. A link represents an accidental viewpoint — one for which
there is at least one direction in which an infinitesimal movement results in a view
that is different from the original.

Depending on the method used to construct them, aspect graphs may be classified

as:
1. Exact aspect graphs, and
2. Approximate aspect graphs (hereafter, AAGs)

We discuss these two types of aspect graphs in the following sections.

3.1.3 Exact Aspect Graphs

Analytical approaches are used to construct exact aspect graphs — directly from object
shapes and surface characteristics. A limitation of such an approach is its applica-
bility to only a specific class of objects. Existing approaches are primarily limited
to geometric features obtained from CAD models of objects — changes in topological
properties of object appearances determine the visual event catalog for the object.
Depending on the projection method used, analytical approaches can be further clas-
sified as orthographic and perspective. Algorithms exist for specific classes of objects

(not all of these classes are mutually disjoint) —

e polygons ([86]),

e transparent smooth objects ([117]),
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e piecewise-smooth objects and algebraic surfaces ([43], [166], [162], [184], [167],
[168], [164], [169]),

e curved objects ([32], [121], [162], [184], [163], [164], [72], [104], [22]),

e smooth shapes from volumetric data ([151]),

e polyhedral objects — 2.5-D polyhedra under orthographic projection ([38]),
e solids of revolution under orthographic projection ([71], [154]),

e arbitrary polyhedra under orthographic projection ([89], [90], [88], [130], [160],
[201], [182)),

e convex polyhedra under perspective projection ([185], [186], [187], [202]),
e arbitrary polyhedra under perspective projection ([186]), and
e objects with moving parts ([23]).

The above were examples of vision-based approaches for aspect graphs. In [116], the
authors present an example of a Haptic aspect graph for 3-D object shapes.

We now examine three related approaches.

Finite Resolution Aspect Graphs Shimshoni and Ponce [182] address the prob-
lem of computing finite-resolution aspect graphs of polyhedral objects. They
assume an orthographic camera with limited spatial resolution, and simple ge-

ometric features.

The Scale Space Aspect Graph Eggert et al. [73], [74] propose the concept of a
Scale Space Aspect Graph. The aim of their work is to reduce the large set of
aspects (obtained from analytical methods) to a smaller set of “most important”
aspects. In a more recent work on scale space aspect graphs, Pae and Ponce [154]

extend the concept to a class of solids of revolution.
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PREMIO and Related Approaches Lu, Shapiro and Camps [135], [136] present
a relational pyramid approach to class (view-class/aspect-class) determination.
For modeling objects in their object recognition system PREMIO, Camps,
Shapiro and Haralick [36], [37], [34] use CAD models, surface reflectance prop-
erties, light sources, sensor characteristics and performances of feature detectors
to build a Vision model. PREMIO has a feature prediction module. The match
between a prediction and a relational structure based on image data is a rela-
tional matching problem. The authors use an I D A* search on an interpretation

tree.

3.1.4 Approximate Aspect Graphs (AAGs)

AAG construction approaches usually tessellate the viewpoint space into uniform
partitions. Adjacent viewpoints which give the same appearance of the object with
respect to a feature set, are grouped together to form an aspect. Each partition is
represented by a site. A site is a representative viewpoint for a partition, at which
sensor data is collected. Examples of uniform partitioning strategies, and related
issues are the schemes of Horn [102], Korn and Dyer [119], Fekete and Davis [80],
Goad [91], Ikeuchi and co-workers [108], [109], [94], Chen and Kak [41], Ballard and
Brown [9], Jain and Hoffman [113], and Flynn and Jain [83].

The uniform partitioning approach is independent of the object shape and struc-
ture, the sensor, and the feature set. In other words, one can use the same algorithm
to construct an AAG, irrespective of the object, the sensor, or the feature set. The
effects of finite resolution are generally not considered in analytical approaches (ex-
ceptions exist, e.g., [182]). We consider the uniform partitioning approach in this
thesis.

We now review some related approaches.

Geometric Features: The Use of CAD Modeling Some authors use CAD mod-
eling for a uniform partitioning approach. For example, the BONSAI sys-
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tem of Flynn and Jain [82] identifies and localizes 3-D objects in range im-
ages by comparing relational graphs extracted from CAD models to relational
graphs extracted from range image interpretation. In the more recent work of
Munkelt [145], the author uses CAD modeling to generate a set of normalized

synthetic views for his image interpretation system Aspik.

Volumetric Primitives and the Augmented Aspect Hierarchy Dickinson and
co-workers [58], [60], [59], [56], [57] use a set of volumetric primitives to compose
different objects. They consider the uniform partitioning approach to generate
AAGs of each volumetric primitive. They propose an augmented aspect hi-
erarchy encodes relations between boundary groups (representing all subsets
of contours bounding different faces), the faces, the aspects, and finally, the

volumetric primitives themselves.

The Use of Specular Features The above three were examples of using geometric
information. Sato, Ikeuchi and Kanade [177] present a system for the recognition
of specular objects. In an off-line phase, the system generates synthetic images

from a representative set of viewpoints.

The Use of Physical Modeling An interesting variant of the uniform partitioning
approach is the work of Robey, West and Venkatesh [174]. The authors suggest
the use of physical modeling for the prediction of various feature types visible
from different viewpoints. An advantage of their method is that their technique
is independent of the shape of the object. Their only assumption is that it
should be possible to represent the object using a boundary representation. A
second advantage of their method is that it can make use of not only geometric
features, but also other feature types such as specularity. Other authors such
as Tkeuchi and co-workers (e.g., [94]) also use similar methods (using colour and

reflectance).
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3.1.5 Geometric Features: Exact Aspect Graphs, and High-
Resolution AAGs

As mentioned earlier, exact aspect graphs have been proposed for specific classes of
objects, and are based on geometric features alone. Let us now compare AAGs of such
objects with exact aspect graphs. The resolution of the tessellation of the viewing
space determines the extent to which an AAG will approximate an exact aspect graph
better. However, such an AAG and an exact aspect graph may still not correspond

with each other. The reasons could be one or all of the following:

e The actual 3-D object may not exactly correspond to the geometric CAD model.
For example, a model edge may not be perfectly straight, or angles may be
different. Small changes in object shape can drastically alter the set of visual
events. This affects the partitioning of the viewpoint space into aspects. Such
discrepancies would show up in an AAG. Thus, an AAG can prove to be more

useful than an exact aspect graph in a recognition task with the actual object.

e An exact aspect graph gives equal importance to each visual event. Thus, an
exact aspect graph may include details which an observer may almost never see
in practice. Certain events may exist due to fragile alignments, but may occupy
a negligible fraction of viewpoint space. The term View degeneracy refers to
the accidental alignment of spatially distinct scene parts as seen from a camera

viewpoint [206], [61].

e Exact aspect graphs assume infinite resolution in the projected image. Even for
an AAG with a fine degree of tessellation, limitations of the feature detectors
could preclude the detection of some aspects with small extents in viewpoint
space. The same could also occur for visual events. Thus, two views that differ

by such an aspect would be the same, as observed using an experimental setup.

e There may be another consequence of view degeneracy. Given arbitrarily high

resolution of the imaging process, view degeneracy may not be a problem. This
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is so because such accidental alignments would occur for a vanishingly small
fraction of the possible viewpoints. For an experimental setup, the set of such
viewpoints is much larger due to the finite resolution of cameras and feature

extraction operators.

e An exact aspect graph idealizes a camera as a point object. For a given ex-
perimental setup, certain views are unlikely to be witnessed because of their

location in space [74].

In the following section, we examine different approaches to these problems, and

the related issue of errors in aspect graphs.

3.1.6 Errors in Aspect Graphs: Related Work

This section first explains the concept of an ‘error’ in the context of aspect graphs.
An error is a non-conformance of the observed feature data at a position in the
viewpoint space with the one predicted by the aspect graph. This could be the result
of the inability of an exact aspect graph to model all observable details of an object,
or the effect of noise in the feature detection process. Algorithms for aspect graph
construction from CAD data generally do not address the issue of errors in aspect
graphs. For analytical approaches, one requires very precise models of not only the
noise process, but also the sensors and detectors, and the imaging process. In the

following sections, we examine some important approaches in the area.

Feature Detector Detectability and Reliability

Ikeuchi, Kanade and co-workers define the terms detectability and reliability for a
feature detector [109], [110], [93], [111], [177]. In [110] they derive analytical expres-
sions for two cases — a light stripe range finder, and a photometric stereo detector.
However, no related work (including the work of Gremban and Ikeuchi on object

recognition [94]) uses such models for analyzing errors in AAGs.
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PREMIO and related approaches

Lu, Shapiro and Camps [136] consider a very restricted class of feature detection
errors in [136]. They assume the only variants of a perfect line drawing of a view
class to be those with at most two internal line segments missing. Further, they
assume the presence of all boundary line segments, and the presence of no extra
line segments. The system PREMIO considers incorporates a frequency statistics-
based concept of feature detectability. PREMIO’s feature prediction module also
uses feature detectability estimates to a predicted view of an object, given a set of

sensor and lighting conditions.

The Scale Space Aspect Graph

The scale space approach of Eggert et al. [73], [74] and Pae and Ponce [154] model
some types of errors through the notion of scale. The modeling of scale is with respect
to geometric features alone. Further, the techniques for some simple examples are

not easy to generalize for more complicated shapes.

View Degeneracy

Wilkes, Dickinson and Tsotsos [206], [61] show that degenerate views occupy a sig-
nificant fraction of the viewing space surrounding an object. Accidental alignment
of parts causes view degeneracies. The finite resolution of cameras and feature ex-
tracting operators enlarges the set of such erroneous viewpoints. The authors present
a computational model for view degeneracy. They assume a perspective projection
model. They assume geometric features, and assume the knowledge of camera pa-

rameters such as the focal length and the nodal point.

View Likelihood and Stability

Weinshall and Werman [203] define two measures on views: view likelihood and

view stability. View likelihood measures the probability that a certain view of a
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given 3-D object is observed. View stability measures how little the image changes
as the viewpoint is slightly perturbed. They analytically derive the stability and
likelihood measures for two feature-based 2-D metrics. The authors analyze this case
for geometric features, with a calibrated setup. Further, the authors do not account

for noise in the image formation process.

Finite Resolution Aspect Graphs

The work of Shimshoni and Ponce [182] is probably the only work in exact aspect
graphs which account for finite-resolution effect — a cause of error in aspect graphs.
The authors present an algorithm for constructing aspect graphs of polyhedral objects

with an orthographic camera with limited spatial resolution.

3.2 The Proposed Approach: Motivation and

Rationale

In this chapter, we propose a new approach to aspect graph construction using noisy
sensors. Rather than using the output of a CAD modeling scheme, we use image-
based information to construct an AAG. We consider simple image-based features
to characterize a class. We assume the availability of an active sensor. (For our
experimentation, we use an active orthographic camera.) We tessellate the viewing
space around an object. We use the active sensor to collect data from all viewpoints
in the tessellated viewing space. These sensors could be noisy. This leads to the
detection of an incorrect class, at a viewpoint. This data (‘raw aspect data’) is the
input for our AAG construction algorithm.

We first present a classification of all types of errors in raw aspect data. We look at
errors from the point of view of the raw aspect data available with us. We examine the
statistical nature of the occurrence of these errors. Our AAG construction algorithm

eliminates errors from raw aspect data in an unsupervised manner. The algorithm
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maintains estimates of these errors — we use this to advantage to impart robustness
to our object recognition algorithm (Chapter 4), which uses the same set of sensors.
In this section, we present the motivation and rationale behind our approach. We

base this on the following issues:

e The work on exact aspect graphs concentrates solely on their construction. To

quote Flynn and Jain [83]:

“... the current work on “formal” aspect graphs has emphasized their
construction from geometric models, rather than their use in recog-

nition.”

Exact aspect graphs use topological information for defining aspects. However,
it is difficult to extract topological information from images. For example, to

quote Mundy in [24],

“On the one hand, these topological structures are well defined and
are well developed within the mathematical literature. On the other
hand, there is little reason to believe that topological relations can be

reliably retrieved from an image, even without considering occlusion.”

e Nearly all object recognition systems which use aspect graphs (or related mod-

els) with simple image features.

1. Hutchinson and Kak [106] use faces of a polyhedral object which are seg-

mented from range images.

2. Tkeuchi and Kanade [109], [110] define aspects based on visible faces with
photometric stereo. Suppose there are n faces Si, So, ... S,, where one
face corresponds to either a plane surface, or a curved surface which will
be detected as a single surface patch in photometric stereo. They use a
0 — 1 variable X; to have a value 1 if face S; is visible and 0, otherwise.

They use an n-tuple (X7, Xs, ... X,) to represent an aspect.
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3. Sato, Ikeuchi and Kanade [177] use information about specularities.

4. Gremban and Ikeuchi [94] use the following as features for their recognition
system (this has one rotational degree of freedom between the object and

the sensor):

the number of specularities,

the area of the largest specularity,
— the dominant eigenvalue of the largest specularity,
— the maximum distance between specularities, and

— the minimum distance between specularities

For their example using a finger-gap sensor, they use the distance between

the fingers of a parallel jaw gripper, as a feature.

5. Chakravarty and Freeman [40] use the 8 types of junctions proposed in [39].
As features, they use a feature vector, whose components are the number

of junctions of each type.

PREMIO [36], [37], [34] , and the work of Dickinson et al. [58], [60], [59],
[56], [57] are probably the only systems which derive topological information
from an image. However, their method suffers from the overhead of having
to match two hierarchical topological descriptions. The authors perform this
relational matching problem as an IDA* search on an interpretation tree. [56],
[57] additionally use an aspect prediction graph, which is based on an aspect
graph. Further, the work on PREMIO shows experimental results with only two
polyhedral objects, Cube3Cut and Fork. It is not very clear how these relational

matching procedures perform under noise, and feature detection errors.

Dickinson and co-workers use information from an aspect graph to construct an
Aspect Prediction Graph. There are two important shortcomings of their system.
The first is the use of volumetric primitives. It is not very easy to extract

knowledge about volumetric primitives from images, reliably. Secondly, their
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object recognition strategy (which uses the aspect prediction graphs) has to
track the region of interest through successive views. In addition to the tracking
overhead, the system performs many redundant image processing operations —

in many successive images, when the aspect of the object remains unchanged.

An aspect graph is often used for recognizing a given object from its image. In
such a case, factors such as noise and non-adaptive thresholds may affect the
output of a feature detector at a position in viewpoint space. While authors
account for effects such as finite resolution and varying the distance between
the object and the sensor, no approach addresses the above issue. During the
course of AAG construction, such effects may be directly observed. Thus, it is
possible to get information about noise and other feature detection errors from

observed data directly.

In general, it is difficult to find models that model the sensing and imaging
processes very accurately. For example, in spite of the elaborate vision model

in PREMIO, Camps mentions [34]:

“At times, edges that do not correspond to any boundary or limb can
appear in an image due to a particular material property or lighting
configuration. Those edges represent intensity discontinuities caused
by shadows or highlights in shiny surfaces and can be derived from
the surface characteristics. However, incorporating this feature into

the prediction module constitutes a major research effort ... ”

Error-modeling approaches for exact aspect graphs explicitly aim at modeling
some causes of errors — either along aspect boundaries, or finite resolution, or
accidental alignments. Though there has been a significant amount of work on
sensor modeling by proponents of the uniform partitioning approach — sensor
detectability and reliability ([109], [110], [93], [111]), no related work accounts

for feature detection errors in aspect graph construction. The authors in [94]
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mention only one type of error — those on aspect boundaries. No approach —
either for exact aspect graphs or AAGs, accounts for the effects of noise and

related feature detection errors in aspect graph construction.

The organization of the chapter is as follows: Section 3.3 examines different issues
in AAG construction. We then present our classification scheme for different types of
errors in AAGs, in Section 3.4. We present our algorithm for aspect graph construc-
tion in Section 3.5, as well as our evaluation function for comparing aspect graph
construction algorithms. Section 3.6 discusses the suitability of a feature detector for
aspect graphs, and related issues. We present results of extensive experimentation
in Section 3.7. In the concluding section, we summarize the salient features of our

scheme.

3.3 AAGs, Errors in Raw Aspect Data

Any object recognition strategy requires robust identification of a view of the given
object. The success of such a strategy crucially depends upon its ability to handle
feature detection errors — the ability of the aspect graph construction algorithm to
model and account for such errors, as well as the mechanism in the view-identification
algorithm to handle them. This chapter presents a new algorithm for aspect graph
generation with active sensors. We show its applicability for robust 3-D object recog-
nition in Chapter 4.

With the uniform partitioning approach, construction of an AAG requires visiting
each site in the tessellated viewing space around the object. In the most general
case, there may be six degrees of freedom between the object and the sensor — three
each for translation and rotation. In this thesis, we consider the 1-DOF and 3-DOF
cases. In the 1-DOF case, the sensor can move around the object in a circle, at a
fixed distance. Figure 3.1(a) shows an example of the 1-DOF case, along with an

image taken by the (orthographic) camera. The viewing space is a tessellated circle
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(Figure 3.3(a), shown flattened out in Figure 3.3(b)). Figures 3.3(c) and 3.3(d) depict
two ways of representing a 1-DOF aspect graph. Figure 3.3(c) shows a Gantt chart
- each aspect of the object is represented by a shaded rectangle, proportional to its
angular extent on the flattened-out perimeter of the viewing circle. Different shading
patterns represent different classes. We may also represent an aspect graph as a
plot of the class at each viewing position. The X-axis represents different viewing
positions on the flattened-out perimeter of the viewing circle, while the non-metric
Y -axis represents different classes as different heights. Figure 3.3(d) shows an AAG
of the example object represented as a class-distribution. In this example, tessellated
sites are 3% apart. We use a circular linked list as the data structure to represent an
AAG. Each node (an aspect) stores information such as its associated class and its
angular extent.

Figure 3.4 shows the corresponding examples for the 3-DOF case. The viewing
space is a tessellated sphere (Figure 3.4(a)). We use the tessellation algorithm of
Chen and Kak [41]. The authors claim their method to be superior to other existing
methods — [102], [108], [80], [119] and [91]. To obtain a geodesic tessellation, we
inscribe an icosahedron in a unit sphere. Each edge of a triangular face is divided into
@ sections (Q is the frequency of geodesic division). Finally, the subdivided faces are
projected onto the unit sphere. Each of the 10-Q? + 2 vertices represents a viewpoint.
Chen and Kak present a scheme to represent a vertex as [i, j, k] (Figure 3.4(b)) and
give rules to find the neighbours of each vertex. Vertices which correspond to those
of the original icosahedron have 5 neighbours, whereas the rest have 6 each. They
express the direction of each tessel in terms of latitude and longitude angles, (i, j, k)
and ¢(i, 7, k). The radial angle between adjacent sampling points (‘inter-site angular
distance’) is roughly atan(2)/Q. We use the above scheme to compute the distance

between two sites A and B in units of the inter-site distance, as follows (Figure 3.5).
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Figure 3.3: 1-DOF viewpoint space tessellations and aspect graphs: (a) The tessel-
lated viewing circle, and (b) its flattened-out representation; and corresponding to
the object in Figure 3.1, (c) a Gantt chart representation of the aspect graph, and
(d) an AAG of the object, shown as a class-distribution
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Figure 3.4: 3-DOF viewpoint space tessellations: (a) The tessellated viewing sphere,

and (b) its flattened-out representation
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FANY:

Figure 3.5: Distance between two tessellated points: the 3-DOF case (details in text)
Since cos/AOB is OA - O@,

lapg =~ (Q/atan(2)) - arccos(sinyy cospy siny cosps +

sinyy singy siny sings + cosyy cosys)

We use a weighted graph as the data structure to represent a 3-DOF AAG (Fig-
ure 3.6). Each node represents an aspect. An adjacent node is one with which it
shares a common boundary (in the tessellated viewing space). The weight of the link

between them is the length of this common boundary.

3.3.1 Raw Aspect Data, Aspect-Candidates, Class-Candidates

Let us assume a set of n feature detectors for the set of features F = {Fy, Fs, ... F,}.
We use this set of feature detectors on the image of the object taken at a site in the
viewpoint space. We denote the output of the set of feature detectors as an n-tuple,
( fiji, f2jss -+ fuj, )- Thus, each site in the viewpoint space is associated with a
feature tuple label. Let the term ‘Raw aspect data’ denote the collection of feature

tuples obtained at the set of sites in the tessellated viewing space.
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Figure 3.6: Representation of a 3-DOF AAG: for aspect a,

For a given set up with an object and suitable sensors, uncertainty in sensor
measurement can arise due to variation in brightness values (intensity-based sensor)
and variation in light source directions (position-based sensor) [110]. Errors can also
arise due to physical characteristics of not only the sensor, but also the illumination
source (for light-based feature detection) and the digitization process. Non-adaptive
thresholds in algorithms for processing sensor data are also a cause of feature detection
errors. Thus, factors such as noise and non-adaptive thresholds may produce an

incorrect set of features at a viewpoint.

We refer to aspects and classes obtained from raw aspect data as aspect-candidates
and class-candidates, respectively. A feature tuple ( fi;,, foj,, ... fnj, ) character-
izes a class-candidate. (As an example, f;;, could represent the number of junctions
of a particular junction type: V-junction, T-junction, etc. Chakravarty and Free-
man [40] use this method to represent a view class.) A class-candidate is related
to the set of features describing an aspect-candidate. An aspect-candidate has a
class-candidate associated with it, along with information about its corresponding
set, of points in the viewpoint space around the object. Thus, we can have erroneous

aspect-candidates and class-candidates, but no erroneous aspects and classes.

The following section presents a classification of errors in raw aspect data.
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3.4 A Classification of Errors in Raw Aspect Data

In this section, we characterize different types of errors that can occur in raw aspect
data — due to noise in the sensing process, and errors in feature detection. First,
we present a general discussion on errors in AAGs. Subsequently, we formalize this
in our classification scheme. We perform this analysis for both 1-DOF and 3-DOF
cases. We assume that all the objects in the given model base, and feature detectors
are suitable for aspect graph-based object recognition. Loosely speaking, the object
should have aspects which are not too small in size, or too large in number. If aspects
are very small in size, it may be difficult to tell them apart from errors. Too many
aspects increases the memory requirements for an object recognition task — in the
search for a view that distinguishes between different objects having many views in
common.

An error-free AAG is characterized by piecewise continuity in the feature tuple
labels at its sites. Such an AAG has aspects, whose corresponding angular extents
are not too small in size. The discontinuities in the smoothness correspond to aspect
boundaries. We base our error classification on experimental observations — the fea-
ture data obtained with an active sensor. Inherent in our classification scheme is the
statistical nature of occurrence of errors in the raw aspect data. Intuitively, an error
corresponds to a small region whose feature tuple label is different from the labels in
its neighbourhood. (We use the notation G, to denote the set of aspect-candidates in
the neighbourhood of aspect-candidate «.) The following two factors form the basis

of error characterization in an AAG:
e the position (site) at which the error is introduced, and
e the ‘value’ or feature tuple label at that site.

At this point, we define the term Valid class-candidate. Given a set of raw as-
pect data, let us consider aspect-candidates with large extents (in terms of the number

of sites they occupy in viewpoint space). These are more likely to either constitute an
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aspect by themselves, or be part of some aspect in the corresponding error-free aspect
graph. We would like to identify those class-candidates which correspond to aspects
in an error-free aspect graph. We characterize a valid class-candidate in terms of a

parameter N,,;,:

N,pin - the minimum total number of sites at which a class-candidate should be

present in an object’s viewpoint space to be called a ‘Valid class-candidate’

At the end of our AAG construction algorithm (Sections 3.5.3 and 3.5.4 for the 1-DOF
and 3-DOF case, respectively), the only class-candidates left in the aspect data are
all valid class-candidates. These constitute the aspect-classes for the resultant AAG.
An aspect-candidate having a small extent constitutes an error. However, its corre-
sponding class-candidate may not necessarily be an erroneous class-candidate. As an
example, there may be other aspect-candidates in its neighbourhood corresponding
to the same class-candidate. Thus, these aspect-candidates may be a part of an as-
pect in the corresponding error-free aspect graph. Such an aspect could correspond
to a unique class, that is not present in any other object in the model base. If the
number of sites corresponding to the class-candidate is not less than N,,;,, it will not
be treated as an erroneous class-candidate.

In what follows, we formally present our classification scheme. We give a mathe-
matical characterization of each type of error. Let us use the terms A and C to denote
the set of all aspect-candidates and the set of all class-candidates, for a particular

model base, respectively. We define the following function:

CLASS_CAND : A—C

Thus, for an aspect-candidate «, the function CLASS_CAND(«) returns its corre-
sponding class-candidate. We use the notation A. to denote the set of all aspect-

candidates corresponding to class-candidate c¢. Formally,

A.2{a € A| CLASS_.CAND(a) =¢,  c€eC}
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Association Errors

An important point here is that due to characteristics of the particular experimental
setup — sensor response characteristics, sensor positioning, lighting arrangements,
the imaging process and the feature detection mechanism, a particular type of error
may be associated with a particular class-candidate. In other words, some erroneous
class-candidate ¢ may occur as error regions exclusively in regions corresponding to
a particular class ¢ of an exact aspect graph. We term this phenomenon as an
association error. To illustrate an example of such an association, let us consider a
1-DOF setup, with a camera going round a polyhedral object in a tessellated circle.
A light source is placed just on top of the camera. Let us consider an edge of the
polyhedral object and the two plane faces meeting at the edge. Let 0 denote the
angle at which light is incident on the edge. When ¢ is not small, these two faces are
illuminated differently. In the image, there is a prominent discontinuity in the grey
levels corresponding to the object edge. Hence, it is possible for an edge detector
to easily identify an edge in the image. However, when ¢ is close to zero, the two
faces are illuminated almost uniformly. Thus, an edge detector fails to detect the
corresponding edge in the image. Let us assume the corresponding aspect to have
class ¢. The range of viewing positions where § is nearly zero will have one edge less
— this corresponds to another class ¢. Thus, this class ¢ is associated with class .

The situation is the same for aspect-candidates and class-candidates.

We use the notation P(cgctual | Cobserved) t0 denote the probability of the class-
candidate actually being ¢/, given that class-candidate ¢ has been observed, for the
given model base. For such an association error, P (¢ setual | Cobserved) 1S €xpected to
have a high value. (For a valid class-candidate ¢/, P(¢getuar | € observed) has a high
value.) In such cases, we use this information to advantage in two ways. First, this
gives an indication about the correct class corresponding to the region — during AAG
construction. We need to prune out such regions from the aspect data in order to

construct an error-free AAG. Our AAG construction algorithm (Sections 3.5.3 and
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3.5.4 for the 1-DOF and the 3-DOF cases, respectively) makes estimates of these
probabilities during the course of processing the raw aspect data. It is important to
note that these are unsupervised estimates. Second, an object recognition algorithm

may use this information to advantage, to recover from such a feature detection error.

3.4.1 The 1-DOF Case

For the 1-DOF case, the space of viewpoints is a circle. Angular extents corresponding

to aspects are all planar angles. We define the following terms:

0, : angular width of aspect-candidate «,in terms of the number of sites it occupies
Opmin : the minimum extent which an aspect-candidate must have, for it

to be called a Valid aspect-candidate
©, : the minimum extent which an aspect-candidate must have, for it

to be called a Prominent aspect-candidate (0, > O,,,)

A 2 { a| 0y > Onin, where a € A.}

We explain the above terms, and their significance as follows. Three parameters char-
acterize an aspect-candidate a —its corresponding class-candidate CLASS_CAND(«),
its angular extent 6,, and its position in the aspect graph. An aspect-candidate can
either correspond to a part of an aspect in an error-free aspect graph, or constitute
an error. Intuitively, a small region whose class-candidate is different from those in
its neighbourhood is likely to be an error. Thus, we characterize an aspect-candidate
as ‘valid’ if its angular extent is greater than or equal to ©,,;,. Any aspect-candidate
whose angular extent is less than ©,,;, corresponds to an error.

There is a difference between the terms ‘aspect’ and ‘prominent aspect-candidate’.
At the end of the aspect graph construction algorithm, all aspect-candidates left are
aspects. At this stage, a prominent aspect-candidate will either constitute an aspect
by itself, or have other aspect-candidates (prominent, or otherwise) integrated into it
to constitute an aspect. In other words, a prominent aspect-candidate is sure to be

part of an aspect at the termination of the AAG construction algorithm.
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The set A9 is another parameter for a class-candidate ¢, on the basis of which we
may infer whether it is a valid class-candidate, or an erroneous one. AY is the set
of valid aspect-candidates corresponding to this class-candidate. If a class-candidate

c is not a valid class-candidate, it satisfies the following two conditions:
1. Yaea. 0o < Npin, where CLASS_CAND (ay) = ¢, and
2. Ad=¢

In other words, it corresponds to less than N,,;, sites (Section 3.4, page 72). Further,
it has no valid aspect-candidate corresponding to it.

Here, we clarify the significance of having two separate parameters N,,;, and ©,,;,.
Any aspect-candidate a having a corresponding angular extent 6, < ©,,;, is an error.
Its corresponding class-candidate may not always be an erroneous class-candidate.
Let us consider an object in the model base, which has an aspect corresponding to
a unique class-candidate (¢, say) — which is not present in any other object in the
model base. If detected, this aspect uniquely identifies the object. Noise may af-
fect the aspect data corresponding to this aspect in such a way that there are many
closely-spaced fragments (aspect-candidates) with class-candidate (¢). The angular
extent of each of these aspect-candidates may be less than ©,,;,. However, the pres-
ence of closely-spaced fragments having the same class-candidate is an indication of
the presence of an aspect in the corresponding error-free aspect graph. If the num-
ber of sites at which this unique class-candidate occurs exceeds N,,;,, our algorithm
(Section 3.5.3) is able to recover the aspect.

We explain the significance of these terms further in our classification scheme. We
classify errors in aspect data into five categories. The classification is based on the
width of the region R between two valid aspect-candidates, their properties, and the

properties of the (non-valid) aspect-candidates present in region R.

Type I Error A Type I error is present as a small transition region between two

aspects of the corresponding error-free aspect graph. This corresponds to the
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“border effect” in [94]. In the raw aspect data, a Type I error can be described

as follows: (Figure 3.7(a) illustrates an example of this type of error)
gaia gaj Z Gmm

CLASS_CAND(a;) # CLASS_CAND(a,), and

Zﬁak < Ounin, YV a; between a; and a;

ag

Here, a; and a; are two valid aspect-candidates belonging to different class-
candidates such that there is a small region of width < ©,,;, between them.
For taking aspect-candidates between two other aspect-candidates lying on the

circle, we consider the smaller gap between the two.

Type II Error A Type II error corresponds to the association error in Section 3.4.

First, we characterize the region in which a Type II or Type III error can lie.
Type II and Type III errors can be present in a small isolated error region inside
an aspect of the corresponding error-free aspect graph. Figure 3.7(b) shows an
example of such a region. In the raw aspect data, we observe a small region
of width < ©,,,;, in between two valid aspect-candidates a; and a;. The two
enclosing aspect-candidates a; and a; correspond to the same class-candidate

(say, ). Formally, we may describe the above error conditions as follows:

1. gaiagaj Z Gmm
2. 34, 0ap < Omin V ag between a; and a;

3. CLASS_CAND(a;) = CLASS_CAND(a;) = ¢

We now define a Type II (association) error. For the small enclosed error region,
those aspect-candidates constitute a Type II error, whose class-candidates ob-
served are associated with the class-candidates of the enclosing aspect-candidates.
Let us consider aspect-candidates a; in the small enclosed region (described

above). We may describe this as follows:
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Figure 3.7: A pictorial representation of some types of errors (Different shading pat-

terns represent different aspect candidates): the 1-DOF case
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1. Yaea. 0o < Npin, where CLASS_CAND (ay,) = ¢
2. AY = ¢, and

3. P(C aetual | Cobserved) > @ threshold 77, 0 < T7 < 1

(A, represents the set of all aspect-candidates corresponding to class-candidate
¢, and A9 represents the set of all valid aspect-candidates corresponding to this

class-candidate.)

We explain the above three error conditions as follows. For an aspect-candidate
aj to constitute a Type II error, its corresponding class-candidate ¢ should not
be a valid class-candidate. In other words, the class-candidate ¢ is observed
at less than N,,;, sites in the tessellated viewing space. Further, the relative
extent to which its corresponding valid aspect-candidates (if any) occupy the
viewpoint space is also low. The most important condition for a Type II error
is the third one — given that this class-candidate ¢ is observed, the probabil-
ity that it actually is another class-candidate ¢, is high. Our algorithm for
AAG construction (Section 3.5.3) describes the process of keeping estimates of

association error probabilities.

A particular object in the model base may have a distinctive feature, or a com-
bination of features that permit it to be clearly distinguished from other models.
Additionally, this may be present over a small range of viewing angles. Con-
ditions 2 and 3 taken together allow for such cases to be treated as aspects,
and not as errors. For a distinctive feature, one would expect either the total
number of sites at which the class-candidate is observed, to be greater than the
Npin threshold; or the class-candidate to have most of its aspect-candidates
with extent not less than ©,,;,. Both the above conditions may also be simul-
taneously true. If none of these conditions hold, the distinctive aspect will be

treated as an error condition.

Type III Error A small isolated error region inside a region corresponding to an
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aspect of an error-free aspect graph (as defined above) may contain either
Type II or Type III errors. For a Type III error, the only requirement is
P(c aetual | Cobserved) < Th, i.e., the probability of recognizing class candidate ¢

as ¢ is minimal.

Type IV Error Due to noise, an aspect of an error-free AAG could be fragmented
such that the raw aspect data has closely spaced aspect-candidates with the
same class-candidate (Figure 3.7(c) shows an example of this situation). Such
regions contain Type IV and Type V errors. Formally, Type IV and Type V

errors can be present in a ‘large’ region between two valid aspect-candidates:

1. 04, < Omin, V a between a; and a;

2. Zak gak > @mm

In other words, no aspect-candidate a; in the region is a valid aspect-candidate.

However, the size of the entire region > 0,,;,.

As aspect-candidate o constitutes a Type IV error if the following error condi-

tions hold:

1. maxgea, 05 > Opin, where CLASS_CAND(a) = ¢

2. 3y € G, for which CLASS_CAND(vy) = CLASS_CAND(«)

(The term A, denotes the set of all aspect-candidates corresponding to class-
candidate c. G, denotes the set of all aspect-candidates in the neighbourhood

of aspect-candidate a.)

This type of error considers those aspect-candidates which themselves do not
have enough extent to be considered valid aspect-candidates. However, there
are other valid aspect-candidates associated with this class-candidate, else-
where. In Figure 3.7(c), aspect-candidate a;, shows an example of a Type
IV error. A Type IV error indicates that the aspect-candidates with the same

class-candidate may be part of a single aspect.
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Type V Error Like Type IV errors, Type V errors too can be present in a ‘large’
region between two valid aspect-candidates (as defined above). An aspect-

candidate « constitutes a Type V error if either

o Vv € Ga, CLASS_CAND(v) # CLASS_CAND(a), or

e dy € G, for which CLASS_CAND(vy) = CLASS_CAND(«), but
maxXge 4, 03 < Omin, where CLASS_CAND(a) = ¢

In Figure 3.7(c), aspect-candidate a, illustrates an example of a Type V error.
Type V errors are very difficult to correct since they give very little indication
as to which aspect (in the corresponding error-free aspect graph) they might

have come from.

3.4.2 The 3-DOF Case

Similar to the 1-DOF case, we classify errors in the 3-DOF case into five categories.
An error region R consists of either a single small aspect-candidate or a group of
adjacent small aspect-candidates. In each of the Figures 3.8(a), (b) and (c), the region
R consists of those aspect-candidates which are fully enclosed inside the boundary
drawn with a thick dashed curve. The collection of small adjacent aspect-candidates
R is like a ‘supernode’; in the graph representation of an AAG (Section 3.3). It
stores information such as its boundary sites, number of sites, and links to other
valid aspect-candidates.

Some definitions for the 3-DOF case are completely analogous to the 1-DOF case
(Section 3.4.1). For the 3-DOF case, w, denotes the number of sites aspect-candidate
« occupies. The terms corresponding to ©,,;, and ©, in the 3-DOF case are
and €2,.

For the error classification, we need to introduce a few more terms. Section 3.3
mentions that we follow the tessellation scheme of Chen and Kak [41]. This section

additionally gives details of the tessellation scheme. We recall that each site in the
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tessellated space has either 5 or 6 neighbours (Page 66). (Vertices which correspond
to those of the original icosahedron have 5 neighbours, whereas the rest have 6 each.)
We use the term NEIGH (s) to denote the set of neighbours of site s. In the 3-DOF
case, each aspect-candidate a corresponds to a region of sites in the viewpoint space.
We define B(«) to be the set of sites on the boundary of aspect-candidate «. In this

context, we define the following terms:

W (o, as) 2 min(|Si], |Sa]), where |S;| denotes the cardinality of set S,
Si={s|se NFEIGH(s"),s" € B(a1)} N B(as),and
Sy ={s|se€ NEIGH(s"),s" € Blas)} N B(a)

ADJ(«) 2 {B | W(a, B) # 0}, i.e., the set of nodes linked to «

DIST (aq, as) 2 minly o, Vs' € B(ay) and 5" € B(ay)

Here, Iy ¢ is the distance between two sites in the tessellated viewpoint space (Sec-
tion 3.3, page 69).

An error free 3-DOF AAG is characterized by piecewise continuity (in two dimen-
sions, in the flattened out spherical array representation) in the feature tuple labels.
Intuitively, a region of small and mutually adjacent aspect-candidates constitutes an
error. The region itself could be large or small. Further, just like the 1-DOF case, we
could have association errors. The classification considers the size of the error region,
the properties and statistics of the aspect-candidates comprising the error region, and

those aspect-candidates with which the region shares a common boundary.

Type I Error A Type I Error can be present as a small transition region between
aspects of an error-free aspect graph (Figure 3.8(a) illustrates an example of
a Type I error). A small region R constitutes a Type I error if the valid
aspect-candidates having the same class-candidate do not share a large common

boundary:

1. Wa > Qumin, Vo € ADJ(R),
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Ay AND Qy ARE EXAMPLES OF TYPES IV
AND V ERRORS, RESPECTIVELY

(c) Types IV and V Errors

Figure 3.8: A pictorial representation of some types of errors(Different shading pat-
terns represent different aspect candidates): the 3-DOF case. The thick dashed curve

encloses aspect-candidates in the region R (details in text).
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2. ZﬁE'R wg < Qmin; and

3. Za with the S%‘e ;l[;zg;gg;ndidate W(R,a) < a thI‘eShOId T, v o € ADJ(R)

Type II Error Type II and Type III errors can be present as a small isolated region
in the interior of an aspect in the corresponding error-free aspect graph. In
the raw aspect data, we observe a small region R enclosed by valid aspect-
candidates. For Type IT and III errors - most of the common boundary consists
of valid aspect-candidates having the same class-candidate, say ¢’. The region

in which a Type II and III errors can lie is described as (Figure 3.8(b)):

1. Wa > Qumin, Vo € ADJ(R),

3 Za: CLASS_CAND (a)=c' W(R,a)

Yo W(R )

>,V ae ADJ(R)

A Type II error is characterized by the association of the particular aspect-

candidate o € R with the class-candidate ¢':

L. Yeea. We < Npin, where CLASS_CAND (o) =¢, a € R

2. AY = ¢, and

3. P(C aetual | Cobserved) > @ threshold 71, 0 < Ty < 1

(The term A, represents the set of all aspect-candidates corresponding to class-

candidate c. Among these, AY considers those that are valid aspect-candidates.)

Type III Error A Type III error is also present as a small isolated region inside a
region corresponding to an aspect of an error-free aspect graph. For a Type III
error aspect-candidate o however, P(c aetuar | Cobservea) < 11 (i-e., there is no

association of a class-candidate with another).
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Type IV Error Type IV errors are scattered in a region corresponding to an aspect
of an error-free aspect graph. In the raw aspect data, they can be present in a

‘large’ region R between valid aspect-candidates:

1. wa < Quin, @ €R
2. Za Wa 2 Qmm

As for the 1-DOF case, a Type IV error indicates that those aspect-candidates

could be part of a single aspect of the corresponding error-free aspect graph:

1. maxgea, wg > Qmin, where CLASS_CAND(a) = ¢

2. 3y € G, for which CLASS_CAND(vy) = CLASS_CAND(«)

(We recall that G, denotes set of aspect-candidates in the neighbourhood of
aspect-candidate a. A, represents the set of all aspect-candidates with class-

candidate c.) Figure 3.8(c) shows an example of such an error.

Type V Error Type V errors, too can be present in a ‘large’ region between valid
aspect-candidates (as defined above for a Type IV error). An aspect-candidate

a constitutes a Type V error if either

o Vv € G,, CLASS_CAND(v) # CLASS_CAND(q), or

e Jdy € G, for which CLASS_CAND(v) = CLASS_CAND(«), but
maxgea, wg < Qin, where CLASS_CAND(a) = ¢

Figure 3.8(c) shows an example of such an error. Just as mentioned for the
1-DOF case, Type V errors give very little indication as to which aspect (in the

corresponding error-free aspect graph) they could have come from.
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3.5 AAG Construction from Erroneous Raw As-
pect Data

In this section, we present our algorithm for construction of an AAG from noisy
raw aspect data. First, we describe the problem, and various related issues. Next,
we present a new function for evaluating the output of different AAG construction
algorithms. We present our algorithm for AAG construction for the 1-DOF, as well
as the 3-DOF cases.

3.5.1 Statement of the Problem

We are given an instance of raw aspect data for each object in the given model base.
The raw aspect data is obtained from all viewing positions in the uniformly tessellated
viewpoint space around the object. Noisy feature-detectors are used to collect the
raw aspect data. The task at hand is to construct AAGs of the objects in the model
base for robust class recognition. This problem is similar to one of data clustering.
According to Jain and Dubes [112], there is no single “best” criterion for obtaining a
partition for clustering data. We use clustering techniques for filtering the raw aspect
data such that the distribution of aspects satisfies a smoothness criterion.

Let us define the terms ‘smoothness’ of model base data (S(A)), and the total

model base error (£(A)) as follows:

(1/M) - M 55 d(cij, cij)
(1/M) -2, 5 d(cij, Dij)
where M is the number of objects in the model base and G is the number of tessellated
viewpoints for the aspect data. Here, D;; refers to the original raw aspect data at the
Jth site in model number . ¢;; is the corresponding class-candidate label assigned to
it by the AAG construction algorithm.

In order to account for the smoothness and error criteria, we need to consider

the distance between two class-candidates, d( , ). We recall the feature tuple rep-
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resentation of a class-candidate (Section 3.3.1). For instance, features could be the
number of junctions of each type present in a view (V-junctions, T-junctions, etc.),
as in Chakravarty and Freeman’s representation of a view class [40]. For distance
computation, we use the FEuclidean Distance between two normalized class-candidate
vectors. Each feature corresponding to a class-candidate is normalized with respect
to its mean and standard deviation. We thus normalize both the input and output
aspect data with respect to their respective mean vector and standard deviation vec-
tor. The error at a site is the Euclidean distance between the normalized original raw
aspect data feature vector and the normalized vector corresponding to the label as-
signed by the algorithm. Evaluation of the smoothness at a site requires the distance
between two adjacent normalized class-candidate feature vectors.

For the problem of AAG generation from noisy aspect data, one has to consider

the following factors:

e the algorithm should be reasonably fast (i.e., have polynomial time complexity

in the size the AAG)

e the algorithm should give similar results for two ‘similar’ instances of raw aspect

data

e the algorithm should give rise to prominent aspects, not too ‘large’ in number.
The resulting AAG class-distribution plot should be piecewise smooth, with

discontinuities only aspect boundaries.

e the AAG should be close to the original raw aspect data ¢.e., the AAG con-

struction algorithm should also ensure fidelity to the original aspect data.

Many of these requirements are conflicting — optimality in terms of one compro-
mises optimality in terms of the other. For example, minimum error will be incurred
if the output of the algorithm is the same as the raw aspect data. However, the re-
sulting aspects may be small, and too many in number. If we impose the condition of

a minimum allowable aspect size, the complexity required is exponential in the size of
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the AAG (Proof in Appendix for Chapter 3: pages 124 — 125). Further, this approach
may not satisfy the requirement of having a small number of prominent aspects. In
the following section, we propose a new function to evaluate the output of different

AAG construction algorithms.

3.5.2 A New Evaluation Function for AAGs

In view of the above desirable characteristics, we propose a new coefficient to evaluate
the output of AAG construction algorithms. We define the Demerit Coefficient
for the AAG of model 7 in model base M as follows:

NN
n(M,i,7) = MZ(l — pij) d(cij, cij11) + VZ d(cij, Dij) + Uzpij
J

J J

where D;; is the original raw aspect data item at site j of model i, ¢;; is the class-
candidate assigned to site j by the AAG construction algorithm, d( , ) denotes the
Euclidean distance operator for two normalized feature vectors, and u, v and o are
constants. (For our experimentation, we have chosen the constants p, v and o such
that all the three terms have the same order of magnitude.) p;; is defined to be 1 at
if d(c;j, ¢ij+1) > threshold 7, and 0 otherwise. (Such objective functions have been
used in image processing [87], [19]. The book [100] cites examples of fitting a curve
to given data and image restoration, where Hopfield Nets are used to minimize such
a term.)

The first term takes the piecewise smoothness criterion into account — if there is
a prominent discontinuity between two adjacent class-candidates, then the (1 — p)
term will not allow the distance between the two class-candidates to penalize the
Demerit Coefficient. The second term considers the fidelity between the original
class-candidate at a site and the one assigned to the site by the algorithm. The last
term considers the number of prominent discontinuities in the aspect data.

In case we have more than one instance of raw aspect data for a particular model,

we consider the Demerit Coefficient for the AAG of the model as the average of
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the Demerit Coefficients computed for each given instance. We define the Demerit
Coeflicient for the set of AAGs for the entire model base as the average of the De-
merit Coefficients of the M individual models’ AAGs, using the same constants and
thresholds for each model:

M

Tlmodel base(MaT) é (l/M) anodel base(MaT) é (l/M) ZU(M,?:,T)

i=1 i=1

To evaluate the performance of an AAG construction algorithm, we consider the
values of the Demerit Coefficient before and after the application of the algorithm.
To calculate the Demerit Coefficient for the raw aspect data, we make the following
observation. We can consider the raw aspect data itself as the output of an AAG
construction algorithm. Hence, ¢;; is the same as D;; for this case. The second term
of n(M, i, 1) is zero, while the presence of errors in the raw aspect data causes the first
and third terms to have large values. The output of a good aspect graph construction
algorithm is smooth, piecewise continuous, and is close to the original data. Hence for

such a case, all the three components of n(M, i, 7) are expected to have low values.

3.5.3 Algorithm for 1-DOF AAG Generation

This section proposes a low order polynomial time-complexity algorithm (polynomial
in the size of the AAG) for building an AAG from noisy aspect data in the 1-DOF
case. Our algorithm incorporates clustering heuristics for modifying the raw aspect
data in order to reduce its Demerit Coefficient. The input to the algorithm is noisy
raw aspect data. The aim of the algorithm is to construct AAGs of the objects in the

model base for robust class recognition. The algorithm has the following output:
e An AAG for each model in the model base
o A list of all classes and feature-classes

e statistics about the suitability of a feature detector (Section 3.6).
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Extensive experiments with two model bases (Section 3.7) shows that the output of
the algorithm has far lower values of the Demerit Coefficient compared to the input
noisy data. The regions where our algorithm requires execution time quadratic in the
size of the region, are a small part of the total size of the AAG. The rest is done in

linear time.

The ASSOC_TABLE and Association Probability Estimates

The algorithm maintains estimates of the probability with which one class-candidate
is observed as another. For example, one expects valid class-candidates to be observed
correctly with a high probability. To keep estimates of these association values, the
algorithm uses an N¢ x N¢ matrix, the ASSOC_TABLE. The [i][j]th entry stores the
probability of the class-candidate actually being c;, given that class-candidate ¢; is
observed. The ASSOC_TABLEF stores these values as counts of the number of times
one class-candidate appears as another. We use the ASSOC_TABLE estimates for
our robust 3-D object recognition strategy (Chapter 4).

We have a chicken-and-egg problem here. Proper ASSOC_TABLE estimates
of P(¢actuar | Cobserved) Would be available only after the completion of the algo-
rithm execution. However, the algorithm needs proper (qualitative) estimates of
P(¢ aetual | Cobserveq) for various processing operations. Hence at each stage, we need
a good current estimate of P(¢qeiuar | Cobserved) Values. Therefore, we structure the
phases in our algorithm in such a way that we fulfill this requirement.

Our algorithm is divided into three phases:

Algorithm Phase 1

Phase I of our algorithm is primarily concerned with identification of wvalid class-
candidates. Figure 3.9 gives an overview of this phase. The input to the algorithm
is the feature tuple data from all sites in the tessellated viewpoint space around an

object. The first phase clusters the data into aspect-candidates and forms a cir-
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ALGORITHM: Phase_I

FOR the raw aspect data of each model IN model_base REPEAT Step 1:
1. FOR EACH site IN raw aspect data DO
IF (CLASS-CAND(current_site) == CLASS_-CAND (previous_site)) THEN
assign current_site to the previous_site’s aspect_candidate;
ELSE
start a new aspect_candidate from the current_site;
2. Assign the status field of each class_candidate ¢ as follows:
IF the extent of any aspect_candidate associated with ¢ > O,
THEN c.status := VALID;
ELSE c.status := UNASSIGNED;

Figure 3.9: The AAG Construction Algorithm for the 1-DOF Case: Phase [

cular doubly linked list (Section 3.3 describes the representation of an AAG). For
class-candidates ¢ corresponding to prominent aspect-candidates, P(Cactual | Cobserved)
values are expected to be high. Prominent aspect-candidates correspond to valid class-
candidates. We use this fact to advantage — we initialize the ASSOC_TABLFE with
the corresponding extents of these aspect-candidates. For all class-candidates corre-
sponding to prominent aspect-candidates, we set their ASSOC_TABLE entries (i.e.,
only those diagonal entries ASSOC_TABLE]i|[i] corresponding to the corresponding
class-candidates) to be the sum of the extents of all prominent aspect-candidates cor-
responding to this class-candidate. The P(Cactuar | Cobservea) for such class-candidates
will not change much during the course of the algorithm execution. We explain the
main steps in this phase of the algorithm as follows.

The algorithm clusters the raw aspect data into aspect-candidates using a 1-D ver-
sion of Horn’s sequential labeling algorithm ([103]). Comparing two class-candidates
amounts to finding the distance between two class-candidate labels, and checking
if this is zero or negligible, depending on the definition of a class-candidate (Sec-
tion 3.5.1). This phase creates the aspect-candidate list for each object, and the
class-candidate list for the model base. For an AAG which is not heavily corrupted
with errors, the class-candidates corresponding to prominent aspect-candidates are

expected to occupy more than N,,;, sites. Hence for such an AAG, this phase iden-
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ALGORITHM: Phase_II

FOR EACH model IN model_base REPEAT Step 1:
1. FOR EACH pair of proximal valid aspect_candidates a; AND a; DO
IF CLASS_CAND(a;) == CLASS_CAND(a;) AND
gap(a;,a;) < O, THEN
integrate all aspect_candidates from a; to a; into one;
2. FOR EACH class_candidate c¢ with (c.status == UNASSIGNED) DO
IF the number of sites at which ¢ is observed < N,
THEN c.status := INVALID;

Figure 3.10: The Algorithm: Phase II

tifies most of the valid class-candidates for the given model base. The algorithm sets
the status field for each such class-candidate accordingly. Setting the status label is
done to speed up the search for a class-candidate with a particular label — VALID,
INVALID or UNASSIGNED.

Phase I does not remove any errors from the raw aspect data. At the end of
the entire algorithm, all valid class-candidates constitute the list of all classes for the
given model base. A class-candidate nodes have the property that its label does not

change from VALID to INVALID, or vice versa during the course of the algorithm.

This phase requires one pass through the raw aspect data at each site for each

model in the model base.

Algorithm Phase II

Phase II is primarily concerned with identification of prominent aspect-candidates
after removing interspersed errors. In this phase, we consider small isolated regions
between two valid aspect-candidates. We specifically consider the case when the two
aspect-candidates correspond to the same class-candidate. We handle Type II and

Type III errors in this phase. Figure 3.10 presents the steps in this phase.

In this phase, we consider pairs of proximal valid aspect-candidates, with the

same class-candidate, say ¢. We define a pair of valid aspect-candidates (a;, a;) as
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- aC)  HH HH a(CJ |-

Figure 3.11: The situation handled by Phase II

proximal valid aspect-candidates if

0 < 0, < Opin, V ai lying in between a; and a; in the direction of traversal

of the aspect-candidate list.

Figure 3.11 shows an example of this condition. For each pair of proximal valid aspect-
candidates with the same class-candidate separated by a gap of width < 0,,;,, we
integrate both the valid aspect-candidates and those in between them, into one.

The correct class-candidate for the aspect-candidates in between the valid aspect-
candidates a; and a;, is considered to be that of a; and a;. The algorithm updates
the ASSOC_TABLE with the information about the class-candidates of the valid
aspect-candidates and those in between them. For the class-candidates corresponding
to the valid aspect-candidates, we increment the ASSOC_TABLEJi|[i] count by the
size of the aspect-candidates. For the aspect-candidates a; between a; and a;, the
algorithm updates the entry corresponding to CLASS_CAND (ay) being observed as
CLASS_CAND(a;) by the size of aspect-candidate a;. After we perform the above
operations for each model in the model base, we update the status labels of each class-
candidate labeled UNASSIGNED, as in the first phase. This is due to the property
that no class-candidate changes its status label from VALID to INVALID, or vice
versa during the course of the algorithm.

Phase IT of our algorithm removes Type II and Type III errors. (Whether the iso-
lated error removed is a Type II or Type III error will be clear from the ASSOC _TABLE
conditional probabilities).

As mentioned earlier in the introduction to the use of the ASSOC_TABLFE,
we structure the phases of our algorithm in such a way that the association esti-

mates are expected to be correct at each stage. In the first phase, we initialized
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the ASSOC_TABLE for class-candidates which are most likely to be valid class-
candidates. In this phase, we store estimates to specifically capture Type II errors.
In the subsequent Phase III, the algorithm uses the ASSOC_TABLE to account for
association errors. If the value of P(cuctuar | € observea) 1S above a particular threshold
(c and ¢ are not necessarily different), the algorithm interprets an instance of ¢’ to
be c. Results of over 100 experiments with two model bases shows that using this
association information reduces the error between the raw aspect data and the AAG
created by the algorithm (Section 3.7). Our experimentation also shows that these
estimates of association errors made in Phase II are reasonably correct. Section 3.7
gives details about a comparison of the estimates of association errors after Phase II

to those after the completion of the algorithm.

Algorithm Phase II1

The third phase of our algorithm handles the rest of the raw aspect data. There are
two passes through Phase III. The first is a logical pass, done in order to get further
(better) estimates for ASSOC_TABLE entries. At the end of the logical pass, we
keep just the ASSOC_TABLE unchanged and undo all other changes made in the
logical pass. The actual pass (which follows the logical pass) uses ASSOC_TABLE
estimates made during Phase I as well as the logical pass of Phase III. This phase
concerns the removal of Type I, Type IV and Type V errors. Figure 3.12 gives an
outline of the steps performed in this phase.

In Phase III again, we consider pairs of proximal valid aspect-candidates a; and
a;. Depending on the gap between a; and a; in the direction of traversal, we consider
two cases:

Case 1: gap(a;,a;) < O
In such a case, we cannot have any valid aspect-candidate in between a; and a;. For
this reason, we obtain the minimum square-error decision boundary for the region of

gap d (0 < Ouin). To get the minimum square-error decision boundary, we place the
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ALGORITHM: Phase_III

(x Two passes are made through Phase_III. *)
(x After the first(LOGICAL) pass, keep ASSOC_TABLE unchanged but UNDO *)
(x all other changes. Then, make the second (ACTUAL) pass. *)
FOR EACH model IN model_base REPEAT the following step
FOR EACH pair of proximal valid aspect candidates a; & a; DO
(x consider region from a; to a;j *)
IF gap(a;, a;) < O, THEN
BEGIN (* create single decision boundary *)
a. get the min-error decision boundary from raw aspect data
b. get the min-error decision boundary considering
ASSOC_TABLE info for each class_candidate
c. of the two decision boundaries, select the one which
incurs min error
d. integrate aspect_candidates from a; till just before
the decision boundary, into a;;
integrate aspect_candidates between the decision boundary
& aj, into ay;
END (* create single decision boundary *)
ELSE
BEGIN (* handle large region *)
1. construct normalized freq histogram for class_candidates
2. (x — First Rule — x*)
IF max(histogram) > 7, AND the corresponding class_candidate
== CLASS_CAND(a;) == CLASS_CAND(a;) THEN
integrate all aspect candidates from a; to a; into a;
RETURN;
3. (x — Second Rule — *)
FOR EACH histogram entry > 73 DO
IF the corresponding class_candidate == CLASS_CAND
of any/both surrounding aspect_candidates THEN
integrate aspect_candidates in between to that/those
surrounding aspect_candidate(s); RETURN;
4. (* — Third Rule — *)
FOR EACH class_candidate c¢ whose histogram entry > T4 DO
FOR EACH pair of aspect_candidates (aj,a;) between
a; & a; with class candidate c¢
IF gap(ay,a;) < THEN
integrate aspect_candidate from aj to a; into ag;
ELSE
IF current_size(a;) < ©,,;, THEN
UNDO all changes to ag;
5. FOR EACH remaining region between a; & a; DO
create single decision boundary (* as in steps a - d *)
END (* handle large region *)

Figure 3.12: The Algorithm: Phase III
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-- 3(C) | | &(Cy) -

Figure 3.13: Getting a single decision boundary between two valid aspect-candidates

decision boundary at each position between the end point of a; and the start point
of a;. Figure 3.13 illustrates this point. We consider the part of the gap till the
decision boundary assigned to the class-candidate label CLASS_CAND(a;) and the
rest, CLASS_CAND (a;). The error for a decision boundary is the sum of Euclidean
distances between the original class-candidate label and the one just assigned for the
entire region, both suitably normalized. We select the one which incurs minimum
error. This process has quadratic (O(§?)) time complexity as one has to calculate the
error for the entire region considering all possible positions of the decision boundary.

We can thus remove Type I errors.

This is one point where we use the association of one class-candidate with an-
other. We now consider the minimum-error decision boundary taking into account
the association information collected thus far. For each class-candidate in the region
of width ¢, if its probability of being some other class-candidate is above a partic-
ular threshold, we replace it with this class-candidate for the purpose of getting an
alternative decision boundary. Of the two decision boundaries calculated so far, the
algorithm takes the one with the minimum error. We update the raw aspect data,
the class-candidate list and the ASSOC_TABLE with this information.

Case 2: gap(a;,a;) > O,

We now consider the case when the gap between valid aspect-candidates a; and a;
is > O, While we would like our algorithm to incur as small error as possible

between the raw aspect data and the original class-candidate labels, we would also
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like our algorithm to be fast. For a small region (width < ©,,;,), we can justify taking
a minimum square-error configuration since we can have one decision boundary, the
calculation of which takes quadratic time. Thus, we have to make a trade-off here:
the optimality in terms of one parameter affects the optimality in terms of another.
Further, taking a single decision boundary for a large region may not just be time-
consuming, but also may not be optimal since there may be one or more aspects in
the region under consideration. To handle these cases, we try the following heuristic
rules 1 — 3. If one of them succeeds, we exit and consider the next pair of proximal
valid aspect-candidates. Otherwise, we try the next one. These rules aim at removing
Type IV and Type V errors.

We construct a normalized histogram for the class-candidates in the region be-
tween valid aspect-candidates a; and a;. (For each class-candidate between a; and a;,

the normalized histogram stores its relative frequency of occurrence in the region.)

1. First Rule:

This is applied if the following conditions are satisfied:

(a) The surrounding valid aspect-candidates a; and a; have the same class-

candidate
(b) The maximum histogram value exceeds a threshold T

(c) The maximum histogram entry is the same as the class-candidate of the

surrounding aspect-candidates a; and a;

If the above conditions hold good, we integrate the region from a; to a; into one
aspect-candidate and suitably update the aspect data, class-candidate list and
ASSOC_TABLE. We now go back to consider the next pair of valid aspect-

candidates.

2. Second Rule:
If the conditions for the above heuristic are not satisfied, we try our second rule

for all histogram entries above another threshold 73. (Our implementation has
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T, =0.75 and T3 = 0.4). If the histogram entry is the same as the class-candidate
of one/both of the surrounding valid aspect-candidate a; or/and a;, then we
integrate the entire enclosed region with that/those valid aspect-candidates(s),
and go back to consider the next pair of valid aspect-candidates. If not, we try
the next histogram entry satisfying the above criterion. If we exhaust all such

possibilities, we go in for the region-growing heuristic described below.

3. Third Rule (Region Growing):
For region-growing, we consider each histogram entry (class-candidate) whose
value is above a particular threshold T;. We consider pairs of aspect-candidates
(ag,a;) belonging to that class-candidate lying between a; and a;. If the gap
between a; and q; is less than or equal to the current size of a, we integrate the
region from a; to a; into one, and continue with the next pair. If not, then we
check the current size of ay. If it is below ©,,;,, we undo all changes made to it
and try another pair, till we are done with all suitable pairs between a; and a;.
Before working on aspect-candidates between a; and a;, we first try a similar
region growing on a;. After performing region-growing for aspect-candidates

between a; and a;, we repeat the exercise for a;.

After trying out region growing, we may still be left with regions between a; and
a; unaccounted for. We get a single minimum square-error decision boundary for all

such regions, as in Case I above.

3.5.4 Algorithm for 3-DOF AAG Generation

Our algorithm for the 3-DOF case follows on the same lines as the 1-DOF case
algorithm. Hence the descriptions are brief, with only the salient points mentioned.

It has three phases:
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Phase 1

We adapt Horn’s sequential labeling algorithm ([103]) for the spherical array repre-
sentation of the geodesic tessellated viewing space (Figure 3.4(a), (b)). This phase
creates the graph representation for the raw aspect data. The following pseudo code
shows the portion of the sequential labeling algorithm where the raster scan of the
spherical array is performed. The function examine([i, j, k]) considers all im-
mediate neighbours of the tessel [i, j, k| which have already been examined earlier
in the raster scan order, if any. If the class-candidate at tessel [i, j, k] is different
from that of the neighbours seen earlier, then it is assigned a new aspect-candidate.
Else, it is assigned the aspect-candidate of a neighbour with whom it shares the same
class-candidate. In case there is more than one such neighbour, an equivalence table

records the fact that the aspect-candidates corresponding to these are equivalent.

examine ([0, 0, 01); (x The zenith tessel *)
(x For the upper portion *)
FOR r:= 2 TO Q DO
FOR i:= 1 TO 5 DO
FOR 1:= (r-1) DOWNTO 1 DO
examine([i, 1, r-1]);
(x For the middle portion *)
FOR r:= (Q+1) TO (2*Q+1) DO
FOR i:= 1 TO 5 DO
FOR 1:= Q DOWNTO 1 DO
examine([i, 1, r-11);
(x For the lower portion *)
FOR r:= (2%xQ+2) TO (3xQ) DO
FOR i:= 1 TO 5 DO
FOR 1:= Q DOWNTO (r-2%Q) DO
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examine([i, 1, r-11);

examine([-1, 0, 0]); (x The nadir tessel *)

This phase requires two passes through the raw aspect data. All equivalent aspect-
candidates are grouped into one in the second pass. We now group all adjacent ‘small’
aspect-candidates into regions R. We represent these regions as supernodes in the
graph data structure (Section 3.4.2). As in the 1-DOF case, this phase is primarily

concerned with identification of valid class-candidates.

Phase 11

Phase II removes Type II and III errors from the raw aspect data. In this phase, we
consider all supernodes in the graph data structure corresponding to regions where
Type II and III errors may be present. We integrate such regions with the aspect
candidates which belong to class-candidate ¢ (Section 3.4.2). This phase updates the
ASSOC_TABLE, just as in Phase II of the 1-DOF algorithm. The time complexity

for Phase II is linear in the number of nodes in the graph data structure.

Phase II1

Just as it was for the 1-DOF algorithm, Phase III has a logical and an actual pass.
In Phase III, we consider all supernodes representing regions R. We construct a
normalized histogram for the relative frequency of occurrence of a class-candidate for
the region R. Depending on the size of region R, we consider two cases:
Case 1: |R| < Quin

We consider Type I errors here. For the 1-DOF case, we could consider taking an opti-
mal decision boundary (quadratic time complexity). For the 3-DOF case however, the
time complexity is exponential in the size of the region R. As a compromise between
optimality and high time complexity, we take the minimum error configuration out

of the following cases: First, we consider R to have a class-candidate ¢ — where the
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extent to which the boundary R shares with aspect-candidates having class-candidate
¢, is more than that for any other class-candidate. If the class-candidate of any sur-
rounding (valid) aspect-candidate is the same as that with the maximum histogram
entry, then we consider two more cases: One, when the region R is assigned the same
class-candidate and next, when the ASSOC_TABLE information is also taken into
account. The algorithm creates the configuration with the least error, of the above
three.
Case 2: |R| > Qun
Here, we aim at removing Type IV and Type V errors. As for the 1-DOF case, we

use the first applicable rule out of the following three heuristic rules:

1. First Rule:

This is applied if the following conditions are satisfied:

(a) The percentage of the common boundary with aspect-candidates of a par-

ticular class-candidate (say, ¢) is more than a threshold
(b) The maximum histogram value exceeds a threshold

(c) ¢ has the maximum histogram value.

We integrate the region R with the aspect-candidates with class-candidate c,

and suitably update the aspect data, class-candidate list and ASSOC_TABLE.

2. Second Rule:
We try the second rule for all histogram entries above another threshold, 7. If
any surrounding valid aspect-candidate has the same class-candidate as the one
considered, we integrate the region R with it. If we exhaust all such possibilities,

we try a region-growing heuristic.

3. Third Rule (Region Growing):
The region growing procedure is similar to that in the 1-DOF case. The cri-
terion here is the distance between two aspect-candidates DIST (cv, o) (Sec-

tion 3.5.1), and ©,,;, is replaced by Q.
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If the region growing heuristic also fails, we may be left with unaccounted-for
regions R of various sizes. We handle them in the same manner as we do for Case 1,

above.

3.6 Suitability of a Feature Detector for Aspect

Graphs

In their work on sensor modeling ([109], [110]), Ikeuchi and Kanade define sensor
reliability as a measure of uncertainty in detected features. They model sensor reli-
ability in terms of physical characteristics of the sensor. They consider uncertainty
in sensor measurement due to variance in brightness values, light source directions
and digitization mechanisms. A disadvantage of such an approach is that it may not
be possible to model every type of sensor accurately. Further, existing approaches
do not model the characteristics of the entire setup, or consider the behaviour of
the image processing algorithms used — such as the effect of non-adaptive thresholds.
For example, a setup may use ambient lighting with fluorescent tubelights. There
may be flickering effects, and the background intensity may not be the same for two
successive snapshots. We propose an experiment-oriented evaluation function for a
feature detector which assesses the suitability of the detector for AAG construction.
We evaluate the detector on the basis of a large number of observations. The advan-
tage of such an approach is that it automatically takes into account all factors such
as the entire setup characteristics, characteristics of the models in the model base, as
well as the performance of the image processing algorithms used. Further, such an

approach is independent of the type of sensor and feature set used.

We define the Unsuitability Factor for Feature Fj, with respect to the AAG of

model number i as follows: (We use the 1-DOF case notation only for clarity, the
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ideas presented here apply to the 3-DOF case as well)
. A
u(F, M, i, 7') =yt 2(1 — pig) d(fij, fijr1) +V Zd(fij,fij) + 0 ZP;]'
j j j

The Unsuitability Factor for feature Fj with respect to the AAG of the entire model
base is:
M
n A -
Umodel base(Fka M) T ) = (l/M) Z U(Fka M, L, T )
i=1
Here, f;; is the feature-class corresponding to feature Fj, for the class-candidate D;;

in the raw aspect data. Fj; is the feature-class corresponding to feature Fy, for class-
candidate ¢;; assigned to site j by the AAG construction algorithm. d( , ) denotes
the Euclidean Distance between two suitably normalized features, and p', v’ and o
are constants which depend upon the feature data characteristics.

For feature F} to be considered ‘suitable’ with respect to model base M, u(Fy, M, ')
should be low. The last term in wu(Fy, M,i,7") has p/ = 1 if the distance between
two adjacent feature-classes is above threshold 7/, 0 otherwise. The first term takes
smoothness over adjacent sites into account. If the distance between two adjacent
feature-classes is low, it contributes to the term. If it is high and above threshold
7', the (1 — p) term becomes zero, and the prominent discontinuity is not penalized.
Thus, the first term ensures that the output of a ‘suitable’ feature detector is piece-
wise continuous over the entire stretch of an AAG plot. The third term ensures that
these discontinuities are not too large in number. The second term takes fidelity to
the original raw aspect data into account, comparing it with the feature-class of the
class-candidate assigned by the algorithm. For our experimentation, we have cho-
sen the constants p’, v’ and o' such that all the three terms have the same order of
magnitude.

This function indicates the suitability of a feature detector for aspect graph-based
3-D object recognition. The function u(Fy, M,7') indicates to what extent a par-
ticular feature detector Fj will be effective for recognizing objects of a model base.
Further, one can compare the Unsuitability Factors for two detectors of the same

feature e.g., a grey-level corner detector, and one based on contour curvature. Given
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a large set of feature detectors, one may use the Unsuitability Factor to choose a
subset (of size k) for aspect graph-based object recognition. One can also perform
an ordering of the feature detectors on basis of their Unsuitability Factors, to judge
their suitability for the given model base and setup. In such a case, one can select

the feature detectors corresponding to the £ lowest Unsuitability Factors.

3.7 Experimental Results and Discussion

This section presents experimental results with two model bases for the 1-DOF case.

We also present results of experiments for the 3-DOF case, with synthetic data.

3.7.1 The 1-DOF Case: Experimental Results

Our experimental setup has a camera connected to a MATROX Image Processing
Card and a stepper motor-controlled turntable. The turntable moves by 200 steps to
complete a 360 degree movement. We have experimented extensively with two object

sets as model bases. Some details of the object sets are as follows:

1. Model Base I: 7 Aircraft Models

Features used:

(a) The number of horizontal lines ((h)),
(b) The number of vertical lines ((v)), and

(c) The number of circles ({c))

We represent a class-candidate as (hve). We have chosen this relatively feature-
rich model base to demonstrate the effectiveness of our system on raw aspect
data with very low smoothness in the raw aspect data. Figure 3.14 shows the

objects in this model base.

2. Model Base II: 8 Polyhedral Objects

Features used:
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Figure 3.14: Model Base I: The objects (in row major order) are heli_1, heli 2, plane_1,
plane_2, plane_3, plane_4, and biplane.
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Figure 3.15: Model Base II: The objects (from left) are Oy, Oy, O3, Oy, Os, Og, O

and Og, respectively.

(a) The number of horizontal lines ((h)),
(b) The number of vertical lines ((v)), and

(c) The number of non-background segmented regions in an image((r))

We represent a class-candidate as (hvr). The raw aspect data for this model
base has higher smoothness compared to the aircraft models. We have chosen
this model base to compare the results of our system with those on the other

model base. Figure 3.15 shows the objects in this model base.

The first step in our feature detection is to take a gradient image, using the
Sobel Operator [97]. The operator combines speed of edge detection with the implicit
smoothing operation to reduce noise. We use a Hough transform-based line and
circle detectors [97] on the gradient image. We use the edge direction at a pixel to
speed up the Hough transform. For getting the number of regions in the image, we
perform Sequential labeling (connected components: pixel labeling) [97], [103] on a
thresholded gradient image. This is a two-pass algorithm — the first pass traverses
the image in raster-scan order. We require an auxiliary storage of size equal to that
of the image, and an equivalence table to store equivalences of labels. The algorithm
examines the grey level at a pixel with that of its 3 neighbours (which have been

examined earlier). If they match (possibly within some error limit), the label at that
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pixel is assigned the label of that neighbour ([97] and [103] discuss the details of
various cases that may occur). The second pass resolves equivalent labels.

We recall our definitions of Smoothness (Section 3.5.1). Let the term ‘Input
Smoothness’ (S(I)) refer to the smoothness expression for the raw aspect data. Thus,
c¢ij is Dj; here i.e., the raw aspect data item for the ith model at site number j.
Similarly, we use the term ‘Output Smoothness’ (S(0)) to refer to the smoothness
expression for the output of the aspect graph construction algorithm. Thus, ¢;; refers
to the class-candidate label assigned to the jth site in the ith model by the algorithm.
The aspect data for Model Base I (aircraft models) has a very high value of the
Demerit Coefficient 0,046 base and S(I) as compared to the aspect data for the other.
Hence, we first present results of 100 experiments with the first model base. Each
experiment considers a set of raw aspect data from each object in the model base.

Then, we compare some figures with those of Model Base II (polyhedral objects).

Output of the Aspect Graph Construction Algorithm

Figure 3.16 shows a comparison of the raw aspect data and the output of our algo-
rithm, for one instance of the aspect data for object plane_2 in Model Base I. A visual
inspection of the lower graph shows that the aspects produced are prominent and not
too large in number, the graph is piecewise smooth and at the same time, fidelity to

the original data is high. Figure 3.17 shows an example for Model Base II.

Input and Output Smoothness

Figure 3.18 shows a comparison of the input and output smoothness for 100 sets of
aspect data for the aircraft model base. The mean smoothness values for the input
and output data are S(I) = 138.85 and S(O) = 20.99, while the variances are 4.51
and 0.74 respectively. This clearly shows that & values have greatly decreased. Even
though the raw aspect data has a large variation in S values, the variation in § values

for the output data is very small.
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Figure 3.16: Raw aspect data and the output of our algorithm:plane_2, Model Base

[. On the Y-axis, each class-candidate is represented by an index. Different heights

represent different class-candidates. The tessellated viewing space has 200 sites.
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Figure 3.17: Raw aspect data and the output of our algorithm:0g, Model Base II

On the Y-axis, each class-candidate is represented by an index. Different heights

represent different class-candidates.
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Figure 3.18: Variation in input ‘smoothness’ with the output ‘smoothness’

Total Model Base Error

£ is a measure of fidelity of the output data to the input raw aspect data (Sec-
tion 3.5.1). Figure 3.19 shows the variation in £ with the input smoothness for the

100 data sets.

Number of Aspects

Figure 3.20 shows the number of aspects obtained as a result of applying the algorithm
on 100 instances of raw data for the model base. The figure shows the variation in

the number of aspects with the input ‘smoothness’.

Demerit Coefficients for Input and Output Aspect Data

Figure 3.21 shows the variation of the Demerit Coefficient for the input aspect data,
with the Demerit Coefficient for the output of the AAG construction algorithm for
the 100 data sets. Our AAG construction algorithm greatly reduces the Demerit
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Figure 3.19: Variation in the total model base error with the input ‘smoothness’ for

100 data sets
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data sets
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Figure 3.21: Variation in the Demerit Coefficient for the input raw aspect data, with
the Demerit Coefficient for the output of the input raw aspect data: for 100 data sets

Coefficient. Further, the variation in the Demerit Coefficient for the output data is

quite less compared to that for the input raw aspect data.

Percentage of sites where a single decision boundary had to be taken

The only part of our algorithm which has quadratic time complexity is where a
single decision boundary has to be taken over a set of adjacent sites. The rest of
it runs in linear time. Figure 3.22 shows the percentage of sites where a single
decision boundary had to be taken, for 100 sets of aspect data. This is quite low
(mean=29.47%, variance=1.85), even for aspect data with high S(I) values. This
shows the efficiency of our algorithm, since one of the desirable characteristics of an
AAG construction algorithm is that it should be fast ¢.e., have low-order polynomial

time complexity.
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Figure 3.22: Percentage of sites where a single decision boundary had to be taken,

and correctness in Phase II estimates in the ASSOC_TABLE

Correctness of Phase II ASSOC_TABLE estimates

The ASSOC_TABLE maintains estimates of the probability with which one class-
candidate is observed as another (Section 3.5.3). If ASSOC_TABLE]i][j] remains
above a threshold after Phase II as well as after Phase III (or equivalently, below it
after both phases) — we refer to this as ‘correctness’. Figure 3.22 shows the variation

in percentage correctness of Phase II estimates for 100 data sets.

Percentage reduction in model base error with ASSOC _TABLE estimates

If P(Cactuar | € observed) (Section 3.4) is above a particular threshold, we use this fact in
order to obtain a minimum-error decision boundary (Section 3.5.3), Our experiments
show that this reduces the total model base error, £. The model base error £(A)
is reduced if one used the association data from the ASSOC_TABLE. Figure 3.23

shows the percentage reduction in error for 100 instances of model base data.
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Figure 3.23: Percentage reduction in total model base error with ASSOC_TABLE
data

Comparison of performance factors of our AAG construction algorithm on

the two model bases

Table 3.1 shows the comparison between the two model bases. The figures for Model
Base I are for 100 experiments, whereas those for Model Base II are for 4. Though
the feature detectors used for the two model bases are different, the range of values
taken by the feature-classes for the two model bases are comparable.

The raw aspect data from objects in the first model base has more errors than
that from the second. In spite of this, the output smoothness obtained in both cases
is comparable, and small, especially for the first case. Since the S(I) for the first
model base is large, its model base error £ is large compared to the corresponding
data for the second model base. The first model base is such that the number of
aspects is larger than that obtained for the second model base. Due to the large S(I)
values for the first model base, the variance in the number of aspects is larger in the

first case. The Demerit Coefficient for the output data is much less than that for the
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Model Base 1 Model Base 11

PARAMETERS Mean | Variance | Mean | Variance
Input Smoothness 138.85 4.51 43.99 0.47
Output Smoothness 20.99 0.74 18.93 0.34
Total Model Base Error 111.49 5.01 27.97 1.35
No. of Aspects 94.51 4.55 80.5 1.12

Demerit Coefficient (input data) 242.84 7.32 67.69 2.59

Demerit Coefficient (output data) 34.13 1.17 28.99 0.48

Quadratic Complexity Regions 29.47% 1.85 7.47% 0.41

Correctness of Phase II Estimates 91.91% 4.46 94.74% 3.72

Error reduction with ASSOC_TABLE | 9.18% 2.08 4.85% 0.37

Table 3.1: Summary of AAG construction algorithm performance parameters for the

two model bases: the 1-DOF case
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input data. Since the second model base data has less feature detection errors, the
percentage of sites in the AAG where a single decision boundary had to be taken is
less than the corresponding value for the first model base. The correctness of Phase
IT ASSOC_TABLE estimates is more for the second model base, since the first one
has more errors. Hence, the variance in the correctness values is more for the first
model base compared to the second. Both cases show a reduction in model base error
if the ASSOC_TABLE estimates are used to determine the correct class-candidate

at a site.

A Comparison of Different Types of Errors

Table 3.2 presents a relative comparison of the different categories of errors (Sec-
tion 3.4) for the two model bases. We list the mean and variance for each type of
error for the 100 data sets in the first model base, and the 4 data sets for the sec-
ond. We emphasize here that the relative importance of different types of errors may
vary across different model bases, and feature sets. For a particular setup and a set
of models, a particular error type may be more prominent compared to others. For
example, while a Type V error is more common for the first model base, a Type I
error is more common for the second. However, from the point of view of robust object

recognition, it 1s equally important to account for all types of errors.

Suitability of a Feature Detector

Table 3.3 shows the Unsuitability Factors computed for the feature detectors in the
two model bases. For our experimental set up and the objects in Model Base I, the
number of horizontal lines is the most ‘suitable’ feature, followed by the number of
circles, and the number of vertical lines. The corresponding features for Model Base
IT are the number of horizontal lines, the number of vertical lines, and the number of

segmented regions.
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Model Base I

Size Relative Size

Mean | Variance | Mean | Variance

Type I | 1.03% 0.19% 2.95% 1.57%
Type IT | 1.19% 0.27% 3.34% 2.03%
Type III | 1.87% 1.26% 5.27% 9.44%
Type IV | 11.60% | 1.45% | 32.89% | 12.44%
Type V [ 19.38% | 0.62% | 55.55% | 1.71%

Model Base 11

Size Relative Size

Mean | Variance | Mean | Variance

Type I | 3.97% 0.03% | 55.09% | 4.30%
Type IT | 0.19% 0.00% 2.60% 0.00%
Type III | 0.50% 0.00% 6.94% 0.00%
Type IV | 0.46% 0.02% 6.31% 3.00%
Type V | 2.09% 0.02% | 29.06% | 3.88%

Table 3.2: A comparison of the relative extents of different types of errors in AAGs
in terms of the percentage of the total number of sites (‘Size’), and the relative

percentages of the errors (‘Relative Size’) (Section 3.4)
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Model Base I

Model Base 11

Feature Detector

Unsuitability Factor

Feature Detector

Unsuitability Factor

Horizontal Lines 71.62 Horizontal Lines 3.31
Vertical Lines 116.44 Vertical Lines 17.47
Circles 85.87 Segmented Regions 25.41

Table 3.3: Unsuitability factors for feature detectors used in the two setups for the

two model bases

3.7.2 The 3-DOF Case: Experimental Results

For our experiments with the 3-DOF case, we have used CAD data for a polyhedral
object (Figure 3.24) to construct its AAG. We use as features:

1. The number of corners with the number of incident edges as 2, 3, 4 and 5,

respectively, and
2. The number of faces of the object visible in the given view

Thus, a 5-dimensional vector of the above features represents a class. For the tessel-
lation of the viewing space around the object, we choose Q=14 as the frequency of
geodesic division. Thus, there are 1962 sites in the viewpoint space.

In order to generate the experimental data sets, we have perturbed the aspect
data with different amounts of random noise. We randomly chose k% of the total
1962 sites for changing their class-candidate data. Each feature at such a site was
replaced by a random number (in the range of the observed values of the feature in
the aspect data obtained from the CAD model), We obtained 8 different data sets by
taking £ = 0, 1, 5, 10, 15, 20, 25, and 30, respectively.

Figure 3.25 shows a comparison of the raw aspect data with 30% noise, and the

output of our algorithm, in the spherical array representation.
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|

Figure 3.24: The CAD model of a polyhedral object, for experimentation with the
3-DOF case
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Figure 3.25: Raw aspect data with 30% noise, and the output of our algorithm for
the 3-DOF case (Spherical array representation). Different colours represent different

class-candidates.
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NOISE

0% 1% 5% 10% 15% 20% 25% 30%
S(I) 1405.71 | 1578.89 | 2281.07 | 2945.86 | 3338.91 | 3629.05 | 4347.85 | 4344.85
S(0) 1183.51 | 1203.18 | 1208.42 | 1306.09 | 1238.04 | 1605.85 | 1619.39 | 1817.89
E(A) 329.31 411.99 851.48 | 1370.09 | 1661.98 | 1893.88 | 2385.50 | 2204.72

# aspects 59 59 o7 56 o7 61 63 60
n(I) 2762.44 | 2979.42 | 3857.72 | 4621.23 | 5090.32 | 5419.53 | 6212.21 | 6239.06
n(O) 2427.16 | 2469.35 | 2457.10 | 2553.13 | 2504.53 | 2846.96 | 2962.20 | 3214.79
0.D.B. 408 % | 5.06% | 4.18% | 5.86 % | 540 % | 3.36 % | 581 % | 5.35 %
Correctness | 97.78 % | 88.68 % | 90.79 % | 88.31 % | 87.84 % | 86.25 % | 95.00 % | 86.42 %
Err. redn. | 0.00 % | 0.18 % | 0.00 % | 0.01 % | 0.70 % | 0.25 % | 0.00 % | 0.60 %

Table 3.4: Summary of AAG construction algorithm performance parameters for
aspect data perturbed by different amounts of noise: the 3-DOF case. ‘O.D.B.
denotes the percentage of the total AAG size where an optimal decision boundary
needed to be taken (Details in Section 3.5.4). The term ‘Correctness’ denotes the
correctness of Phase II ASSOC_TABLE estimates (Section 3.5.4) ‘Err. redn.” denotes
the percentage reduction in the model base error if ASSOC_TABLE estimates are

used.

The lower figure shows prominent aspects created by our algorithm. Table 3.4
shows the results of running our algorithm on these data sets. The first column
describes the results obtained by processing the aspect data directly obtained from
the CAD model. The n(I) value corresponding to this 0% error column represents the
quality of the original aspect data with respect to the desirable criteria mentioned in
Section 3.5.2. Examining the data in the table, we make the following observations.
As we increase the amount of added noise to the aspect data, S(I) and n(I) obviously
increase. However, the increase in the S(O) and n(O) values is considerably less. In

fact, the values of n(O) show that there has been considerable improvement in the
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quality of the output data in spite of the noise added (e.g., this is evident in the
results for 20%, 25% and 25% noise.) In spite of varying the amount of noise added
to the raw aspect data from 1 to 30%, the number of aspects does not vary greatly.
The variation in the number of aspects obtained can be attributed to the fact that
the sites for the injection of noise have been randomly chosen. (As mentioned before,
we randomly choose k% of the total 1962 sites — we have chosen k£ = 0, 1, 5, 10, 15,
25 and 30.) The percentage of sites where an optimal decision boundary would need
to be taken is only a small percentage (under 6%) of the total number of sites. To
avoid the exponential time complexity of taking an optimal decision boundary, we
perform the following compromise — we consider the errors induced when the region
R is assigned the class-candidates corresponding to each adjacent aspect-candidate.
We also consider the error taking into account the ASSOC_TABLE estimates, and
take the lower of the two. The correctness of Phase II estimates of association pairs
is high — above 86%. The table also shows figures for the reduction in the total model
base error due to the use of ASSOC_TABLFE estimates.

3.8 Conclusions

This chapter presents an integrated approach for AAG construction using noisy fea-
ture detectors. We handle two important cases of the number of degrees of freedom
between the object and the sensor — the 1-DOF case, and the 3-DOF case. We

summarize the main features of our scheme as follows:
e We present a classification of errors in raw aspect data

e We propose a new function to evaluate the output of different AAG construction

algorithms

e We present a new algorithm for AAG construction with noisy feature detectors.

The algorithm transforms noisy raw aspect data into an AAG suitable for use
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in an object recognition task. Further, we account for feature detection errors,

and store estimates of these for use in robust object recognition (Chapter 4.

e Our method is independent of the object and the feature set

e We characterize the suitability of a feature detector for aspect graphs — in terms

of the entire setup, and the given model base.

We present the results of extensive experimentation on a reasonably complex
experimental set, in support of our strategy. Since it is not possible to prevent
feature detection errors, one may use our strategy for efficient and robust 3-D object
recognition. We have reported part of this work in [68]. Papers [70], [64] describe

different stages of our work in aspect graph construction.

We conclude this chapter with a small discussion on the effect of errors in aspect
data, on a recognition algorithm. An AAG consisting of raw aspect data has a
very large number of aspects associated with it. Many of these correspond to feature
detection errors, and are very small in size. Hence, the degree of ambiguity associated
with a view will be very large, as compared with the case when an error-free AAG
is used. The presence of errors in aspect data does not just increase the complexity
of the recognition process, it can also cause errors. Errors due to noise often do not
occur at a fixed position in an AAG. Hence in a recognition experiment, what may
be actually observed at a viewpoint may not correspond to what it was when the
raw aspect data was collected. Our algorithms not only aim at reconstructing the
corresponding error-free AAG, they also store estimates of feature detection errors.
We use these estimates to recover from cases of feature detection errors in our object
recognition algorithm (Chapter 4). (In Section 4.4.3, we discuss this point in detail.)
We also present the results of experiments comparing the recognition performance

with raw aspect data, and the output of our 1-DOF AAG construction algorithm.
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Appendix for Chapter 3

To construct a minimum error AAG, we need to enumerate all possible partitionings
of the set of sites. We consider all partitionings where the size of a partition is
greater than, or equal to ©,,;,. To each partition in a partitioning, we assign a class-
candidate as a label. We consider all such arrangements, with the restriction that no
two adjacent partitions have the same class-candidate label. Among all these aspect
graphs, we consider the one with the minimum total error. However, this process has
exponential time complexity in the size of the AAG, as shown below. Hence, this

approach is not feasible.

Proposition 1 Computation of the minimum error AAG has a time complexity

which is exponential in the size of the AAG

Proof:
The problem of finding the number of possible AAGs for a given set of raw aspect

data can be decomposed into two subproblems:
1. Number of ways of partitioning a set of GG sites

2. Number of ways of assigning class-candidates from the set of N¢ class-candidates
to k partitions, with no two adjacent partitions having the same class-candidate

label.

Let P(G, ©pin, k) denote the number of ways of partitioning a set of G sites into k
partitions, with the minimum allowable size of a partition being ©,,;,. Let Q(k, N¢)
denote the number of ways of assigning class-candidates to k£ partitions from a set
of N¢ class-candidates, with the restriction that no two adjacent partitions have the
same class-candidate as a label.

The total number of partitions possible with the minimum size restriction is

K = L@SnJ We first find two bounds on the value of P(G,©O,,n, k). Without any

G

k) This serves as an

restriction on the size of the resulting partitions, the number is (



Chapter 3. Constructing Aspect Graphs for Object Recognition 125

upper bound. We can find a lower bound for P(G, ©,,,, k) by considering aspect sizes
to be integral multiples of ©,,;,. (In case G is not an integral multiple of ©,,;,, we

consider the extra region of size G — k- ©,,;, integrated with any one of the partitions

of G.) Thus,
K G
< ; <

We can get an upper bound on the value of Q(k, N¢) by doing away with the restriction
of having different adjacent class-candidate labels. Thus,
Ne
Q(ka NC) S Z k'
i=2
The number we require is

K

Z P(Gv Gmina k) : Q(k‘, NC)

k=2

As shown above, this number is exponential in the number of sites, G. O



126 Chapter 3. Constructing Aspect Graphs for Object Recognition



Chapter 4

Isolated 3-D Object Recognition
using Aspect Graphs: Next View

Planning

A single view of an object may not contain sufficient features to recognize it un-
ambiguously. This chapter presents a new on-line aspect graph-based recognition
scheme based on next view planning for the identification of an isolated 3-D object.
We assume a single degree of freedom (rotational) between the object and the (ortho-
graphic) camera. The scheme uses a probabilistic reasoning framework for recognition
and planning. Our knowledge representation scheme encodes feature-based informa-
tion about objects as well as the uncertainty in the recognition process. This is used
in the probability computations as well as in planning the next view. Our strategy is
not dependent on any specific set of features. Numerous experiments with our strat-
egy show the utility of using simple features and suitable planned multiple views, in

recognizing fairly complex 3-D objects.

127
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4.1 Aspect Graph-based Object Recognition

through Next View Planning

The previous chapter (Chapter 3) presents a strategy for constructing the aspect
graph of a 3-D object. The input to the algorithm is raw aspect data — the noisy
data collected from all viewpoints in the tessellated viewing space around the object.
The output is an aspect graph of the object, along with estimates of feature detection
errors. This chapter proposes a new reactive and on-line 3-D object recognition
system. The recognition system uses the same noisy feature detectors. The input to
the system is the output of the aspect graph construction algorithm, and the feature

detection error estimates.

As illustrated in Figure 1.1, a single view of a 3-D object may not contain suffi-
cient features to recognize it unambiguously. We often need to recognize 3-D objects
which because of their inherent asymmetry, cannot be completely characterized by
an invariant computed from a single view. Further, in recognizing 3D objects from a
single view, recognition systems often use complex feature sets [45]. In many cases, it
may be possible to achieve the same, incurring less error and smaller processing cost
using a simpler feature set and suitably planning multiple observations. A simple fea-
ture set is applicable for a larger class of objects than a model base-specific complex
feature set. Model base-specific complex features such as 3-D projective invariants
have been proposed only for special cases so far (e.g., [213]). The purpose of this
chapter is to investigate the use of suitably planned multiple views and simple 2-D
invariants for 3-D object recognition. Our recognition strategy is independent of any
specific feature set. We assume that there is one rotational degree of freedom between
the object and the camera: the viewpoint space is a circle around the object. We also

assume an orthographic camera. We illustrate these points in Figure 4.1

In Section 4.2, we propose a new knowledge representation scheme encoding do-

main knowledge about the object, relations between different aspects, and the cor-
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IMAGE SEEN BY THE CAMERA
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Figure 4.1: (a) An example of the 1-DOF case (a single rotational degree of freedom

between the object and the camera), and (b) the object with its aspects and classes
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respondence of these aspects with feature detectors. This hierarchical knowledge
representation scheme not only ensures a low-order polynomial-time complexity of
the hypothesis generation process (for the determination of the class corresponding
to a view), but also plays an important role in planning the next view. The input
to the recognition algorithm is an arbitrary view of an object in our model base.
The system probabilistically maps the set of features extracted from this view to the
aspect-class corresponding to this view. Our probabilistic reasoning scheme uses the
class information to generate hypotheses about the likely aspect corresponding to the
view. This is used to determine the corresponding object probabilities. The infor-
mation from the current view may not be sufficient to identify the object uniquely.
Based on the probabilities of the hypotheses generated, our planning algorithm plans
the best move to obtain the next view, which would uniquely identify the object.
Section 4.3 presents the details of our hypothesis generation mechanism, as well as

the next view planning scheme.

4.2 The Knowledge Representation Scheme

In order to use multiple views for an object recognition task, one needs to maintain
a relationship between different views of an object, and their relationships with the
outputs of different feature detectors. In this section, we propose a knowledge repre-
sentation scheme that encodes domain knowledge about the objects O; € O, relations
between different aspects a;;, their classes C}, and the correspondence of the aspects
with the output of the feature detectors. We use our aspect graph construction algo-
rithm of Chapter 3 to get information about the aspects and classes for the objects
in the model base. Figure 4.2 illustrates an example of this scheme.

Section 3.1.1 defines the terms Aspect and Class. Here, we introduce a new term:

Feature-Class A Feature-Class is a set of equivalent aspects defined for one partic-

ular feature.
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Figure 4.2: The knowledge representation scheme for our aspect graph-based recog-

ISA

nition strategy : An example

In Figure 4.2, feature-classes fj,, correspond to feature F; € F. For example, if Fj
detects different types of junctions in images, f;; could correspond to junctions of two
line segments, f;2 could correspond to junctions of three line segments, and so on.
Factors such as noise and non-adaptive thresholds can introduce errors in the feature
detection process.

We use this knowledge representation scheme in belief updating as well as in next
view planning (Section 4.3).

We emphasize that our system is not based on any specific feature set, unlike that
of Dickinson et al. [56], [57]. They use volumetric primitives, which are associated
with a high feature extraction cost.

The representation scheme consists of two parts:

1. The Feature-Dependence Subnet
In the feature-dependence subnet (Figure 4.2)

e F represents the complete set of features { F};} used for characterizing views
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e A Feature node Fj is associated with feature-classes fjy.

Let pji, represent the probability that the feature-class present is f;;, given
that the detector for feature F} detects it to be f;;. We define pj;, as the
ratio of the number of times the detector for feature F} interprets feature-
class fj; as fji, and the number of times the feature detector reports the
feature-class as fj;. This is another point where we use our aspect graph
construction strategy of Chapter 3 — The Ny x No ASSOC_TABLE stores
information about the number of times one class-candidate is observed
as another. We use the ASSOC_TABLE to compute pj;, values for each
feature-class. The Fj node stores a table of these values for its correspond-

ing feature detector.

A class node C; stores its a priori probability, P(C;). A link between
class C; and feature-class fj; indicates that f;; forms a subset of features
observed in C;. This accounts for a PART-OF relation between the two.
Thus, a class represents an n-tuple (f1;,, fa2j,, - .. fnj,) Since a class cannot
be independent of any feature, each class has n input edges corresponding

to the n features.

2. The Class-Aspect Subnet

The class-aspect subnet encodes the relationships between classes, aspects and
objects (Figure 4.2).

e O represents the set of all objects {O;}

e An object node O; stores its probability of occurrence, P(0;)

e An aspect node a;; stores

its angular extent ;; (in degrees),
its probability P(a;;) (Section 4.3.2),
its parent class C;, and

its neighbouring aspects
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e Aspect a;; has a PART-OF relationship with its parent object O;. Thus,
3-tuple ( O;, Cj, 0;; ) represents an aspect. Aspect node a;; has exactly

one link to any object (O;) and exactly one link to its parent class Cj;.

4.3 The Object Recognition Scheme

We are given an arbitrary view of an object in our model base. We use the aspect
graph construction scheme of Chapter 3 and the ASSOC _TABLFE estimates of feature
detection errors, to build the knowledge representation scheme for the given model

base. The task at hand is to recognize the given object.

The first step involves recognition of the class corresponding to the given view.
This requires the use of different feature detectors to obtain feature-classes corre-
sponding to each feature. (Section 4.2 describes the relation between objects and
their aspects, classes, and feature-classes in our knowledge representation scheme.)
We now probabilistically map the feature-classes onto the aspect-class corresponding
to this view. (Figure 1.1 in Chapter 1 shows such an example). In other words, the
class thus obtained could correspond to more than one aspect of different objects in
the model base. Our probabilistic reasoning scheme uses the class information to
generate hypotheses about the likely identity of the object. Based on the hypothesis
probabilities, our planning algorithm plans the best move to obtain the next view,
which would uniquely identify the object. The planning process is subject to memory
and processing constraints, if any. The camera is moved accordingly. If this does not
resolve the ambiguity in the object’s identity, the planning process is invoked again
— the hypotheses are refined at each stage. The system repeats this process till the
object is identified uniquely. Figure 4.3 depicts the interaction of various components

of the object recognition system.

The following sections present the three important components of our system,

namely
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ALGORITHM identify_class

1. compute_a_priori.class_probabilities();
(x Eq. 4.1; Section 4.3.1 *)
2. fd := identify feature detector_to_use();
(x Section 4.3.1, Ordering of Feature Detectors *)
3. fcl := get_feature_class(image,fd);
(x Use £fd on the image, identify feature class *)
4. compute_a_posteriori_class_probabilities(fcl);
(x Egs. 4.2,4.3; Section 4.3.1 Part 2 x)
5. IF the probability of some class is above a
pre—-determined threshold THEN
pass this class as evidence to the
object recognition phase, EXIT
6. IF all feature detectors have been used
AND the probability of no class is above
the threshold THEN EXIT
7. GO TO Step 2

Figure 4.4: The Class Recognition Algorithm

1. Class recognition from a given view of the object, and

2. Object recognition from the identified class

3. Next View Planning

4.3.1 Class Recognition from a Given View of the Object

The input to this phase is an arbitrary view of any object in the model base. The
recognition system uses the set of feature-classes from the view to generate hypothe-
ses about the likely identity of the class. This step uses our knowledge representation
scheme (Section 4.2), and probabilistic reasoning. Figure 4.4 outlines the class recog-

nition algorithm, which we describe next in detail.
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a priori Class Probability Computations

Prior to identification of the class corresponding to a given view, we calculate the
a priori probability of each class. The probability of each class depends upon the
probability of the aspects corresponding to it. Let aspects a,, belong to class Cj.
P(ayq|O,p) is 6,,/360. Initially, we assume each object to be equally likely to be
present i.e., the a priori probability of object O, is 1/n, where N is the number of

objects in the model base. We obtain the a priori probability of class C; as:

P(C;) = Z[P(Op) : ZP(apq|Op)] (4.1)

p

We now describe the computational scheme for the above probability computa-
tion, using our knowledge representation scheme. Let Ng,, N¢ and N, denote the
number of feature-classes associated with feature detector Fj, the number of classes,
and the number of aspects, respectively. We can compute the a prior: probabilities

of all classes in O(N¢ + N,) time using the following steps:

(x initialization *)
FOR EACH class C; DO
P(C;) := 0;
(* actual computation *)
FOR EACH object O, DO
FOR EACH aspect a,, under object O, DO
BEGIN
let C; denote the class node linked to aspect a,.
P(C)) 1= P(C) + Play|Oy);
END
The initialization takes time O(N¢). We perform the actual computation for each
aspect in each object. Since an aspect belongs to a unique class, this computation

can be performed in O(N,) time.
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Ordering of Feature Detectors

A proper ordering of feature detectors speeds up the class recognition process. At
any stage, we choose the hitherto unused feature detector for which the feature-class
corresponding to the most probable class has the least number of outgoing arcs i.e.,
the least outdegree. This is done in order to obtain that feature-class which has the
largest discriminatory power in terms of the number of classes it could correspond to.
For example, in Figure 4.2 if all feature detectors are unused and C has the highest

a priori probability, F3 will be tried first, followed by F5 and Fj, if required.

a posteriori Class Probability Computations

Let the detector for feature Fj report the feature-class obtained to be f;;. Given the
a priori class probabilities computed in the first step and the feature class fjz, the
algorithm now computes a posteriori probabilities of all classes C;.

P(Ci) - P(f;klCi)
Yo P(Crm) - P(fik]|C)]

P(Cilfjr) = (4.2)

P(f;x|C;) is 1 for those classes which have a link from feature-class fj;. It is 0 for the
rest. Thus, our class identification and feature detector scheduling scheme facilitates
class recognition using a minimum number of feature detectors.
The computation of each P(C;|f;x) for feature detector F; used takes at most
O(NZ) time using the following steps:
FOR EACH feature-class fj; under feature detector Fj; DO
BEGIN
(* denominator calculation *)
denominator := 0;
FOR EACH class C; linked to feature-class f;; DO
denominator := denominator + P(C});
(* class probability calculation *)

FOR EACH class C; DO
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IF C; has a link from fj;,
THEN P(C;|f;x) := P(C;) / denominator;
ELSE P(Cil/fjk)

0;

END
The denominator calculation takes O(N¢) time in the worst case, while the class
probability calculations take take O(N¢) time. Since the outer loop is executed
O(Np,) times, the overall time complexity is O(Npg, - N¢). This can go up to O(Ng) in
the worst case. Thus, each step in the class probability calculations can be performed

in low-order polynomial time.

Class Recognition in the Presence of Feature Detection Errors

For a noise-free case, Equation 4.2 enables us to compute P(C;|f;x): the a posteriori
probability of class C;, having (correctly) observed feature-class f;;. However, a
feature detector may erroneously report a feature-class fj; as fj;. To handle such
cases of feature detection errors, we use p;; estimates (Section 4.2, page 132). The

system computes the a posterior: probability of class C; as follows:
P'(Ci) = > _ P(Cilfj) - pju (4.3)
!

where fj;s are feature-classes associated with feature Fj;. This summation reduces
to one term, P(Cy|fjr) - pjrk, since there is only one feature-class under feature Fj.
The output of the aspect graph construction algorithm for each object in the model
base gives us ASSOC_TABLE values (Chapter 3), from which we calculate pj;; values
(Section 4.2).

We use the following steps to compute the a posterioriclass probabilities in O(N,)
time:
(x the observed feature-class is fj *)
FOR EACH feature-class f; under feature node [} DO

FOR EACH class C; with a link from f; DO
P(Ci) = P(Cilfjr) - Pjre
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In the case where there are no spurious feature-classes (ones not associated with any
class), the time complexity is O(N¢), since the above computations are performed
for each class.

Thus, our algorithm can handle cases of feature detection errors, and recover from
them. If the probability of any class is above a pre-determined threshold, the system
passes this information as evidence to the object recognition phase. Otherwise, it

schedules the next feature detector as above, and repeats the process.

4.3.2 Object Identification Given the Identified Class

The input to the object identification phase is an arbitrary view of an object in
the model base. The object identification phase uses the class recognition algorithm
(Section 4.3.1) as a module. Figure 4.5 presents our overall object identification

algorithm. In what follows, we describe the various steps of the algorithm in detail.

Object Probability Calculations in the First Phase

Before the system takes an image of the given view of the object, we calculate the a

priori probabilities of each object in the model base.
P(a’jpkp) = P(O]p) . P(a’jpkp|0jp) (44)

The probability of each of the N objects is initialized to 1/N before the first obser-

vation. P(a;,k,|OJp) is 0),k,/360. a priori aspect probability calculations take O(NN,)
time.

The system now takes an image of the object. The class recognition algorithm
identifies the class corresponding to a given view of the object. The class observed
could have come from more than one aspect, each with its own range of positions
within the aspect. The system now computes a posteriori probabilities as follows.

Let the class recognition phase report the observed class to be C;. Let us assume

that C; could have come from aspects a;,x, , Gjoky » - - - jk,,, Where all j1, Jo, ... Jm



140 Chapter 4. Aspect Graph-Based Recognition through Next View Planning

ALGORITHM identify_object

e FIRST PHASE ------ *)
1. initialize_object_probabilities();
(x Initialize to 1/N *)
2. 1image:=get_image_of_object();
3. class:=identify_class(image) ;
(x Section 4.3.1 *)
IF class=UNKNOWN THEN exit;
4. search tree_root:=construct_search tree node(class,0);
5. compute_object_probabilities(search tree root);
(x Eqs. 4.5,4.6 %)
6. IF the probability of some object is above a
pre-determined thresh. THEN exit & declare success;
7. expand_search_tree node(search_tree_root,0,class);
(x Section 4.3.3 *)
best_leaf:=get_best_leaf node(search_tree_root);

(% —————- SECOND PHASE ------ *)
previous:=search _tree_root;
expected:=best_leaf;

8. angle:=compute_angle_to_move_by(expected,previous);
make _movement (angle) ;
image:=get_image_of _object();
9. class:=identify_class(image) ;
IF class=UNKNOWN THEN exit;
10. new_node:=construct_search tree node(class,angle);
11. compute_object_probabilities(new_node) ;
12. IF the probability of some object is above a
pre-determined thresh. THEN exit & declare success;
13. expand_search tree node(new_node) ;
best_leaf:=get_best_leaf node(new_node) ;
previous:=new_node;
expected:=best_leaf;
14. GO TO step 8

Figure 4.5: The Object Recognition Algorithm
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are not necessarily different. We obtain the a posteriori probability of aspect aju,
given this evidence using the Bayes rule:

P(ajlkl) j P(Ci|ajzkz)

Pla; Oz = m
( ]lkl| ) p:l[P(a’jka) . P(Oi|ajpkp)]

(4.5)

P(Claj,) is 1 for aspects with a link to class C;, 0 otherwise. Finally, we obtain the

a posteriori probability

P(0,,) = ;P(ajpkﬂci) (4.6)

where aspects a;,, belong to class Cj.

We use the following steps for object probability calculations.

1. a priori aspect probability calculations take O(V,) time, since Equation 4.4 has

to be calculated for each aspect associated with each object.

2. Let the class observed be C;. Then, a posteriori aspect probability computa-
tions take O(XV,) time as can be seen in the following pseudo-code:
(* calculate denominator *)
denominator := 0;
FOR EACH aspect aj; linked to class C; DO
denominator := denominator + P(ajx);
(* actual aspect probability calculations *)
FOR EACH object Oy DO
FOR EACH aspect aj; belonging to object O; DO
IF ajk, has a link to class Cj
THEN P(a;|Ci) := P(ajk) / denominator;
ELSE P(a;k|Ci) = 0;
The denominator calculations take O(IV,) time in the worst case. The other
computations take O(N,) time due to the outer loops being executed for all

aspects in the model base.
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3. The final object probability calculations (Equation 4.6) takes O(N,) time, be-
cause the probability of an object is the sum of the probabilities of all its
constituent aspects. Thus, each step in the object probability calculations can

be performed in linear time.

An important feature of our system is the role played by the hierarchical knowl-
edge scheme in hypothesis generation. In Hutchinson and Kak’s work [106], feature
matches are directly used for generating object hypotheses. Although their formula-
tion ensures polynomial-time implementation of Dempster’s combination rule, their
system still incurs the overhead of intersection calculations in refining frames of dis-
cernment, and incorporating consistency checks.

In our hierarchical scheme, the link conditional probabilities (representing rela-
tions between nodes) themselves enforce consistency checks at each level of evidence.
The feature evidence is progressively refined as it passes through different levels in
the hierarchy, leading to simpler evidence propagation and less computational cost.

If the probability of some object is above a threshold the algorithm reports a
success, and stops. In our experiments with the model base consisting of polyhedral
objects (Section 4.4.1), we take this to be 0.87. However, if the probability of no
object is above the threshold, this implies that the information from the given view of
the object is not sufficient to recognize it unambiguously. We have to take another
view of the object, which will best disambiguate between the competing objects. The

next section describes our next view planning scheme in detail.

4.3.3 Next View Planning

Next View Planning is required when the probability of no object is above a particular
threshold. This means that the class observed could have come from more than one
aspect, each with its own range of positions within an aspect. Due to this ambiguity,
one has to search for the best move to disambiguate between these competing aspects

subject to memory and processing limitations, if any. The planning process aims to
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aspect a;j belonging
to cfass Ck

e

The current viewpoint can be
in thisangular range

Figure 4.6: The parameters characterizing the state of the recognition system (Sec-

tion 4.3.3)

determine a move from the current step, which would uniquely identify the given
object. We pose the planning problem as that of a forward search in the state space
which takes us to a state in which the aspect list corresponding to the class observed
has exactly one node. We use a search tree to find a state in the search space
corresponding to a unique aspect. The parameters describing the state (a search tree

node) are as follows (Figure 4.6):
e the unique class observed for the angular movement made so far,
e the aspects possible for this angle-class pair, and

e for each aspect, the range of positions possible within it (vfj — fyf]) Vi and 7y
denote the two positions within aspect a;; where the current viewpoint can be,

as a result of the movement made thus far.

Here, 77, < 7f;; and 75, and 0 < 7f; < 6;;, where 0;; is the angular extent of aspect
.

A leaf node is one which has a unique aspect associated with it, or corresponds to
a total movement of 360 degrees from the root node, or more. The aim is to find the
move that will best disambiguate between the competing objects, subject to memory

and processing limitations, if any.
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Figure 4.7: A Partially Constructed Search Tree

Choosing the right step size of movement

For the search tree node corresponding to an observed view, we do not know the
aspect corresponding to the observed class. Further, even the position within the
aspect is not known. An infinite number of moves is possible from a particular state.
Even for discrete movement steps, the number of moves from the observed node is
very large, equal to the number of steps needed to move around an object (the number
of sites in the tessellated viewpoint space).

Hence, an important parameter is the step size of movement. If it is too small,
then we may remain in the same aspect - incurring image processing cost. A large
step size, on the other hand may cause us to miss a unique aspect corresponding to
an object. In view of these facts, we categorize moves from a particular viewpoint,

as follows:

Primary Move A primary move represents a move from an aspect by «, the mini-

mum angle needed to move out of it.

Auxiliary Move An auxiliary move represents a move from an aspect by an angle

corresponding to the primary move of another competing aspect.

Figure 4.7 shows an example of a partially constructed search tree. Let of; and o
represent the minimum angles necessary to move out of the current assumed aspect

in the clockwise and anti-clockwise directions, respectively. Three cases are possible:
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1. Type I move: of; and «of; both take us out of the current aspect to a single
aspect in each of the two directions — a;, and a;, respectively. We construct

search tree nodes corresponding to both moves.

2. Type II move: Exactly one out of of; and «f; takes us to a single aspect
a;p. For the other direction, the aspect we would reach depends upon the initial
position (which may lie between 7;; and 7, both points inclusive) in the current

aspect. We construct a search tree node corresponding to the former move.

3. Type III move: Whether we move in the clockwise or the anti-clockwise
direction, the aspect reached depends on the initial position in the current
aspect. We choose the move which leads us to the side with the largest angular

range possible in any reachable aspect.

We expand a non-leaf node by generating child nodes corresponding to primary moves
for all competing aspects in its aspect list. We can also generate additional child nodes
by considering auxiliary moves (logical moves out of the assumed aspect by angles
corresponding to primary moves for other aspects). We assign a code 0 to Type I and
IT primary moves and 1 to Type II auxiliary moves. Type III primary moves moves
get a code of 2, and Type III auxiliary moves, 3. The weight associated with a node
is 4° - Clode, where i is the depth of the node in the search tree. We use three levels
of filtering to determine the best leaf node. First, we consider those on a path from
the most probable aspect(s) corresponding to the previously observed node. Among
these, we consider those having paths of least weight. From these, we finally select
one with the minimum total movement.

Since we are constructing a node for each observation taking into account all
aspects possible for the angular move made, it may still be possible that the observed
node created is present as an ancestor node. This is due to the fact that we are
taking a move for the most probable aspect expected at each stage, rather than
deterministically constructing the entire search tree and performing an exhaustive

search. We can have two cases here. If the constructed node is the same as an ancestor
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which is not the root node, we consider moves out of this node corresponding to the
moves out of the ancestor node’s parent to avoid this cycle. In the other case, we

take a random move within the 360 degree restriction, and continue.

The Second Phase of the Object Recognition Algorithm

The search process finds the best move to resolve the ambiguity associated with this
view. The system takes the move corresponding to the best leaf node in the search
tree, and the class identification module is called again. We construct a new search
tree node corresponding to this move.

We again need to calculate the a priori probability of each class C;. This process
is similar to Equation 4.1 of Section 4.3.1, except for the following two differences.
The a posteriori object probabilities P(O;,) of Equation 4.6 of Section 4.3.2 serve as
the a priori probabilities for the class identification part here. Additionally, we have
to account for the movement in the probability calculations. For example, a particular
movement may preclude the occurrence of some aspects for a given class observed.

We compute the value of P(a;,,|0;,) as follows:
P(ajpkp|0jp) = ¢jpkp/360 (47)

where ¢; 1, (0 < ¢k, < 0;,1,) represents the angular range possible within aspect
aj,k, for the move(s) taken to reach this position. Due to the movement made,
we could have observed only m (0 < m < r) aspects out of a total of r aspects
belonging to class Cj. In our hierarchical scheme, the link conditional probabilities
(representing relations between nodes) themselves enforce consistency checks at each
level of evidence. The feature evidence is progressively refined as it passes through
different levels in the hierarchy, leading to simpler evidence propagation and less
computational cost. This is an advantage of our scheme over that proposed in [106].

Depending on the observed class C;, we calculate the a posteriori probability of
aspect aj,, and finally the a posteriori probability of each object O; using Equa-
tion 4.5 and Equation 4.6 of Section 4.3.2. If the probability of some object is above
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the threshold, then the algorithm terminates. Otherwise, the search process is re-
peated. This illustrates the reactive nature of our strategy. We discuss this further,
along with issues relating to the finiteness of the search procedure and scalability, in

the next section.

4.3.4 The Object Identification Algorithm: A Discussion

Search tree node expansion is always finite due to the following reasons:

1. Even if all the aspects in the competing objects are the same, the search tree

construction stops when the total movement along a path is 360°.

2. The number of aspects is finite. No aspect is repeated along a path in the
process of node creation i.e., there are no cycles. Thus, there can be no search

tree node expansion indefinitely oscillating between a set of aspects.

Given the combinatorial nature of the problem, it is often not feasible to construct
the entire search tree off-line. This is especially true if the number of competing as-
pects for a view is quite large. In contrast, our planning process is on-line and reactive.
Taking primary moves helps us to prune the search space by selecting an appropriate
step size of movement. This eliminates redundant moves (which would have incurred
large image processing cost). Auxiliary moves additionally provide better aspect res-
olution. Further, our planning strategy is scalable — one can plan with primary moves
alone (greater pruning of the search space), or with a combination of primary and
auxiliary moves (which have greater discriminatory power), depending on memory
and processing limitations. Our robust class recognition algorithm can recover from
many feature detection errors at the class recognition phase itself (Section 4.3.1).
Our planning scheme is global — its reactive nature incorporates all previous move-
ments and observations in the probability calculations (Section 4.3.2), as well as in
the planning process. An off-line system does not have the capability of recovering

from feature detection errors. This is so because all the planning is done off-line, and
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Figure 4.8: A case when our algorithm is not guaranteed to succeed (Section 4.3.4)

the system does not have any means of dealing with an unplanned situation. The
reactive nature of our strategy incorporates all previous movements and observations
in the probability calculations (Sections 4.3.1 and 4.3.2), as well as in the planning
process. If the obtained view indeed corresponds to the most probable aspect at a
particular stage, then our search process is guaranteed to perform aspect resolution
and uniquely identify the object in the following step, assuming no feature detection
errors. Even if the view does not correspond to the most probable aspect, the list
of possible aspects a given view could correspond to, is refined at each observation
stage (avoiding the exponential time complexity of having to expand out the entire
search tree at one go). The planning process is initiated with the new aspect list.

This illustrates the reactive nature of our planning strategy.

Assuming no feature detection errors, our algorithm is guaranteed to succeed
except in three cases. The first is for objects with the same aspect structure (i.e.,
the layout of classes in the aspect graph) but different aspect angles. Further, our
strategy does not handle the case when the aspect angles are greater than or equal to
180 degrees. Figure 4.8 shows an example of the third case. Let us suppose that we
have to move anti-clockwise. Let ¢ denote the angular extent of the smallest aspect
observed so far. The current viewpoint lies in this angular range. Let a;;.1 be a
unique aspect for the assumed object. The anti-clockwise movement will be by an

angle v + w. If ¥ +w > 0;;41, we may miss this unique aspect altogether.
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Bounds on the Number of Observations

It is instructive to consider bounds on the number of observations required to disam-
biguate between a set of n aspects. Let us evaluate these for a simple deterministic
case, to serve as a benchmark.

Let us assume that the class initially observed could correspond to n aspects
belonging to the objects in the model base. We also assume the space of viewing
positions around the object to be quantized to Ny. Each of the Ny possible moves
from the starting position partitions the aspect list associated with a class node
into equivalence classes, each of which is an aspect-class. Due to the uncertainty in
position within an aspect, any movement from an aspect could lead us to more than
one aspect. Let the upper bound on the number of aspects reachable from any given
aspect be v. For the sake of simplicity, however let us assume v to be 1. We also
assume no errors in either movement or image processing. Given these assumptions,

we state the following proposition:

Proposition 2 If the assumptions made above hold, the average number of observa-
tions required to uniquely identify the given object is O(logen), where n is the number

of aspects the initially observed class could correspond to.

Proof:

Let T'(n) denote the number of observations required to disambiguate between n as-
pects. These n aspects are obtained as a consequence of the first observation and the
consequent processing. Each of the Ny, moves partitions this set of aspects into equiv-
alence classes, each of which is an aspect-class. We choose a move that partitions the
initial aspect set into more than one equivalence class. (A distinguishing move has to
exist for the object set, else all objects in the model base would be indistinguishable
from one another.) If the size of the aspect list in one such equivalence class is j, the
expected additional number of observations is T,,4(j), where 1 < j < n. We assume

j to take on any of the values 1 to n — 1 with equal probability. We have
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Ty (n) = 1 + iz eeld)

n—1

Further, T,,,(1) =
We now use Mathematical Induction to prove that T'(n) = O(log.n).

Induction Hypothesis: T,,,(n) = O(logen), where 1 <n <m, m > 2.
m—1 .
1 Tavg(j)

Induction Step: T,,,(m) =1 + Lzt o]

=14+ Tavg(l)‘l'Tavg(ng;l'“ +Tavg(m—1)

Since Tyg(n) = O(logen), we may write Ty,4(n) = u, - logen + vy, where u, and v,
are constants.
We now invoke the Induction hypothesis on the summation:
Tavg(m) = (1+ (57) - (E75 ) + 57) + (557) - (E75 (ug - log, 7))
We replace the term (=) - (7%, v;) by a constant ;. Further, we replace each u;
by the largest of all u;’s, 2 < j < m. Let us call this constant gy. This results in the
following inequality:
Tung(m) < (L4 @1 + 555) + (525) - (X755, log, j)

< Q4a+55) + (GE) - (5" log o dx)

< (14 q + F2mloa2y 4 go (14 L) - (logem)

Since m > 1, we can replace the terms with (m — 1) in the denominator by the cor-
responding terms multiplied by (m — 1) without affecting the inequality. Thus,

Tovg(m) < g3 logem~+qy, where ¢ and g3 are constants. Hence, Tg,(m) = O(logem) O.

4.4 Experimental Results and Discussion

Our experimental set is the same as that described in Section 3.7. We have a camera
connected to a MATROX Image Processing Card. We also have a stepper motor-
controlled turntable on which the object to be recognized, is placed. The turntable

moves by 200 steps to complete a 360 degree movement.
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We have experimented with two sets of objects:

1. Model Base I: 7 Aircraft Models (Figure 4.9)

We use as features,

(a) the number of horizontal lines ((h)),

(b) the number of vertical lines ((v)), and

(c) the number of circles ((c)).
We represent a class as (hve). We have chosen this relatively feature-rich model
base for two reasons. First, we wish to demonstrate the effectiveness of our
AAG construction algorithm on raw aspect data with very low smoothness

(Chapter 3). The second reason is to show the effectiveness of using simple and

robust features with multiple views for recognizing complex 3-D objects.

2. Model Base II: 8 Polyhedral Objects (Figure 4.10)

We use as features,

(a) the number of horizontal lines ((h)),
(b) the number of vertical lines ({v)), and

(c) the number of non-background segmented regions in an image ((r)).

We represent a class as (hvr). We have chosen this model base so that most
objects have more than one view in common. The list of possible aspects as-
sociated with one initial view is quite large here (18, compared with 10 for the

first set).

As described in Section 3.7, we use Hough transform-based line and circle detec-
tors. For getting the number of regions in the object, we use sequential labeling on a
thresholded gradient image.

Here, we reiterate that our scheme is independent of any particular set of features.
While we use simple features for the purpose of illustration, one may also use other

features such as those based on
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Figure 4.9: Model Base I: The objects (in row major order) are heli_1, heli_2, plane_1,
plane_2, plane_3, plane_4, and biplane.
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Figure 4.10: Model Base II: The objects (from left) are Oy, Oy, O3, Oy, Os, Og, O

and Og, respectively.
e 2-D projective invariants (e.g., [175]),
e texture (e.g., [9]),

e colour and multidimensional receptive field histograms (e.g., [188], [99], [76],
[179]), or

e reflectance ratios ([149])
In this section, we describe two classes of experiments:

1. Sections 4.4.1 and 4.4.2: Recognition experiments related to ideas presented in

Chapter 4, and

2. Section 4.4.3: Experiments showing a comparison of the action of the recog-
nition algorithm on raw aspect data, and on the AAGs constructed using the

algorithm of Chapter 3

4.4.1 Object Recognition Experiments with Model Base II:
Polyhedral Objects

Figures 4.11 and 4.12 show some experiments with the objects in the polyhedral

objects model base. For Figure 4.11, the initial class observed in each case is (232),



154 Chapter 4. Aspect Graph-Based Recognition through Next View Planning

(232) =8 (231(221)) =3 (232) =3 (221) =15 (232)
(a) O3, primary moves alone

(232) =4 (232) =5 (221)

(b) O3, both primary and auxiliary moves

(232> =3 (221) =3 (221) = (221)
(c) Oy, primary moves alone

(232) (221) (221) (221)
(d) O4 both prlmary and auxmary moves

—12

Figure 4.11: Some experiments with Model Base I: initial class (232). The numbers
above the arrows denote the number of turntable steps. A negative sign indicates a
clockwise movement. (The figure in parenthesis shows an example of recovery from

feature detection errors)
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iLr

221) 255 (221) 25 (423
(a) 07 primary moves alone

(221) 75 (221) 25 (423)
(b) O7, both primary and auxiliary moves

(221) 2L (221) 225 (221) =% (221) =28 (221)
(c) 05 primary moves alone

(221) 75 (221) -2 (322)
(d) Os, both primary and auxmary moves

(221) 25 (232) =% (232)
(e) 03 primary moves alone

(232)

(221) T (232) = (232) — (221) —

(f) O3, oth primary and auxiliary moves
Figure 4.12: Some experiments with Model Base I: initial class (221). The numbers
above the arrows denote the number of turntable steps. A negative sign indicates a

clockwise movement
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while it is (221) in Figure 4.12. We have considered cases: taking only primary moves,
as well as planning with both primary and auxiliary moves. We make the following

observations:

Primary and Auxiliary Moves

In most cases, the number of image processing steps required is less in the latter case
as compared to the former. Planning with both primary and auxiliary moves thus
in general, reduces image processing overheads at the expense of additional search
time and memory requirements. When memory and search time are limited, the
planning process may use primary moves alone. An interesting case is observed in
Figures 4.12(e) and (f) - an opportunistic case when the number of steps with primary
moves is less than the one with both primary and auxiliary moves. At step 2, the
move planned was not for the aspect eventually observed in step 3. However, this

particular sequence of moves turns out to be unique for object Os.

Ordering of Feature Detectors

The third image in Figure 4.11(a) shows an the advantage of our scheduling of feature
detectors. The line detector reports the feature-class present to be (23). For the
objects in our model base, this could correspond to classes (232) and (233). Our
probability calculations account for the movement taken around the object. The
probability of class (232) for the movement made so far exceeds the class probability

threshold(0.87). Hence, the system does not need to use the other feature detector.

Recovery from Feature Detection Errors

The second image in Figure 4.11(a) shows a situation where the system recovers from
an error in the feature detection process. Due to the thresholds we use, the correct
class is (221). The line detector, however reports the probabilities of classes (221)
and (231) as 0.004 and 0.856, respectively. The probability of no class is above the
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Figure 4.13: Variation of object probabilities: two examples

threshold. The other feature detector is now scheduled, which reports the number of
regions to be 1. The probability calculations of Equation 4.3 result in the probabilities
of the two as 0.997 and 0.002, respectively.

Variation of Object Probabilities

Figure 4.13 shows the variation in object probabilities with each observation. The two
cases shown here are for the moves in Figure 4.11(a) and Figure 4.12(c). Figure 4.13(a)
shows the probability of object O, steadily rising till it gets to 1, in the 5th move.
The probabilities of all objects change as each view accounts for new evidence. Fig-
ure 4.13(b) shows an interesting case of an object O, whose probability is the highest
till observation number 3. The successive evidence lessens the probability of this ob-
ject, and increases that of another object Og. This evidence results in the probabilities
of all objects which had non-zero probabilities thus far, dropping to zero. The next

move results in a view which is unique to object Og.

Some Sample Search Tree Details

We now consider some cases in detail. For each row in Figure 4.11 | the initial view

could have come from 18 aspects belonging to objects in our model base and for
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Figure 4.12, the corresponding number is 17. For the strategy involving primary
moves alone, the total number of search tree nodes generated for Figures 4.11(a),
4.11(c), 4.12(a), 4.12(c) and 4.12(e) are 53, 48, 34, 48 and 39, respectively. For
the strategy involving both primary and auxiliary moves (Figures 4.11(b), 4.11(d),
4.12(b), 4.12(d) and 4.12(f)), the corresponding numbers are 324, 279, 127, 127 and
151, respectively. Let us consider Figure 4.12(d). The algorithm plans a move of 77
steps. The second observation reports the number of aspects possible as 6. The next

move by 72 steps corresponds to a unique aspect.

Average Number of Observations for a Given Number of Competing As-

pects

The upper part of Table 4.1 gives an idea of the average number of observations for
a given number of competing aspects for the experiments with the first model base.

The average is computed over 46 experiments.

4.4.2 Object Recognition Experiments with Model Base I:
Aircraft Models

Figures 4.14, 4.15 and 4.16 show some results of experimentation with the objects in
the aircraft model base. The initial classes observed in these figures are (332), (411)
and (410), respectively.

Primary and Auxiliary Moves

For the experiments with the second model base, in most cases the number of observa-
tions required with primary observations alone, and with both primary and auxiliary
moves are the same. This can be attributed to the fact that the degree of uncertainty
associated with a view for an object in this model base is less than one for the first
model base (The maximum number of competing aspects here is 10, compared with

18 in the first case).
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Model Base II: Polyhedral Objects

Number of

Competing Aspects

Average number of observations

Primary Moves Alone

Primary and Auziliary Mowves

Competing Aspects

5 2.00 2.50
17 3.09 3.07
18 4.00 3.38
Model Base I: Aircraft Models
Number of Average number of observations

Primary Moves Alone

Primary and Auziliary Mowves

4

5
7
9

10

2.00
2.00
2.00
2.00
2.67

2.00
2.09
2.00
2.00
2.67

159

Table 4.1: The average number of moves for a given number of competing aspects
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I

(332) 25, <420> (342(332)) 225 (410)

332 (410) (332) 25 (540)

(c) (d)

T

(332) 25 (510) -2 (510)
(e)

=

Figure 4.14: Experiments with the initial class as (332). (The figure in parentheses

shows an example of recovery from feature detection errors). In each of these cases,
the results for planning with primary moves alone, and those for both primary and

auxiliary moves are identical
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PRIMARY MOVES ALONE PRIMARY AND AUXILIARY MOVES

a) plane_2: (411) (114) b) plane_2: (411) (114)

- <21(214)>

. E

(e) plane_1: (411) (332) (f) plane_1: (411) =% (332)

Figure 4.15: Experiments with the initial class as (411). (The figure in parentheses

shows an example of recovery from feature detection errors).

PRIMARY MOVES ALONE PRIMARY AND AUXILIARY MOVES
(a) plane_1: (410 (411) b) plane_1: (410) (411)
plane_1: (

(c) 410) =% (411) (d) plane_1: (410) =% (411)

() plane 4: (410) =25 (212) (F) plane4: (410) =5 (212)

Figure 4.16: Experiments with the initial class as (410)
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Ordering of Feature Detectors

The second images in Figures 4.15(a), (b) and (c) show cases where the system does
not need to use the second feature detector. In each case, the line detector reports
the feature-class present to be (11). For the objects in this model base, this could
correspond to classes (112) and (114). Due to the movements made, the probability
of class (114) becomes 0.95 and exceeds the class probability threshold. No further

feature detection is required.

Recovery from Feature Detection Errors

In the first image in Figure 4.14(b), due to the shadow of the wing on the fuselage
of the aircraft, the feature detector detects 4 vertical lines instead of 3, the correct
number. Our recovery mechanism (Section 4.3.1) corrects this error. The second
image in Figure 4.15 shows another example of an error recovery. The number of
circles is detected to be 5. The peireres 5 4 value (Section 4.2) is 1.0, hence the system

corrects the error.

Some Sample Search Tree Details

For the experiments shown in Figure 4.15, the number of search tree nodes con-
structed for primary moves alone is 14, whereas the corresponding number for both
primary and auxiliary moves is 125. The corresponding numbers for the experiments

in Figure 4.16 are 14 and 41, respectively.

Average Number of Observations for a Given Number of Competing As-

pects

For the results concerning the second model base, the average is computed over 58
experiments. The lower part of Table 4.1 shows the average number of observations

for a given number of competing aspects.
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4.4.3 Experiments Comparing Recognition Performance on
Raw Aspect Data and AAGs Constructed as in Chap-
ter 3

In this section, we compare the performance of our recognition algorithm on two
different types of input data — raw aspect data, and the AAG constructed using the
strategy of Chapter 3. Table 4.2 summarizes the results of 83 experiments with the
polyhedral objects, and 96 experiments with the aircraft models. For the recognition
experiments of Sections 4.4.1 and 4.4.2, the focus was on experiments with the initial
view having a large degree of ambiguity associated with it — one which corresponds
to a large number of aspects. Here, we take random views around the given object
as starting points, and use our recognition algorithm.

The raw aspect data considers clusters of adjacent points in having the same fea-
ture data, as an aspect. Since we use noisy feature detectors for obtaining the raw
aspect data, it contains instances of feature detection errors. Given an instance of
raw aspect data, our AAG construction algorithm aims at reconstructing the cor-
responding error-free AAG as far as possible. A small region whose feature data is
different from its neighbouring regions is more likely to be an error, as against an
aspect of an error-free AAG (Section 3.4). Further, the positions in the AAG where
such errors occur, are also not fixed. When we use a particular set of raw aspect data
for a recognition experiment, the observed feature data at a particular position may
not correspond to what it was in the raw aspect data. The recognition algorithm
works on the basis of the aspect data — in this case, it is the raw aspect data itself.
Any such case of the above discrepancy between the expected feature value and the
observed one, amounts to a feature detection error. Hence, the recognition algorithm
is likely to fail in a larger number of cases with the raw aspect data, as compared to
experiments with the output of our AAG construction algorithm.

Our AAG construction algorithm stores estimates of feature detection errors as

ASSOC_TABLE estimates (Section 3.5.3). We use these ASSOC_TABLFE estimates
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Model Base II: Polyhedral Objects

Raw Aspect Data

AAG of Chapter 3

Cases of feature detection errors
Recovery from feature detection errors
Failure due to feature detection errors

Av. no. of Image Processing Operations

Av. no. of search tree nodes

24
24
2.322
450.373

26
6
20
2.242
136.468

Model Base I: Aircraft Models

Raw Aspect Data

AAG of Chapter 3

Cases of feature detection errors
Recovery from feature detection errors
Failure due to feature detection errors

Av. no. of Image Processing Operations

Av. no. of search tree nodes

7
7
2.368
264.684

40

16

24
1.784
24.431

Table 4.2: A comparison of the object recognition algorithm on raw aspect data, and

the output of the AAG construction algorithm of Chapter 3
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to compute p;i; values for each feature detector (Section 4.2). The use of p;;, values
makes the recognition system robust to many feature detection errors (Section 4.3.1).
The recognition system using the raw aspect data cannot recover from any feature
detection error.

A consequence of using raw aspect data in the recognition algorithm is the presence
of very large number of aspects. Many of these correspond to feature detection errors,
and are very small in size. Hence, the degree of ambiguity associated with a search
tree node is expected to be quite high. Thus, the average number of search tree nodes
is also much higher than the case of using an AAG constructed using the algorithm
of Chapter 3. The search process of Section 4.3.2 may be subject to memory and
processing constraints. Hence at any stage, one expects the aspect resolution process
to be less complete than the latter situation. In such a case, the number of image
processing operations is expected to be far higher than the system using output of
our AAG construction algorithm.

The upper part of Table 4.2 shows the comparison for the polyhedral objects.
The raw aspect data for the the polyhedral objects model base has a lower value
of the Demerit Coefficient 7,046 base and S(I) as compared to the aircraft model
base (Section 3.7). Thus the raw aspect data is closer to the output of the AAG
construction algorithm for the polyhedral objects model base, as compared with the
aircraft models.

For the 83 experiments with the polyhedral objects, the number of cases of feature
detection errors is nearly comparable (24 and 26, respectively for the raw aspect data,
and the AAG constructed using the algorithm of Chapter 3). However, there are 6
cases of recovery from feature detection errors in the latter, which is not so for the
raw aspect data. The average number of image processing operations is more for the
raw aspect data (2.322), as compared with 2.242 for the latter. The average number
of search tree nodes for the raw aspect data is about 3 times the corresponding value
for the output of our AAG construction algorithm.

The aircraft model base clearly highlights the difference between the results with
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raw aspect data, and the output of our AAG construction algorithm. This model
base has a high value of Demerit Coefficient 7mo4er base and S(I) (Section 3.7). The
number of feature detection errors is significantly higher for the raw aspect data —
77, as compared with 40 for the latter. Further, there are 16 instances of recovery
from feature detection errors with the latter, using the ASSOC_TABLE estimates to
advantage. The average number of image processing operations for the two types of
inputs are 2.368 and 1.784, respectively. The average number of search tree nodes is
significantly higher for the raw aspect data — nearly 11 times the corresponding value

for the output of our AAG construction algorithm.

4.5 Conclusions

This chapter presents an integrated approach for the recognition of an isolated 3D
object through on-line next view planning using probabilistic reasoning. We assume
a single rotational degree of freedom between the object and an orthographic camera.

We summarize the main features of our recognition system as follows:
e Our strategy is independent of any specific feature set.

e We account for feature detection errors not only in the AAG construction pro-
cess (Chapter 3), but also in the object recognition stage, which uses the same

noisy feature detectors.

e The probabilistic hypothesis generation mechanism can also handles cases of

feature detection errors.

e Our hierarchical knowledge representation scheme enables fast and efficient hy-
pothesis generation. It also facilitates planning by exploiting the relationships

between features, aspects and object models.

e The planning process is reactive. It utilizes information from the current obser-

vation, as well as the past history, to plan a sequence of moves to disambiguate
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between similar objects.

The recognition scheme has the ability to correctly identify objects even when they
have a large number of similar views. If a feature set is not rich enough to identify
an object from a single view, this strategy may be used to identify it from multiple
views. We demonstrate that the proposed recognition strategy works correctly even
under processing and memory constraints due to the incremental reactive planning
strategy. No related work has addressed this problem.

While we use simple features for the purpose of illustration, one may use other
features such as texture, colour, specularities and reflectance ratios. Over 100 experi-
ments demonstrate the effectiveness of using simple features and multiple views even
on a relatively complex class of objects with a high degree of ambiguity associated
with a view of the object. Our experiments show that one may use simple features
to recognize objects with complex 3-D shapes (as in Figure 3.14).

We have described various stages of our work on aspect graph-based object recog-

nition in [65], [63], [62]. We have also reported a part of this work in [68].
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Chapter 5

Inner Camera Invariants: A Tool

for Next View Planning

In a multi-view 3-D object recognition system, pose information corresponding to
a view is necessary to generate different hypotheses corresponding to the informa-
tion extracted from the image of that view. Most pose estimation methods assume
camera internal parameters to be known, or at least, fixed. In this chapter, we ad-
dress the cases where the camera internals may be changed either accidentally, or
on purpose. We use the basic projection model of a pin-hole camera to derive new
constraints which are invariant to the internal parameters of the camera. For our
formulation, we consider the most general 6-DOF case between the object and the
uncalibrated camera. We show the application of these Inner Camera Invariants for

pose estimation.

5.1 Planning with an Uncalibrated Camera

The object recognition scheme of Chapter 4 considers the problem of recognizing a
3-D object given that the object always fits in the camera’s field of view. The system

assumes an orthographic camera, and a 1-DOF case — a single degree of freedom

169
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(rotational) between the object and the camera. We now proceed to relax these
requirements. First, we remove the requirement for the entire object to fit in the
camera’s field of view. What may be visible to the camera at a point in time is only
a portion of the complete object. Now, we consider a projective camera. Further, we
consider the 6-DOF (3 degrees for rotation, 3 for translation) case between the object
and the camera.

A multi-view 3-D object recognition system needs pose information for a given
view, to generate different hypotheses corresponding to the information extracted
from the view. The next view planning module uses this information to propose a
move from the current position to disambiguate between the competing hypotheses.
Most approaches to pose determination assume internal parameters of a camera to
be fixed and known. We address the cases under which the internal parameters
of the camera can be changed, either accidentally or voluntarily. (Other related
papers that deal with the case of varying internal camera parameters include those
of Polleyfeys et al. [161] and Crowley, Bobet and Schmid [54], [53] ) Some examples
of intentional variation of internal parameters are the use of an auto-focus and auto-
aperture camera, using lenses of different focal lengths, and the use of lens range
extenders. We use the basic projection model of a pin-hole camera [78] to derive new
constraints which are invariant to the internal parameters of the camera. We show
that these new constraints can be used for pose estimation — without going through
the often cumbersome step of camera calibration.

Conventional camera calibration methods assume that the correspondences be-
tween the world points and the image points are given via the imaging of a regu-
larly patterned calibration object. They estimate external and internal parameters
of the camera either linearly or non-linearly, by considering a sufficient number of
points (e.g., [197], [183], [77], [78]). Many recent methods of carrying out Euclidean
measurements using computer vision have attempted to get rid of the regularly pat-
terned calibration object required for obtaining the camera internals using camera

self-calibration (e.g., [142], [52], [98], [4], [161], [101]). The constraint obtained by



Chapter 5. Inner Camera Invariants: A Tool for Next View Planning 171

elimination is independent of what has been eliminated. Therefore if we eliminate the
internal parameters of the camera from the basic constraint, the resulting constraint
is independent of the camera internals. In such a case the change of the internal
parameters of the camera does not affect the constraint. This is the key point of the
proposed method in this chapter. Most approaches attempt to explicitly find out the
internals of the camera, and use them for various vision tasks. In this chapter, we
attempt to investigate the process of working with functions which are invariant to

the internal parameters of a camera, and using them for various applications.

5.2 Inner Camera Invariants

The classical pin-hole camera model is often assumed when the camera is used as
a measuring device in vision tasks. The following equation describes the imaging

process [78]:

Am =PM = AR |t|M (5.1)

Here, M = (X, Y, Z,W)" is a 3-D world point, and m = (x,y,1)” is the corresponding
image point. R (3x3) and t (3x 1) are the rotation and translation aligning the world
coordinate system with the camera coordinate system (the External Parameters), and

A is the matrix of the Internal Parameters of the camera. A may be written as [78]:

fx 0 Up
A — 0 fy Vo , (52)
0 0 1

where f, and f, are the effective focal lengths in the z and y directions and (ug, vo) is
the principal point. (A more general model assumes the term A;5 in A to represent

a camera skew term. However, such a term may often be considered negligible [78],
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[161].) [R | t] is the matrix of camera externals given by

rii Ti2 T3 ta ry
R[t]= | ry 1y 7o by | = | r2 (5.3)
r31 T3z T33 1, r3

Here, r;;, i,j € {1,2,3} are functions of R,, R, and R, — the rotations about the X-,
Y- and Z- axes, respectively. The external parameters of a camera have six degrees
of freedom, while the internal parameters have four [78].

Suppose we know three 3-D points, M, = (X, Y, Z,, 1), p € {7, 4, k}, and their
images on the image plane, m, = (u,,v,,1)", p € {i,j,k}. By eliminating the
internals of the camera, we obtain

rM;  riMj

Joo = W% rgM; r3M;
l]k - U;—up, - rlxl*rlx!
rgivi; r3
I.21\/11._1'21\/{3- 9 (54)
Fo L vty MM,
Z]k - Vi —V}, - r2Mi7r2Mk

rgM; r3M,

in which J;;, and K, are image measurements that are functions of R, t and M,
p € {i,j,k}, and are independent of the internals of the camera. Thus the above

equations can be re-written as the following constraints:

Jiji = fijr(R, t, M;, M, My,) (5.5)

Kijk = gijn(R, t, M;, M, My,)
Jijr and Kjj, are image measurements that are independent of the internals of the
camera. The left hand sides of constraint Equation 5.5 represent image measure-
ments based on three points which are invariant to the camera internals. The right
hand sides are non-linear trigonometric expressions which are functions of only the
camera externals and the structure (Euclidean coordinates) of the three points. We
refer to J;;;, and Kj;;, as Inner Camera Invariants. These parameters are indeed

the invariants of the homography A which represents the change of the projective

coordinate systems between the camera and image.
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5.3 Pose Estimation using Inner Camera Invari-

ants

In this section we address the problem of pose estimation from known landmarks
using the invariants described above. Given n > 3 control points in the 3-D world,
we can get 2(n — 2) independent constraints from one view of the 3-D scene. Suppose
the number of views is N, then the total number of the independent constraints is
2N(n — 2). We show the use of inner camera invariants to estimate the pose of an

object, or a part of the object, whose Euclidean coordinates are known.

5.3.1 Pose estimation using Euclidean landmarks: general

case

Suppose that we know the Euclidean coordinates (X;,Y;, Z;,1)" of 5 points in the
world coordinate system. Six independent invariant measurements give us six equa-
tions in terms of the six unknowns in (R,t). The six equations can be solved nu-
merically (using nonlinear constrained optimization routines for systems of nonlinear
equations, for example) for a complete pose estimation using an uncalibrated camera
and known landmarks.

In the case of constrained planar motion, R has only one degree of freedom and
t has two degrees of freedom. The total number of unknowns in such a case is three.
Then four control points are sufficient for pose estimation.

For a 4-DOF case (e.g., as in Figure 1.5: the camera can move along the Y-axis in
addition to the constrained planar motion setup mentioned above), four control points
result in four equations in four unknowns. Hence, we can perform pose estimation
using four control points.

It turns out that in some special cases it is possible to obtain closed-form or linear

solutions to the pose estimation problem using the image invariants.
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Z(2)

ﬁ Y (Y)

(a) (b)

Figure 5.1: Illustrations of special cases: (a) constrained camera rotation only about

the Z-axis, and (b) constrained camera rotation only about the Y-axis.

5.3.2 Special Case: Rotation only about Z-axis

Let X, YZ, be the world coordinate system. Consider restricted motion with ro-
tation 6 only about the Z,-axis, shown in Figure 5.1(a). This would be the case
of a robot moving on the ground with a special camera looking vertically up at the

landmarks on the ceiling to facilitate localization.

Suppose there are three 3-D control points M, p € {4, j, ¥} lying on the X, Y,,-
plane (ceiling) of the 3-D world coordinate system, where M,, = (X,,Y,,0,1)”, and

the corresponding image coordinates are m, = (u,, vy, 1)*. The image projection is

_ Xpcos@—Yypsind+t.
up - fm‘ ty + Uo

_ Xpsind+YpcosO+t
'Up — fy P P Y —|—'U0

23

,p € {i,j,k}. (5.6)

By eliminating the internals of the camera from Equation 5.6, we obtain
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U —Uj (Xi—X;)cosf—(Y;—Y;)sind

wi—ug  (X;—Xg)cos0—(Y; —Yy)sinf (5 7)
vi—v; _ (X;=Xj)sin0+(Y;—Y;)cosd )
vi—vg (X —Xg)sin0+(Y; =Yy )cosl

—~

Let Jijk = (w; — uj)/(u; — ug) and Ky, = (v; — v;)/(v; — vg). Let P, stand for

P, — P,. We obtain

Xij — JijiXin _ Yij — KijiYir
Vij = JieYie  KigpXi — Xij

tanf = (5.8)

We can easily compute @ (the rotation about the Z-axis) from Equation 5.8. Once
f is obtained, the translation vector t can be computed as follows. Suppose we get
another 3-D control point M; = (X},Y;, Z;, 1)" which is not on the X, Y,-plane (let
us not stop at just painting the ceiling, but hang a few sticks as well). We compute

Jiji and Kjj in the same way as in Equation 5.7. Then we have

bt {ijl(ai;rtz)*((ai*aj;
Z a;—aj)—Jij(a;—a;
te _ Kiji(bi+ty)—(bi—b)) (5.9)
7z (blib]‘)iKl‘]l(blibl)

where
a, = Xpcos — Y,sinf, and

b, = X,sind + Y,cosb, for p € {i, j, [}

By equating the two equations in Equation5.9, and rearranging the terms,

Ajji ty + Biji ty = Ciji — Dy (5.10)
where
Aiji = (az-fanjii-l(araz)?
B = Gy ey
Oij L= (bzligjl)]i;((zlz(_bl?—)bz) ;
Dyji = oy

If we know more 3-D control points which are not on the X,Y,-plane, we can get

more equations in the form of Equation 5.10. In such a case, a linear least squares
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technique can be used to solve for ¢, and ¢,. These values can be substituted in

Equations 5.10 to compute ¢,:
tz = Zl (Dijl + Aijl tx) — Zl (Cijl - Bijl ty) (511)

Thus, in this special case, we obtain a closed-form solution to the localization
problem, given three Euclidean landmarks on the X, Y ,-plane and at least two land-
marks off the X, Y ,-plane. If we have more control points, we have a linear method

to do the same, as shown above.

5.3.3 Special Case: Planar motion and rotation about Y-axis

Let X, Y,Z, be the world coordinate system. Consider a restricted motion with

rotation 6 only about the Y,-axis, shown in Figure 5.1(b). This would be the case of

a robot moving on the ground with a camera mounted horizontally (we look normally,

at last). Consider three points in the world coordinate system M, p € {1, j, k}, where

M, = (X,, Y}, Z,,1)" and the corresponding image coordinates are m, = (uy, v,, 1)’.
By projecting the 3-D control points on to the image plane, we have

Xpcos@+Zpsind+ts

Up = fl‘ —Xpsind+Zpcosf+t, + o ,pE {i)j) k-} (512)
Yp+iy

Up = fy —Xpsind+Z,cosf+t. + Vo

Now, let the first two points ¢ and j be on the Y ,-axis and the third point k be
on the X, Y,-plane. By eliminating the internal parameters of the camera from the

above equation we obtain

Ui —Uj
Jijk = ui*ui =0
Ky = vi—vj Y-Y; (513)
YR T oy, — - ) Y, +t
v; —Vp, (YZ+ty)71—kasz:—7Z“9
If we consider another point [ on the X, Y ,-plane, we obtain, similarly,
U;—uj
Jijl = wi—u 0
e e (5.14)
0

- = Vi
v (i/i-i-ty)—ﬁa

z
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Because J;j, and J;; vanish, we can separate the terms of sinfl and ¢, to obtain

e Xp((1 = Kij)Ys = Vj — Kijty)
sinf Y =Y+ Kiji (Vi = Y5)
Xi((1 - Ki)Y; — Y) — Kigt,)

Yi =Y+ Kip(Y = Y3) (5.15)

Therefore ¢, can be easily found from Equation 5.15. In order to find #, we have to
know another control point lying on the Y ,,Z,,-plane, say m. Following the derivation

process of Equation 5.15, we can obtain a similar relationship as follows

t: Zm((1 = Kijm)Yi — V) — Kijmty)
cos) Y =Y+ Kijm (Y — Y))

we can compute T, and T,.. Thus, we can compute 6 and ¢,

=T, (5.16)

Since we know t,,
using the relations tanf = T../Ts and t, = Tysinf = T,cosb.

In Equation 5.12, J;;, vanishes because both 3-D points 7 and j are on the Y-
axis. Ji;, would not be zero if we choose 3 points in general position. Let us select
a point M,, = (X,,,Y,,Z,)" in general position. Now that we know 6, ¢, and ¢,,

solving for ¢, is trivial. We use the two points M; and My on the X, Y,-plane we

had selected above.

by, Nyt — Jiin a1 Dy,

tw - )
Jkin a1 (bn - ak) - bn(al - ak)

(5.17)

where
a, = —X,sinf +t,, p € {k,l};
b, = —X,sinf + Z,cos +t,;
Ny = (i Xy, — ap X)) cosb;
Dy = (b, Xk — arX,)cosh — ap Z, sind.

Thus, in this special case, we obtain a closed form solution to the localization problems
with specially located landmarks - two on the Y ,-axis, two on the X, Y ,-plane, one

on the Z, Y ,-plane, and one in general configuration.
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5.4 3-D Euclidean reconstruction from known ego-

motions

Suppose we have a robot whose ego-motion and odometry can be known exactly from
positional encoders and we know the R and t at /N locations of the camera. Such
information can be obtained for example, by solving the pose estimation problem for
one station from known landmarks and then rigidly moving the camera with accurate
known odometry to obtain arbitrary other landmarks within the field of view. As
before, we assume that the internals of the camera are unknown, and may vary.
For Euclidean structure estimation of n 3-D control (landmark) points we have 3n
unknowns. With N views we have 2N (n — 2) independent constraint equations and
the relationship 2N (n — 2) > 3n must be satisfied. Thus with 3 views (N = 3) of at
least 4 points (n > 4) we can compute the 3-D Euclidean structure provided the pose

of each of the camera stations are known.

5.5 Experimental Results

We have carried out several experiments on real images, and compared the results
with that of standard calibration. We present results of experiments with a special
calibration object (Figure 5.2), as well as a model whose points of interest have known
3-D coordinates (Figure 5.3). For calibration, we consider the object at two positions,
a fixed distance apart (200mm). Data from two such positions constitutes one data
set. The world coordinates corresponding to both the positions of the calibration
object are known and they serve as Euclidean landmarks. We refer to the world
points (corners) on our calibration objects with numbers assigned according to a row
major order. We obtained the calibration data using Tsai’s method [197].

Across our experiments, the calibration and 3-D reconstruction results from clas-
sical camera calibration are also listed for comparison, all distances are in mm and all

angles are in degrees. For all our experiments we used the non constrained-linear op-
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Figure 5.2: Images of the Calibration object at two positions 200mm apart

timization routine of MATLAB(constr/fmincon). We first set up the inner camera
invariant equations (as in Equation 5.5, for example), and consider each optimization
equation as the absolute difference of the left and right hand sides of the inner camera,
invariant equation. These are optimized with respect to suitable constraints e.g., the

allowable error, solution search neighborhoods, etc.

5.5.1 General Pose Estimation

We present some results with the calibration object (Figure 5.2), as well as the model
house (Figure 5.3). In Table 5.1 we present some sample results for two camera
stations of calibration grid using 5 points. In Table 5.2, we show some sample results

using 20 points for two camera stations in the house sequence.

5.5.2 Pose Estimation: Rotation only about the Z-axis

For the first special case (Section 5.3.2), we used two camera stations, with two sets
of 5 points each for each camera station. Figure 5.4 shows images from three such
camera stations (constrained rotation about the Z-axis only: We kept our camera

horizontal and rotated our calibration object). Table 5.3 summarizes the results.
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Figure 5.3: Images of a model house used for pose estimation (general case) and
structure estimation (general case). Image points used in our experiments are marked

with crosses.

Figure 5.4: Images taken at three camera stations, which we have used for pose
estimation: special case 1 (constrained camera rotation about the Z-axis only: Sec-

tion 5.3.2)
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Pose 1 Pose 2

Calib. Estim. Calib. Estim.

R, (degrees) | 0.376 1.906 0.003 -0.252
R,(degrees) | -4.795 -6.518 | -28.727 | -28.449
R,(degrees) | 0.649 0.509 0.316 0.454
t.(mm) | -694.802 | -728.196 | -434.520 | -434.542
t,(mm) 24.189 17.798 18.000 17.971
t,(mm) 1041.215 | 1087.956 | 822.988 | 822.989

Table 5.1: Pose estimation experiments with the calibration object: Some sample
results. We compare the poses (R and t) computed by our method and standard
calibration at two camera stations denoted by Pose 1 and Pose 2, respectively. All

angles are in degrees, and all distances in mm.

Pose 1 Pose 2

Calib. Estim. Clalib. Estim.
R.(degrees) | -0.641 -0.052 0.311 -0.882
R,(degrees) | -2.787 -2.830 | -32.467 | -27.754
R,(degrees) | 6.753 6.704 -1.797 -2.681
t,(mm) | -519.353 | -516.074 | -461.840 | -450.918
t,(mm) | -62.001 | -63.691 | 487.470 | -491.092
t,(mm) 855.277 | 833.717 | 183.907 | 168.206

Table 5.2: Pose estimation experiments (general case) with the model house: Some
sample results at two camera stations(Pose 1 and Pose 2), and comparison with

calibration data. All angles are in degrees, and all distances in mm.
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Camera Station I: Calibration Data:
ty = -634.112 mm, t, = 16.029 mm, t, = 1057.223 mm
R, =1.080°, R, = 0.837°, R, = —0.317°

Points R.(degrees) | t,(mm) | t,(mm) | t,(mm)
5,10,15,40,48 -0.578 -654.555 | 15.526 | 934.162
8,12,19,39,44 -0.524 -648.851 | 39.923 | 1063.521

Camera Station II: Calibration Data:
ty = -633.105 mm, t, = -35.049 mm, t, = 1053.015 mm
R, = 0.831°, R, = 0.672°, R, = 4.701°

Points R,(degrees) | ty(mm) | t,(mm) | t,(mm)
6,13,18,25,37 4.975 -634.835 | -29.289 | 990.971
4,15,20,27,48 2.047 -075.648 | -37.7681 | 1062.035

Camera Station III: Calibration Data:
ty = -455.540 mm, t, = -263.391 mm, t, = 1054.937 mm
R, = 1.146°, R, = 0.624°, R, = 21.009°

Points R.(degrees) | t,(mm) | t,(mm) | t,(mm)
9,16,20,37,43 21.311 | -476.379 | -245.627 | 1191.419
12,17,22,26,37 20.531 -450.724 | -249.275 | 1771.772

Table 5.3: Pose estimation results, Special Case 1 (Section 5.3.2: the case of con-
strained camera rotation about the Z-axis alone). We give the estimated values of
R, and t for two camera stations for different choices of 5 points. We also indicate
the results from standard calibration for comparison. All angles are in degrees, and

all distances are in mm.
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Figure 5.5: The sequence of images used for special case 2 of pose estimation (Sec-

tion 5.3.3): constrained rotation about the Y-axis only

5.5.3 Pose Estimation: Rotation only about the Y-axis

We took two sets of six points each, for two camera stations (shown in Figure 5.5).

In Table 5.4, we show results for special case 2 of pose estimation(Section 5.3.3).

5.5.4 3-D Euclidean reconstruction from known ego-motions

Figure 5.6 shows images taken from 4 viewpoints around our calibration object, which
are used for experiments in this case. In Table 5.5, we show some results for recovering
the 3-D structure of points from known ego-motions(Section 5.4). We consider N=3
and n=4.

In Table 5.6, we show some results for the model house images (Figure 5.3).

We considered two cases here, i) N=3 and n=4, and ii) N=4, n=5. Results for

these are shown in the two parts of the table.

5.6 Conclusions

We summarize our results using inner camera invariants as follows:

1. General pose estimation: Knowing the Euclidean coordinates of at least 5 world

points enables complete pose recovery

2. Constrained rotation about the Z-axis: We can recover the pose of the camera,



184 Chapter 5. Inner Camera Invariants: A Tool for Next View Planning

Camera Station I: Calibration Data:
ty, = 3.935 mm, t, = 20.416 mm, t, = 1063.303 mm
R, = 0.003°, R, = —28.727°, R, = 0.316°

Points R,(degrees) | t,(mm) | t,(mm) | t,(mm)

7,19,6,21,31,42 -25.002 50.245 | 18.330 | 929.101
7,13,22.24,37.44 -35.107 | -108.729 | 185.001 | 2391.125

Camera Station II: Calibration Data:
ty = 21.948 mm, t,=31.988 mm, t,=1034.709 mm
R, = -0.931°, R, = —39.155°, R, = 1.314°

Points R,(degrees) | ty(mm) | t,(mm) | t,(mm)
7,19,6,21,31,42 -30.843 138.861 | 14.758 | 883.234
7,13,4,22,37,47 -33.573 33.137 | 20.163 | 957.999

Camera Station III: Calibration Data:
t, = -210.449 mm, t, = 18.132 mm, ¢, = 1195.758 mm
R, = 0.345°, R, = 23.262°, R, = 0.504°

Points R,(degrees) | ty(mm) | t,(mm) | t,(mm)

7,19,8,22,37,44 28.266 299.024 | 47.190 | 1420.395
13,19,15,20,43,47 | 27.275 | -153.946 | 45.356 | 1311.451

Table 5.4: Pose estimation results, Special Case 2 (Section 5.3.3: the case of con-
strained camera rotation about the Y-axis alone). We give the estimated values of
R, and t for two camera stations for different choices of 5 points. We also indicate
the results from standard calibration for comparison. All angles are in degrees, and

all distances are in mm.
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Calibration Data

Reconstructed Data

X(mm) | Y(mm) | Z(mm) | X(mm) | Y(mm) | Z(mm)
200 0 200 495.884 | 3.501 | 197.995
700 70 0 704.152 | 69.4679 | -1.348
500 100 200 507.501 | 98.997 | 203.334
670 0 200 669.324 | 0.190 | 199.888

results for the calibration object. All coordinates (X, Y and Z) are in mm.
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Figure 5.6: The 4 viewpoints used for the 3-D structure estimation experiments

Table 5.5: Structure estimation from known ego-motions (Section 5.4): Some sample
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Calibration Data Reconstructed Data
Xmm | Y(mm) | Z(mm) | X(mm) |Y(mm) | Z(mm)
515.875 | 19.05 0.0 515.884 | 19.088 | 0.0532
515.875 | 28.575 0.0 515.871 | 28.584 | -0.140
563.5 19.05 0.0 563.504 | 19.085 | -0.005
563.5 -31.75 -31.75 | 563.489 | -31.897 | -31.662

515.875 | 19.05 0.0 515.971 | 11.889 3.267
515.875 | 28.575 0.0 515.591 | 20.120 | -3.854
563.5 19.05 0.0 559.544 | 11.644 | -3.282

563.5 -31.75 -31.75 | 560.507 | -33.378 | -28.832
507.938 | -12.7 31.75 508.842 | -17.897 | 34.472

Table 5.6: Structure estimation from known ego-motions (Section 5.4): Some sample

results for the model house. All coordinates (X, Y and Z) are in mm.
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knowing the Euclidean coordinates of 3 points on the XY-plane, and two or

more points in general configuration

3. Constrained rotation about the Y-axis: We can recover the camera pose from
the Euclidean coordinates of 2 points on the Y-axis, 2 points on the XY-plane,

one on the YZ-plane, and one in general configuration.

4. General 3-D Euclidean Structure Estimation: For general 3-D structure estima-
tion, the following relation between the number of views N and the number of

points in each view n, should be satisfied: 2N (n — 2) > 3n.

While a solution in the first case involves non-linear optimization, we show that
in the other two cases, it is possible to obtain closed-form linear solutions to the
pose estimation problem using these image invariants. We have reported a part of
this work in [204], [205]. In [205], we also show in detail how different methods
of self-calibration are all based on elimination of different entities from the basic
projection equations. We show that instead of explicitly estimating the possibly
varying parameters of a camera, one may use inner camera invariants to advantage
in various vision applications.

For our experiments in part-based object recognition (Chapter 6), we use the
general pose estimation method (Section 5.3.1). We have not used the special cases
of pose estimation (Sections 5.3.2 and 5.3.3) because they impose a slightly strict
condition on the structure of the landmarks (the parts of the object). In our imple-
mentation of the part-based object recognition system, we did not need to use the
structure estimation result (Section 5.4). However, this may be important in cases
where we want to have an extra verification step: After having found out the pose of
an object or a part, one may take a few more views around it. From these, and using
correspondence information between the points of interest in the different views, one
can calculate the 3-D Euclidean structure of the points of interest. This may be used

to verify the identity of the object or the part.
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Chapter 6

Part-based Recognition through
Next View Planning using Inner

Camera Invariants

A complete view of a 3-D object may not fit in the camera’s field of view. Fur-
ther, the available view of the object may not be sufficiently distinctive to identify it
uniquely. In this chapter, we present a new on-line scheme for the recognition and
pose estimation of such 3-D objects using reactive next view planning. We consider an
uncalibrated, projective camera, and consider the case when the internal parameters
of the camera may vary. For our formulation, we consider the most general 6-DOF

case between the object and the camera.

6.1 Part-based Object Recognition

We need to modify the recognition and planning scheme of Chapter 4 when the
complete view of a 3-D object is not inside the camera’s field of view. The system of
Chapter 4 assumes an orthographic camera, and a 1-DOF case - a single rotational

degree of freedom between the object and the camera. We now do away with these

189
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Figure 6.1: A robot with an attached camera, observing a building. The entire object
does not fit in the camera’s field of view. Not only is the identity of the object

unknown, the robot also does not know its pose with respect to the object.

three requirements altogether. We wish to consider the case when first, the object
does not fit in the camera’s field of view. The camera may only view a portion of the
entire object. Second, we consider a more general projective camera model. Further,
we consider the 6-DOF case — three rotational and three translational degrees of

freedom.

Figure 6.1 shows a robot with a camera fixed on it, observing a building. For this
particular example, the number of degrees of freedom is 4 — three translational and
one rotational. The identity of the object (the building) is not known. Even if the

identity of the object were known, the pose of the camera with respect to the object is
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not known uniquely. To resolve this ambiguity, the robot may position itself so as to
observe the rightmost window. This sequence of moves may be unique to distinguish
the building (from other buildings in the model base), as well as to determine its
pose with respect to the building. We use a similar setup for our experimentation.
However, our formulation is for the general 6-DOF case.

While our isolated 3-D object recognition system of Chapter 4 does not have the
limitations associated with other systems such as [141], [106], [94], [56], [57], like
the others, it suffers from two important limitations. First, all these approaches
assume that the object completely fits into the camera’s field of view. The second is
handling the case when internal parameters of the camera are allowed to vary, either
unintentionally or on purpose.

In this chapter, we specifically consider situations where a complete view of a 3-D
object is not available. We consider a very general definition of the word ‘part’.
What may be observed are 2-D or 3-D parts of objects (which are detectable using
2-D or 3-D invariants, for example), and other ‘blank’ or ‘featureless’ regions which
the given set of feature detectors cannot identify. Thus, an object is composed of
parts, but is not partitioned into a collection of identifiable parts.

For this problem, we present a new part-based recognition scheme using next
view planning. The planning scheme uses an estimate of the current pose of the
camera with respect to an observed part of the 3-D object. We use inner camera
invariants (Chapter 5) for this purpose. Our hierarchical knowledge representation
scheme represents an object in terms of its parts, and R and t relations between them.
Each part has an coordinate system associated with it. Parts which are equivalent
with respect to the feature set are grouped into part-classes.

The input to the system is a view of an object — this may have any number of
identifiable parts. The feature detection process extracts the part-classes present in
the view. At this stage, we do not know the identity of the parts in the view — we only
know their part-classes. The system then generates hypotheses about the identity

of the parts. We use inner camera invariants (Chapter 5) to calculate the pose of
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each hypothesized part. Pose constraints from the knowledge representation scheme
refine the hypotheses about the identity of the configuration of parts present in the
view. We assign a probability value to each configuration hypothesis. Based on these
probabilities, we calculate the probability of each object in our model base. If the
probability of some object is above a fixed pre-determined threshold, the algorithm
declares it to be identified.

If the probability of no object is above the threshold, or the pose of the camera with
respect to the identified object is not uniquely known, we invoke the planning process
to decide on a move which will disambiguate between the competing hypotheses.
The system makes the required move, and repeats the above process till the pose
with respect to an object is uniquely identified. The probabilistic planning process
deals with all three types of uncertainties in the system - feature detection uncertainty,
movement uncertainty, as well as the uncertainty in the pose value computed using

inner camera invariants.

6.2 The Knowledge Representation Scheme

This section proposes a hierarchical knowledge representation scheme that encodes
domain knowledge about the objects in the model base. We use the knowledge rep-

resentation scheme for probability calculations, as well as in planning the next view.

6.2.1 Parts and Part-Classes

Existing part-based object recognition systems such as that of Dickinson and co-
workers [58], [60], [59], [56], [57]; and Huang, Camps and Kanungo [105], [35] assume
that an object is wholly composed of identifiable parts. (Of these, only [56] and [57]
are active recognition systems.) For example in [105], Huang, Camps and Kanungo
consider appearance-based parts. They define a part as “polynomial surfaces approx-

imating closed, non-overlapping image regions that optimally partition the image in
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a minimum description length (MDL) sense.”

We consider a very general definition of the word ‘Part’. We assume that in
a single view, what may be observed are 2-D or 3-D parts of objects (which are
detectable using 2-D or 3-D invariants, for example), and other ‘blank’ or ‘featureless’
regions which the given set of feature detectors cannot identify. Thus, an object is
composed of parts, but is not partitioned into a collection of identifiable parts. We

now define the following term:

Part-Class A Part-Class is a set of parts, equivalent with respect to a feature set.
In other words, the set of parts is partitioned into different equivalence classes

with respect to a given feature set. These equivalence classes are part-classes.

We assume that an object O; contains N; parts. We represent the jth part of object
O; as p;j, 1 < j < N;. We primarily assume a geometry-based representation of
parts in the model base. We may use other features, such as those based on colour or
grey levels, photometric information, or reflectance-based properties, in conjunction
with geometric features. Each part p;; has a coordinate system associated with it.
We assume that each part has at least n vertices. The value of n depends upon
the degrees of freedom between the object and the camera. If the pose estimation
problem has 6 parameters to estimate (the 6-DOF case), then n must be greater than

or equal to 5 (Section 5.3.1).

6.2.2 A Part-based Hierarchical Knowledge Representation

Scheme

In this section, we explain the organization of our hierarchical knowledge represen-
tation scheme. In what follows, we enumerate its salient features, and describe its
various components. Figure 6.2 illustrates an example of our knowledge representa-

tion scheme.
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ISA

T NN e PART_OF

ISA

Figure 6.2: The knowledge representation scheme: an example

e O represents the set of all objects {O;}. An object node O; stores its probability,

P(0;)

An object O; is composed of N; parts. Thus, a part p;; (1 < j < N;) has a
PART-OF relationship with its parent object O;. A part node stores the 3-D
Euclidean structure of its n constituent vertices [X;,Y;, Z;]T, 1 <i < n, n > 5.
We require n > 5 because of the requirements of the general pose estimation
procedure for a part for a 6-DOF case - three rotational and three translational
degrees of freedom between the object and the camera. For our experiments, we
have a 4-DOF setup (as in Figure 6.1) — one rotational, and three translational

degree of freedom. For this case, the requirement is n > 4 (Section 5.3.1).

A part node has links with its nodes corresponding to its neighbouring parts.
Each part has a coordinate system associated with it. Links between part nodes
represent 3-D structural information between pairs of part nodes. Each link has
a 6-tuple attribute associated with it — the R and t values i.e., the rotations

and translations needed to go from the origin of the coordinate system of one
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part, to that of its neighbour. Figure 6.2 shows an example where the part

nodes form a complete graph.

e C represents the set of all part-classes {Cy,Cs, ... Ci} for all parts belonging to
the objects in the model base.

e Each part is associated with a particular part-class. We assume a function

PART_CLASS to map the set of parts to the set of part-classes i.e.,

There is an IS-A relationship between a part, and its associated part-class.
Thus, a part node p;; has exactly one link with its corresponding part-class

node Cg, and the node for the object O;, to which it belongs.

6.2.3 Pose Estimation of a Part using Inner Camera Invari-

ants

A multi-view 3-D object recognition system needs pose information for a given view,
to generate different hypotheses corresponding to the information extracted from the
view. In this chapter, we consider the problem of recognizing an object when it does
not necessarily fit in the camera’s field of view. Thus, a given view may contain
either one or more parts of the object, or none at all. In case one or more parts
are observed, we need to estimate the camera pose with respect to these parts. The
next view planning module uses this information to propose a move from the current
position to disambiguate between the competing hypotheses.

In Chapter 5, we use the basic perspective projection model of a pin-hole cam-
era [78] to derive new constraints which are invariant to the internal parameters of
the camera. We refer to these constraints as Inner Camera Invariants. We show in
Chapter 5 that these new constraints can be used for pose estimation — without going
through the often cumbersome step of camera calibration. This section describes the

process of estimating the pose of a part.
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A part stores with it, 3-D Euclidean coordinates of its n constituent vertices. These
3-D coordinates are with respect to its own coordinate system. From the image of a
part, one can only identify its part-class. We may use 2-D or 3-D projective invariants,
and other non-geometric features to identify the part-class corresponding to the part.
The part-class could correspond to a number of parts of the objects in the model
base, i.e., the identity of the part is not known. We follow the following procedure

to estimate the pose of the camera with respect to an observed part.

Pose Estimation of a Part: The 6-DOF Case

In Section 5.3.1, we show that six independent (inner camera) invariant measurements
give us six equations — which can be solved numerically, for complete pose estimation
using an uncalibrated camera and known landmarks. From the image of the part, we
extract the 2-D coordinates of its n points, n > 5. For each part that the observed
part-class could correspond to, we estimate the pose of the camera with respect to
it. For this purpose, we associate the 2-D image coordinates of the observed part
with the 3-D coordinates of the assumed part. Using this information, we write out
equations in the form of Equation 5.5. Since we have at least 5 points, we get at
least 6 such equations. We use constrained optimization to find solutions to these

equations. This gives us the pose of the camera with respect to the observed part.

Since these equations are non-linear, we use a suitable constrained non-linear
optimization method (Section 5.5). An important requirement for such methods is
the requirement of an initial value for the solution. For this purpose, we use rough
pose estimates. One may either use odometric information from the robot on which
the camera is fixed, or supply this information by hand. We use constraints of a
maximum allowable error, and suitable search neighbourhoods to arrive at a solution.
These constraints are not dependent on any particular observed part, but are general
— used for the entire experimental setup. The use of suitable search neighbourhoods

for example, is to ensure that the optimization converges to the correct results only
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for those parts whose 3-D coordinates could have given rise to the observed image
information. We describe this further in the context of hypothesis generation, in the

next section.

Pose Estimation of a Part: The 4-DOF Case

For the 6-DOF case as mentioned above, we need at least 5 points for estimating the
pose of a part. If a given setup has less degrees of freedom between the object and
the camera, we can relax this requirement further. In this section, we specifically
consider the case of 4 degrees of freedom. This is motivated by the fact that our
experimental setup has one rotational degree of freedom (rotation about the Y-axis),
and three translational degrees of freedom (translation along the X-, Y-, and Z-axes,
respectively).

In this case, we have 4 unknowns - R, t,, t,, and t,. Four independent inner
camera invariant measurements give us four equations. We solve these numerically,
as in the general 6-DOF case. Hence, we need at least 4 points to be associated with
a part. Our experimental set of models have planar parts — doors and windows of
different polygonal shapes. It is important to note that we could not have used the
general 6-DOF pose estimation procedure with planar parts, since 4 points deter-
mine a plane projectivity. Any further point from the same plane would result in a

dependent set of equations.

6.3 Object Recognition and Pose Identification
through Next View Planning

We are given an arbitrary view of an object in our model base. Let this view contain
m parts. Our aim is to identify the given object, and the viewer pose with respect to

it. Our recognition scheme is divided into two parts:

1. Probabilistic hypothesis generation, and
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2. Next view planning

In what follows, we discuss these three topics in detail. Figure 6.3 describes the main
steps in our part-based object recognition algorithm. The first phase of the object
recognition algorithm involves initialization of all object probabilities. The system
then takes an image of the given view, and identifies the part-classes corresponding
to the parts present in the image. The next step is the formation of hypotheses
about the identity of the observed parts. The system then computes the probability
of each hypotheses. We describe our probabilistic hypothesis generation scheme in
detail in Section 6.3.1. If the probability of some hypothesis is above a pre-determined
threshold, then we exit and declare success. Otherwise, we invoke our search process
to decide the best move from the current viewpoint, which will disambiguate between
the competing hypotheses. Section 6.3.2 describes the search process and the second

phase of the object recognition algorithm, in detail.

6.3.1 Probabilistic Hypothesis Generation

The input to the system is a view of the given object. As mentioned in Section 6.2.1,
we use the notation p;; to denote the jth part of the ith object. Let this given
view contain m parts — p;j,, Pijs, --- Pijm- (Lhese observed parts are all from the
same object — we are looking at the problem of recognition of an isolated 3-D ob-
ject. Hence, the first subscript ¢ is common to all the m observed parts.) From the
image information, we can only identify the part-classes Cy,, C,, ... C,, (where Cy,
and Cy, are not necessarily different) corresponding to each observed part, respectively
(PART _CLASS(pij;,) = Ci,). The part-classes may be identified by using 2-D or 3-D
projective invariants, possibly in conjunction with some other non-geometric features
such as grey level or colour information, reflectance ratio values, etc. For our experi-
mentation, we use 2-D projective invariants and grey-level information (Section 6.4).
However, our scheme is independent of the particular technique used to detect a part-

class. This configuration of visible parts could belong to any of the n objects in the
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ALGORITHM identify_object_and_pose

(k —————- FIRST PHASE ------ %)

initialize object_probabilities();

(x Initialize to 1/N *)
image:=get_image of _object();
part_class_info:=identify_part_classes(image) ;
IF NO part_class observed THEN

make random movement; GOTO step 2;
search_tree_root:=
construct_search_tree_node(part_class_info,[I|0]);
compute_hypothesis_probabilities(

search_tree_root); (x FEq. 6.2 %)
IF the probability of some hypothesis is > a
pre-determined thresh THEN exit & call success;
expand_search_tree_node(search_tree_root,

MAX_LEVELS); (% Section 6.5.2 )

(k —————- SECOND PHASE ------ %)

10.

11.
12.

13.

14.

previous:=search_tree_root;
expected:=get_best_leaf node(search_tree_root);
{|[R|t]} :=compute movements (expected,previous) ;
make movements ({[R]t]}) ;
image:=get_image_of_object();
part_class_info:=identify_part_classes(image) ;
IF NO part_class observed THEN
(* — backtrack — *)
undo_movements ({[R|t]}) ;
expected:=get_next_best_leaf node(previous);
GOTO step 8;
IF obs view does NOT correspond to expected
THEN
new_node:=construct_search_tree_node(
part_class_info, {[R]t]});
ELSE
modify_search_tree_node_with_observation(
expected,part_class_info);
new_node:=expected;
compute_hypothesis_probabilities(new_node) ;
IF the probability of some hypothesis is > a
pre-determined thresh THEN exit & call success;
expand_search_tree_node (new_node,MAX_LEVELS) ;
expected:=get_best_leaf node(previous);
previous:=new_node;
GOTO step 8

Figure 6.3: The Object Recognition and Pose Identification Algorithm
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model base. Further, this configuration could have come from many different posi-
tions within the same object O;. Figure 6.4 shows an example. Figure 6.4(d) shows
two windows with 4 corners each. From the image, the only information available to
us is the presence of two 4-cornered windows (the part-class), one beside the other.
This particular configuration could correspond to 204 pairs of parts for the three
models LH, DS and GH (shown in Figure 6.4(a), (b) and (c), respectively).

We wish to generate different hypotheses corresponding to the identity of the ob-
served configuration of parts in the image. For the first part, we construct hypotheses
corresponding to every part node p; ;, which has an outward link to part-class node
Ck, t.e., every part which belongs to part-class Cy,. For every such part, we associate
the given image coordinates of the part to the 3-D Euclidean structure of the hypoth-
esized part (having the same part-class), and compute its pose (Section 6.2.3). As
mentioned in this section, we use non-linear optimization routines with a rough initial
value of the pose — either with odometric information from the robot on which the
camera is fixed, or with roughly measured values. Also, we look for solutions within
fixed upper and lower bounds with respect to this approximate pose estimate. These
bounds are the same for any observed part — they are fixed values for the experimental
setup. In our experiments for example (Section 6.4), we look for solutions that are
within £+ 5 degrees and 4+ 20mm of the rough initial value of the pose parameters.
Any such part whose pose does not lie within these bounds is considered invalid. In
other words, such a part could not have accounted for the observed image informa-
tion. Thus, the part pose estimation phase itself helps in a first-level pruning of the
list of competing hypotheses for the interpretation of a view.

We repeat this procedure for each observed part in the image — looking for parts in
the model base which could give consistent hypotheses for the part being considered,
with respect to the existing hypothesized configurations. At each stage, we use the
pose information to prune out invalid hypotheses. This is another point where we
use 3-D structural information from the model base. We compare the estimated

pose information for each such part, with the estimated pose information for the parts
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(d)

Figure 6.4: The three architectural models used for our experimentation: (a) LH, (b)
DS, and (c) GH, respectively. (d) A given view of an object. Only a portion of the

object is visible. This could have come from any of the three models.
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already considered thus far. If this is not consistent with the R and t link information
between parts in the model base, we reject this hypothesis, and proceed to the next. In
our experiments for example (Section 6.4), we check if the experimentally obtained
angles are within + 5 degrees, and distances are within + 20mm of the values in the
model base. This also helps in accounting for some inaccuracies in the pose estimation
process. Thus, one does not need to use joint projective invariants between observed
parts — our method relies directly on 3-D pose estimates to check consistency relations
between a group of parts.

At the end of this phase, we are left with a list of hypotheses of part configurations,
which could have given rise to the observed configuration of parts in the given view.
The next section describes the procedure for computing the probability of each such

hypothesis.

a priori Probability Calculations

The given view consists of m parts p;;,, pi Pijm- The hypothesis generation

gas -
stage computes a list of valid hypotheses of part configurations (of size K, say), which
could have given rise to the observed view. First, we compute a prior: probabilities
for each such hypothesis. For N objects in the model base, the a priori probability
of each object before taking the first observation, is 1/N. We need estimates of the a

priori probabilities of different configurations of parts that may occur.

P(pijis Pigor -+ Pijm) = P(O:) = Ppijis Pijas -+ Pign | Oi) (6.1)

We may form estimates of P(p;j,, pijs» --- Pijn. | Oi) by taking a very large
number of views of the given object from different positions, and different values of
the internals of the camera (the focal length, for example on which the field of view
of the camera depends) — this is done off-line, before taking the first observation.
However, a satisfactory estimation of a prior: probabilities using this method, is
difficult. In the following section, we propose a method of approximating these a

priort probabilities.
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An Approximation with Assumptions about the Nature of 3-D Object
Models

If we make some assumptions about the nature of the 3-D object models, we can for-
mulate an approximate method to estimate the a priori conditional part-configuration

probabilities. Let us consider the domain of objects with planar faces.

This method considers relative visible areas of different parts in the model base.
We base the a priori probability calculations for a part on its area. (The faces and
the parts on it — both are planar). Given the degrees of freedom between the object
and the camera in the setup, we consider the set of all faces that can be viewed. The
a priort probability of a part is considered to be the ratio of its area to the total area
of all faces that can be viewed. To compute the a prior: probability of a configuration
of adjacent parts, we consider their total relative area. These measurements are done

with respect to the 3-D model, not on any image-based features.

The rationale behind this approximation is as follows. Let us consider the situation
from the point of view of a single part. Ideally, a proper estimate of the a prior:
probability of the part would involve taking a large number of observations. The
pose of the camera for these observations would be drawn randomly from a uniform
sampling of the camera parameter space — external, as well as internal. We may
compute this by using the relative frequency interpretation of probability — the ratio
of the number of times the part is observed, to the total number of observations.
For external parameters for example, one would have as many observations with the
camera observing the object from the right side, as there would be from its left.
Hence, one may have a good estimate of the a priori probability by looking at the

part simply head-on.

The situation is similar for observing the part from various viewpoints, by varying
the field of view of the camera. We may assume that the part is such that it always
remains within the field of view of the camera (every camera has an allowable range of

values within which the field of view can be varied). Intuitively, a larger part is more
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likely to be visible in a larger number of observations, compared to a smaller part.
Thus, one may form an approximate estimate of the a prior: probability of observing
the part as the ratio of its area, to the ratio of the total area of the object being
imaged. This argument can now be extended to a configuration of parts, instead of
a single part.

We have experimented with three architectural models (Figure 6.4). Such assump-
tions about the nature of the object model are valid for this domain of objects. The
parts are all 2-D entities — doors and windows of different shapes. We have experi-
mented with a 4-DOF setup between the camera and the object — three translational,
and rotation about the Y-axis. We emphasize, however that our formulation is inde-
pendent of the particular setup — the only requirement is the availability of a priori

configuration probabilities.

a posteriori Probability Computations

For an observation, we compute the a posteriori probability of each hypothesized

configuration using the Bayes rule:
P(pijis Pijsr -+ Pijm | Cors Chyy --. Ci,) = Numerator/Denominator  (6.2)
where Numerator is given by
P(pijis Pigas -+ Pijm) = PChiy Chay v Cho | Pisgis Pisjor -+ Pisjm)
and Denomainator, by

Z [ P(pl;jl’ Pljzs - - pl:jm) ’ P(Cklv Ckzv Ckm | Pljis Pljzs --- pl:jm)]

The summation in Denominator is for all objects O;, and all possible configurations
of parts within the object. Our knowledge representation scheme simplifies the cal-
culations of Equation 6.3. Because of the IS — A relation between a part and a

part-class in our knowledge representation scheme (Section 6.2), each of the terms
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P(Cky, Cryy -+ Crpy | PLji> Prjes -+ Pujn) is 1 for all parts belonging to a particular
part-class and 0, otherwise.

We now compute the a posteriori probability of each object in the model base:

P(Ol) - ZP(pl,jla Pljas +++ Plijm | Ckla Ck27 Ckm) (63)

The summation is for all configurations of parts pj,, pij,, --- puj,. belonging to
object O;, which could have given rise to the given view containing part-classes
Ck,, Cky, ... Cg,,. Each object node in the knowledge representation scheme up-
dates its probability with values from Equation 6.3.

For a hypothesis list of size K, the calculations of Equations 6.1 and 6.3 take
O(K) time. For Equation 6.2, the denominator calculation (sum) takes O(K) time.
The division has to be performed for each of the K hypotheses. Hence calculations

for Equation 6.2 also take O(K) time.

6.3.2 Next View Planning

If the probability of no hypothesis is above a pre-determined threshold, we have to
take the next view in order to disambiguate between the competing hypotheses. One
needs to plan the best move out of the current state, subject to possible memory and
processing limitations.

The Search Process

The state of the system may be described in terms of the the following parameters:
1. The competing view interpretation hypotheses, and
2. The set of R and t movements made thus far.

The planning process aims to determine a move from the current step, which would
uniquely correspond to exactly one part-configuration for one object. As for the next

view planning scheme for Chapter 4, we pose the planning problem as a forward
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search in the state space. The aim is to get to a leaf node — one corresponding
to a unique part-configuration. A search tree node is expanded for each part in a
view interpretation hypothesis. The moves from a viewpoint are based on the pose
information calculated using inner camera invariants (Sections 5.2 and 6.3.1). All
these ‘moves’ are logical, or virtual moves in the search space.

First, we construct a search tree node corresponding to the first observation. The
search process proceeds as follows. Here, we assume that the principal point of the
camera is somewhere near the centre of the image. However, we do not assume that
we know its value in any way, nor do we assume it to be fixed. The first move gets the
expected part in the camera’s line of view. The subsequent logical moves are from the
current, expected part to its neighbours, using the R and t relations between parts in
the knowledge representation scheme (Section 6.2). Thus, the only significance of the
above assumption is to maximize the chance of the expected part to be always present

in the camera’s field of view. This is important for the following two reasons:

1. Getting the expected part into the camera’s line of view offers some robustness
to subsequent movement errors, due to which the camera may be positioned at

a point slightly off from its intended position.

2. A zoom-in/zoom-out, or focusing operation may be performed. This changes
the effective focal length of the camera system and hence, the field of view. If
the principal point is near the centre of the expected part, chances of having the
expected part in the camera’s field of view and hence detecting it, are higher

than otherwise.

Figure 6.5 shows an example of a partially constructed search tree. In this ex-
ample, the root node corresponds to an observation. This view contains 4 parts,
belonging to part-classes Cy, Cy, Cy, and Cy, respectively. The system generates three
hypotheses corresponding to this observation. The search tree root node is at level
0 of the search tree. The search tree nodes at level 1 are on basis of the (logical)

moves to get the camera in line with the centre/centroid of the expected part. Let



Chapter 6. Part-based Recognition through Next View Planning 207

C1,C2,C1,C1i[Pra | Pis| Pra | Prz —{Prs| Pr7] Pio | Pis = Po1 | Poz]| Pos] Pos]

[R|t];1:[R|t]:/ [RI1;, [Rmx\@f\

C1:| Puy P16 [Pe7] [Puo] [Pus]
e [RI1:=IR1G7 /\ /\ /\
Ca: P, In this example,
the root node corresponds to an observation.
/ . |[R] t]138 The level after an observed node corresponds
’ to alogical move to the centre/centroid
Cy: of the expected part

Figure 6.5: A partially constructed search tree

us consider search tree node expansion along a particular path. In this example,
the estimated pose for the two parts p;; and p;e (the first observed parts in the
first two view interpretations, respectively) is the same, and the parts have the same
dimensions. Hence, there are two possible interpretations in the corresponding first-
level node. One particular movement to an adjacent part does not remove the view
interpretation ambiguity for this node. Hence, again there are two possible interpre-
tations in the corresponding node on level 2. One particular move finally resolves the

ambiguity, resulting in the corresponding leaf node at level 3.

Due to the exponential space and time complexity corresponding to search tree
expansion, one may expand the search tree only to a fixed depth (MAX_LEVELS
in Figure 6.3). We now use three stages of filtering to get the best leaf node or
pseudo-leaf node (a node which has no child nodes, but does not correspond to a
unique part — it has not been expanded due to the fixed maximum search depth
from a node). First, we consider those leaf/pseudo-leaf nodes which lie along a path
from the most probable hypothesized view interpretation in the search tree node
corresponding to the previous observation (the ‘previously observed node’). For each

node in the search tree, we assign the weight s'***/, where s represents the number of
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hypothesized view interpretations corresponding to this node, and level is the search
tree level (depth) the node lies on. The rationale behind this strategy is to favour
nodes with low ambiguity among the different hypothesized view interpretations, and
those corresponding to less movement cost. A leaf/pseudo-leaf node also stores the
sum total of the weights of all nodes which lie on the path to it, from the previously
observed search tree node. From among those leaf and pseudo-leaf nodes selected
in the first stage, we select those with minimum total weight. The third stage of
filtering concerns a setup limitation — our camera setup can achieve more accurate
translational movement compared to a rotational one. From among the second stage

selections, we choose a node having the least number of rotational movements.

The Second Phase of the Object Recognition Algorithm

Using the above three steps of filtering, we determine the best leaf node in the search
tree. This represents the best move from the current viewpoint which aims to get us
to a position corresponding to a unique view interpretation. Now, the system makes
an actual move from the current viewpoint, corresponding to the best leaf node. The
system makes the required movements {( R, R, R, t,, t,,t.)}, and takes an image at
this position (Step 8 in the algorithm of Figure 6.3). We then find out the part-class
information corresponding to this image.

Similar to the process in Section 6.3.1, we generate different interpretation hy-
potheses corresponding to this view, for the particular sequence of R and t movements
taken to reach this particular viewpoint. We now check if this observed configura-
tion of parts corresponds to the best leaf/pseudo-leaf node. Since we do not make
any assumption regarding the knowledge of the camera internal parameters or their
constancy, we do not make any assumptions about the field of view of the camera.
We simply check if the observed configuration of parts corresponds to the expected
node. This is a simple way to make the system robust to slight movement errors, or

intentional /unintentional changes in the focusing and field of view.
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Since we do not predict any view which might be observed, even if some parts in
the vicinity of the expected part are not detected (due to feature detection errors),
this does not affect the system in any way. Another important consequence of this
fact is the robustness of the system to the presence of clutter in a view.

If the current observation corresponds to the expected search tree node, we up-
date the search tree node with the information from the current view (Step 12 in
Figure 6.3). Otherwise, we construct a new search tree node corresponding to the
part-class information, and the sequence of R and t moves made to reach this posi-
tion from the previous one. This new node is made a child node of the previously
observed node. We compute the probabilities of each view interpretation hypothesis,
as in Section 6.3.1. If the probability of some hypothesis is above the pre-determined
threshold, the algorithm terminates. The pose of the camera with respect to the
object is the one corresponding to this hypothesis, and the parts corresponding to
the view are the ones in this view interpretation.

If the probability of no hypothesis is above the threshold, this node needs to be
expanded further. The system finds out the best leaf node again, and repeats the

entire process.

6.3.3 The Object Recognition Algorithm: A Discussion

An active object recognition system needs to deal with uncertainty in feature detec-
tion, pose estimation, sensor movement, as well as the interpretation of a particular
view. In this section, we summarize some salient features of our object recognition
strategy.

Our formulation is independent of the particular setup used for experimentation.
We consider the most general case — 6 degrees of freedom between the object and
the camera. The entire object may not lie within the camera’s field of view. We
make no assumptions about the knowledge of the internal camera parameters, or

their constancy. The use of inner camera invariants makes the algorithm invariant
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to any zoom-in/zoom-out, or focusing operation of the camera. Our part pose esti-
mation procedure itself accounts for a first level pruning of different hypotheses for
the interpretation of the given view. We directly use the 3-D pose estimation in-
formation in conjunction with our hierarchical knowledge representation scheme, for
getting consistent view interpretation hypotheses. The probability values of different
entities in our probabilistic hypothesis generation scheme also help in pruning the
search space. We have a simple strategy to account for small pose estimation errors
— we just check if the R and t link information between parts matches the estimated
pose values within fixed error bounds. We make no assumptions about field of view
of the camera at any stage — the planning is with respect to each observed part. The
planning to get in line with the centre/centroid of the expected part provides some
immunity to small movement errors and the changes in the camera’s field of view.
Since we do not predict any particular view that may be observed, even if some parts
are not detected due to feature detection errors, it does not affect the system in any
way. This fact also imparts robustness to the system in the presence of clutter.

In the search process, search tree node expansion is always finite because of the
following reason. The number of parts in any object is finite. Further, there are no
cycles in the search tree. No part is repeated along any path in the search tree. Thus,
there can be no search tree expansion indefinitely oscillating between a set of parts.
The next view planning module acts in conjunction with our probabilistic hypothesis
generation scheme. We use three levels of filtering to obtain the best leaf node —
which will best disambiguate between the competing view interpretation hypotheses.

The reactive nature of our strategy incorporates all previous movements and ob-
servations in the probabilistic hypothesis generation scheme (Section 6.3.1), as well
as in the next view planning process (Section 6.3.2). If the observed view corresponds
to the most probable view interpretation hypothesis at a particular stage, our search
process uniquely identifies the object and its pose, in the following step (assuming
no feature detection error for the expected part). Even if the observed view does not

correspond to the most probable view interpretation hypothesis, our algorithm re-
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fines the list of hypotheses at each stage. The advantage of a reactive system over an
off-line planner is the ability to react to unplanned situations. At the end of each ob-
servation, we create a new view interpretation hypothesis list. This is based on both
the current observation, as well as the past observation history and the movements

made thus far.

6.4 Experimental Results and Discussion

Our experimental setup has a camera system with 4 degrees of freedom - translations
along the X-, Y- and Z-axes, and rotation about the Y-axis (Figure 6.1). Hence, we
use the 4-DOF formulation for the pose estimation of a part (Section 6.2.3). We have
experimented with a set of architectural models shown in Figure 6.4.

We have chosen as (2-D) parts the doors and windows of different shapes and
sizes in the models. We have chosen this set of models because of the large number
of parts grouped into a few part-classes — this ensures a very high degree of interpre-
tation ambiguity associated with a particular view of a few parts of the given object.
Model LH (Figure 6.4(a)) has 167 parts, model DS (Figure 6.4(b)) has 170, while
model GH (Figure 6.4(c)) has 122. Figure 6.6 shows the 7 different part-classes these
459 parts (of different sizes) correspond to. The 7 part-classes, with the number of
parts corresponding to each, are DW4(374), DW6L(24), DW6R(24), OPEN(21),
DW8HANDLE(6), DW8T(6), and DW12(4), respectively.

Given a particular view of the object, we first segment the image using sequential
labeling [103], [97]. Then we detect corners as intersection of lines on the boundaries
of ‘dark’ regions. A requirement for the pose estimation of a part (Section 6.2.3) is
for the part to have at least 5 vertices for a general 6-DOF case, and 4 vertices, for a
4-DOF case. We use 2-D projective invariants using the canonical frame construction
method [175] for recognizing all part-classes (except the 4-cornered ones — DW4 and
OPEN). This involves transforming the 2-D coordinates of any four points corre-

sponding to the corners, to the corners of a unit square. This determines a projective
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Figure 6.6: The 7 part-classes which the 459 parts belong to, for our model base:
DwW4, DW6L, DW6R, OPEN, DWS8HANDLE, DWS8T, and DW 12, respectively

in row-major order.

transformation to a canonical frame. We compute the coordinates of the rest of the n
- 4 points in this coordinate frame. These coordinates are projective invariants [175].
Each of our parts thus gives a different vector of invariant coordinates. We use these
invariant values, to identify part-classes which have more than 4 corners. To identify
the 4-cornered part-classes DW4 or OPEN, we use the grey level information at a
region near its centroid. We emphasize that our recognition scheme is independent of

the particular type of parts used, and the method to recognize a part-class.

Sections 6.4.1 and 6.4.2 show some results of experimentation with the objects in
our model base. The detected corners and parts are shown superimposed. Each of
these experiments shows that the planning to get to the centre of the expected part
(Section 6.5.2) provides some immunity to small movement errors and changes in the
camera’s field of view. For our experiments, we have adopted a stricter criterion for
program termination than the probability of a particular hypothesis in an observed
node being above a threshold. We stop when there is exactly one hypothesis possible

for the observed node.
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Figure 6.7: Experiment 1: The sequence of moves required to identify the object and

its pose. The failure to detect a part does not affect the system (details in text).

6.4.1 Experiments with a Small Degree of Ambiguity Corre-
sponding to the First View

In this section, we present results of experiments where the interpretation ambiguity
associated with the first view is relatively small. We show an example where the non-
detection of a part (due to a feature detection error) does not affect the performance

of the system.

Experiment 1

The initial view in Figure 6.7 shows two parts with part-classes DW 8T and DW 4. For
the first part alone, there are 6 hypotheses. Now, the system considers the hypotheses
when information about the second part is also included. Four of these are pruned out
since the estimated pose of the second part comes out to be invalid (Section 6.3.1).
The system proposes a move to identify the pose uniquely, and takes the required

movements. The view observed is the second image in Figure 6.7.

This view contains the expected part, as well as a couple of neighbouring parts.
Here, the system fails to detect the part corresponding to part-class DW6L. The
presence of the neighbouring parts (their part-classes, and their pose information)
is consistent with that of the expected part (centre of the bottom row). Thus, this

feature detection error does not affect the performance of our algorithm in any way.
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Figure 6.8: Experiment 2: The sequence of moves required to identify the object and

its pose. The failure to detect a part does not affect the system (details in text).

Experiment 2

Figure 6.8 shows another example of this robustness to feature detection errors. For
the upper part in the first image, 24 hypotheses are proposed. The pose estimation
phase prunes out 22 of them — the 3-D vertex coordinates of these parts could not
have resulted in the observed image coordinates of the detected part (Section 6.3.1).
Thus, the first image results in two consistent hypotheses for the two parts. The

system takes the next move in accordance with the best leaf node.

The hypothesized view interpretation for the second view (the second image in
Figure 6.8) is consistent with the part-class and pose information extracted from the
image. This move corresponds to a unique hypothesis. Consequently, probability cal-
culations result in the probability of object LH being 1. The pose of the camera with
respect to the identified part LH_L_1] is ( —4.6°, —2.54mm, 15.02mm, 139.98mm ).
This second view illustrates another example of feature detection errors — the two
windows on the left (corresponding to part-classes DW8T and DW4, respectively)
are not detected. This, however does not affect the performance of the system in any

way.
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6.4.2 Experiments with a High Degree of Ambiguity Corre-
sponding to the First View

Scenes containing a small number of parts belonging to part-class DW4, have a very
high degree of ambiguity associated with their interpretation. This is due to the
large number of parts belonging to part-class DW4 — 374. Due to this reason, we
use a depth-restricted search tree expansion method (Experiments 1 and 2 consider
no restriction on the size of the search tree that can be created at a particular stage
— the total number of search tree nodes for the two are 51 and 60, respectively.)
Even with the depth restriction, the number of search tree nodes is quite large for
these experiments e.g., 987 for Experiment 5. In this section, we present results of
experiments where the first view contains a pair of DW4 parts (Experiments 3 — 5),
and finally, only one DW4 part (Experiments 6 — 11). We present an example of
the invariance of our algorithm to the field of view of the camera. We also show
an example where all the parts in the first view do not come from one plane. Our

algorithm has no restriction regarding where the parts could lie in 3-D space.

Experiment 3

Figure 6.9 shows results of an experiment, where the initial view contains two adja-
cent parts belonging to part-class DW4. For the leftmost part, 374 hypotheses are
proposed in all. This reduces to a total of 328 hypotheses for the first view, when the
part beside it is also considered. The system plans the next move accordingly. This
process is repeated till the system identifies a part and its pose, uniquely. The figure
shows the sequence of moves (in row major order) in order to recognize the object
and its pose. In this case, a total of 6 moves from the first position are required for

unambiguous recognition.
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Figure 6.9: Experiment 3: The sequence of moves (in row major order) required to

identify the object and its pose
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Figure 6.10: Experiment 4: The sequence of moves required to identify the object

and its pose. The parts in the initial view do not lie in the same plane.

Experiment 4

The parts visible to the system in a view could have come from any 3-D configuration.
Here, we present an example where the parts in the initial view do not come from the
same plane. Figure 6.10 shows the moves taken by the system to identify the object,
and the pose of the camera with respect to it. For the first part in the first image, 374
hypotheses are proposed, out of which the part pose estimation prunes out all but
115 hypotheses. The information from the second part results in a hypothesis list of
size 87. The system plans a move to disambiguate between the different hypotheses.
This corresponding move takes us to a view (the second image in Figure 6.10), whose

view interpretation is unique.

Experiment 5

The use of inner camera invariants for pose estimation allows us to consider situ-
ations where the internal parameters of the camera may be varied on purpose, or
unintentionally. Further, our recognition strategy does not make any assumptions
about the field of view of the camera. For this experiment (Figure 6.11), we changed
the zoom parameter of the camera, thus changing the effective focal length of the
camera system and consequently, its field of view. The first view could have come
from 257 configurations of two adjacent parts with part-class DW4. We need three

image processing operations (2 moves) to recognize the object and its pose, uniquely.
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(a) — (b) — (c)

The camera progressively zooms out

Figure 6.11: Experiment 5: The sequence of moves required to identify the object and
its pose. In this experiment, three views are needed to uniquely recognize the object
and its pose. For the same first two views, we progressively zoom out the camera in
three stages. (a), (b) and (c) depict the three views which the camera sees, for the

third view. This does not affect the recognition system in any way (details in text).
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Figure 6.12: Experiment 6: The sequence of moves required to identify the object
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and its pose.

In this case, we repeated the experiment for various values of the camera zoom-
out at the third camera station. The expected part is the large 4-cornered window,
GH_W_15. Since our strategy does not make any assumptions about the field of
view of the camera, the recognition results are the same in each of the cases — (a),
(b) and (c) in Figure 6.11. Further, the camera pose with respect to part GH_W _15

in these three cases are
(9.425°, —22.000mm, —9.999mm, 150.000mm ),
( 9.888°, —22.000mm, —9.999mm, 150.000mm ), and
( 9.896°, —22.000mm, —9.999mm, 150.000mm ), respectively.

This shows the advantage of inner camera invariants for pose estimation.

Experiments 6 — 11

From Experiment 6 onwards, we start with an initial view where only one part with
part-class DW4 is visible. In each of these cases, the visible part could have corre-
sponded to any of the 374 parts with part-class DW4. For Experiment 6 (Figure 6.12),
the first level pruning using our part pose estimation procedure (Section 6.2.3) prunes
the number of hypotheses to 189. The next view finds the expected part, GH_W _12.

The first level pruning for the first view in Experiment 7 (Figure 6.13) results in

the number of hypotheses reducing from 374 to 344. In this case also, two views are
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Figure 6.13: Experiment 7: The sequence of moves required to identify the object

and its pose.

1 -
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Figure 6.14: Experiment 8: The sequence of moves required to identify the object

and its pose.

necessary for unique identification of the object and the camera pose. For the second
view, 8 hypotheses are left. Of these, the part pose information results in the unique

identification of the parts as being GH_W _10 and GH_W _12, respectively.

Experiment 8 (Figure 6.14) again shows an example of two views sufficing for
unique recognition of the object and its pose. After the first level pruning on the
basis of part pose estimation, we are left with 71 hypotheses. The system finds the
expected part GH_W _9 in the second view.

Experiments 9 and 10 (Figures 6.15 and 6.16) show examples where the system
requires 5 moves to recognize the object and its pose. The first level pruning figures
for these two experiments are 226 and 304, respectively. This pruning on the basis of

part pose estimation leaves only 5 hypotheses for the third view in Figure 6.16.

In these experiments, we show an example of the ability of our system to perform
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Figure 6.15: Experiment 9: The sequence of moves (in row major order, marked here
with numbers (1) to (5)) required to identify the object and its pose. (3) shows a
view cluttered by the presence of a tree. The image at the bottom shows an overall
view. The trees are in the foreground. The corresponding window is highlighted with

a white square.



222 Chapter 6. Part-based Recognition through Next View Planning

correct recognition even in the case of clutter. The presence of a tree (an unmodeled
object) accounts for clutter in Figure 6.15(3), and the Figures 6.16(1), (3) and (4).
The large images at the bottom of Figures 6.15 and 6.16 show the corresponding
overall views of the model. The trees are visible in the foreground. The corresponding
windows are highlighted in white and black, respectively. This clutter does not affect
the recognition performance of the system.

Experiment 11 (Figure 6.17) shows the use of 12 views for unambiguous recogni-
tion. The part pose estimation-based first level pruning results in a reduction of the
number of hypotheses from 374 to 190. The size of the view interpretation hypothesis
list at the last-but-one observation is 2. The last movement and corresponding last

view enables the system to recognize the observed part uniquely as DS_W _19.

6.5 Conclusions

This chapter presents a new scheme for the recognition of an isolated 3-D object
through on-line next view planning, when only a portion of it is visible to the cam-
era. This recognition scheme is completely different from the aspect graph-based
recognition scheme of Chapter 4, which assumes that the complete object fits into
the camera’s field of view. The prediction of a part rather than a view, imparts
robustness to the system — the presence or absence (due to feature detection errors)
of adjacent parts does not affect the recognition system. An important consequence
of our part-pased approach is the application of this system for a cluttered environ-
ment. The system uses an uncalibrated camera, and uses inner camera invariants for
pose recognition. Our knowledge representation scheme is used both for probabilistic
hypothesis generation, as well as in planning the next view. Our experiments show
the ability of the system to correctly identify objects and their pose even when there
is a high degree of interpretation ambiguity associated with the initial view — using
simple features, and suitably planned multiple views.

We have described various stages of this work in [66], [67], [69].
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Figure 6.16: Experiment 10: The sequence of moves (in row major order, marked
here with numbers (1) to (5)) required to identify the object and its pose. (1), (3)
and (4) show views cluttered by the presence of a tree. The image at the bottom
shows an overall view. The trees are in the foreground. The corresponding window

is highlighted with a black square.



224 Chapter 6. Part-based Recognition through Next View Planning

Figure 6.17: Experiment 11: The sequence of moves (in row major order) required to

identify the object and its pose.



Chapter 7

Conclusions

In this thesis, we address the problem of recognizing an isolated 3-D object when a
single view does not contain sufficient features to recognize it unambiguously. We

propose two new on-line schemes for this purpose:

e Aspect Graph-based reactive object recognition using noisy feature detectors,

and
e Part-based reactive object recognition, using inner camera invariants.

We assume the availability of an active sensor (camera). With such a sensor, the
recognition problem involves taking a minimal sequence of views around the object,
in order to recognize the object unambiguously.

For the first problem, we assume that the object fits into the camera’s field of
view. We consider the case of recognizing an object unambiguously, by planning a
sequence of views around it. Our approach to this recognition problem is based on
aspect graphs. The first step in our scheme is constructing AAGs for the objects
in our model base. We tessellate the viewpoint space around an object, and collect
feature data at each site. We deal with two cases — first, when the viewpoint space is a
tessellated circle of constant radius with the object at its centre, and second, when the

viewpoint space is a tessellated sphere. The feature detectors could be noisy. Hence,

225
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the resultant aspect data could be corrupted with feature detection errors. First, we
propose a classification of different types of errors in aspect graphs. We base our
classification on experimental observations, and the statistical nature of occurrence
of these errors. We propose a new AAG construction algorithm that converts noisy
raw aspect data into an AAG. The algorithm maintains estimates of feature detection
errors. We use these estimates in our object recognition strategy. We propose a new
coefficient to evaluate the output of an AAG construction algorithm. We also examine
the issue of the suitability of a feature detector for such a purpose.

The AAG construction algorithm uses the output of a set of noisy feature de-
tectors. We use the same noisy feature detectors for our object recognition scheme.
Here, we consider a single rotational degree of freedom between the object and the
camera. We propose a new hierarchical knowledge representation scheme based on
the relations between image-based features, aspects, classes, and the object models
themselves. Our system uses the knowledge representation scheme in generating hy-
potheses corresponding to the interpretation of a view, as well as in planning the next
view. Our probabilistic hypothesis generation mechanism has low-order polynomial
time complexity. Based on the information from the current view, the algorithm
computes the probability of the different objects in the model base. If the probability
of no object is above a particular threshold, the algorithm plans the next view. This
planning is subject to memory and processing limitations, if any. The planning pro-
cess uses the current observation, as well as the past history for identifying a sequence
of moves in order to distinguish between objects with similar views. An important
feature of our formulation is that it is independent of any particular feature set.
We show the results of numerous experiments where the system is able to uniquely
identify fairly complex-shaped objects, which have a high degree of interpretation
ambiguity associated with a view.

For the second recognition problem, we consider the case when an object may
not fit in the camera’s field of view. For the earlier problem, we had assumed an

orthographic camera. Here, we consider the more general projective case. We further
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relax the assumption of the first problem namely, that of the fixed distance between
the camera and the object. Here, we consider the 6-degree of freedom case — we
permit all rotations and translations about, and along all the three axes. The most
important part of this work is the use of inner camera invariants. Neither do we
assume a knowledge of the internal parameters of the camera, nor do we assume their
constancy. We address cases where the internal parameters of the camera may be
varied either unintentionally, or on purpose. We propose a method for Euclidean
pose estimation, based on inner camera invariants.

For the recognition problem, we propose a hierarchical knowledge representation
scheme based on an object and its parts. We adopt a probabilistic framework for gen-
erating hypotheses corresponding to the identity of a view. The current view may not
result in the probability of any configuration of parts of a particular object, exceeding
a particular threshold. The planning module plans the next view to uniquely identify
the object and its pose, subject to possible memory and processing limitations. Here
also, the planning process is reactive — it uses information from the current obser-
vation, as well as the past history. Our method is not affected by small movement
errors, or some feature detection errors. We show recognition results corresponding to
a number of experiments, with a reasonably complex domain of architectural models.

We show results of successful recognition even in the presence of clutter.

7.1 Contributions

We summarize the main contributions of our work as follows:
e Aspect Graph Construction with Noisy Feature Detectors

— A classification of errors in raw aspect data
— A new algorithm to construct an aspect graph, given noisy raw aspect data

— Formulation of a new coefficient to evaluate the performance of different

aspect graph construction algorithms



228 Chapter 7. Conclusions

— An evaluation function for the suitability of a particular feature detector

for the task

e Aspect Graph-based Isolated 3-D Object Recognition through Next

View Planning

— A hierarchical knowledge representation scheme to represent domain knowl-

edge
— A probabilistic hypothesis generation mechanism

— The use of error information from the aspect graph construction phase for

handling cases of feature detection errors

— A reactive next view planning algorithm for the recognition of an isolated

3-D object

— The use of the hierarchical knowledge representation scheme in probabilis-

tic hypothesis generation, as well as the next view planning module

e Inner Camera Invariants as a Tool for Next View Planning

— Inner Camera Invariants: a powerful tool for vision applications where the
camera internal parameters may be varied, either unintentionally or on

purpose

— Formulation for the projective case, allows us to work independent of the
knowledge of the value, or the constancy of the internal parameters of the

camera
— The use of Inner Camera Invariants for Pose Estimation and Euclidean

Structure Estimation

e Part-based Isolated 3-D Object Recognition through Next View Plan-

ning
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— Handling cases when the complete object does not fit inside the camera’s
field of view. Further, no assumption is made about either the knowledge

of the internal camera parameters, or their constancy.

— A hierarchical knowledge representation scheme to represent domain knowl-

edge

— The use of Inner Camera Invariants for pose estimation of a part, and at the

hypothesis filtering stage in the course of arriving at a view interpretation

— A reactive next view planning algorithm for recognizing the given isolated

3-D object

— The use of the hierarchical knowledge representation scheme in probabilis-

tic hypothesis generation, as well as the next view planning module

— Accounting for cases of feature detection errors and small movement errors

We support our proposed strategies with a large number of experiments. We
show the results of over 100 experiments on two sets of models, illustrating how
our aspect graph construction algorithm removes error regions. We show that same
aspect graphs lead to faster and more reliable recognition, as compared to noisy raw
aspect data. Over 100 experiments with two sets of models illustrate the efficacy
of our algorithm in recognizing 3-D objects which have a large number of views in
common. We show experiments of both pose and 3-D structure estimation, using
inner camera invariants. A large number of experiments with reasonably complex
architectural models show the advantage of using our part-based recognition strategy,
when a complete view of the object does not fit in the (uncalibrated) camera’s field
of view. We also show results of successful recognition even in the presence of clutter.
An important contribution of the work is demonstrating the use of reactive next view
planning in conjunction with suitable knowledge representation schemes, to recognize

3-D objects with fairly complex shapes, using simple features.
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7.2 Scope for Future Work

In this thesis, we examine two problems in the active recognition of an isolated 3-D
object using suitably planned views. Some interesting extensions of the ideas proposed

here, are as follows:

e An explicit modeling of movement errors
Any active sensor is associated with odometric errors. Such a modeling will

enhance the capabilities of an active recognition system.

e Handling scenes with multiple objects
An interesting extension of this work is to the case of more than one object
in a scene. This may require completely new representation and recognition

schemes.

e Handling Occlusions
An important subproblem of the above case is the case when one object occludes
another. A single view may not suffice to get enough information about an
occluded object. It is possible to suitably position an active sensor in order
to get the required information about the objects which may be occluded from

some particular viewpoints.

e Object recognition in a cluttered environment
The previous point considers the case when all image information comes from
known objects. However, all objects in a scene may not be modeled. We
show some experimental results of the success of the second algorithm in the
presence of clutter — a consequence of its robustness to some feature detection
errors. These ideas can be examined further to explicitly account for clutter in

the algorithm itself.

e Map Building and Autonomous Robot Navigation

An interesting application of the ideas presented here, is to an autonomous
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guided vehicle. An environment may contain modeled objects, as well as un-
modeled objects. The first application area is constructing the map of an un-
known environment. One may use our recognition strategies for modeled ob-
jects. For unmodeled objects, the use of inner camera invariants (which are
based on image-based information alone) permits pose estimation, as well as
3-D Euclidean structure estimation. These two ideas may also be used by a
robot navigating in a known environment — combining recognition with pose

and 3-D structure estimation.
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