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ABSTRACT

Understanding crowd dynamics is an interesting problem in
computer vision owing to its various applications. We pro-
pose a dynamical system to model the dynamics of collective
motion of the crowd. The model learns the spatio-temporal
interaction pattern of the crowd from the track data cap-
tured over a time period. The model is trained under a least
square formulation with spatial and temporal constraints.
The spatial constraint allows the model to consider only the
neighbors of a particular agent and the temporal constraint
enforces temporal smoothness in the model. We also pro-
pose an effective group detection algorithm that utilizes the
eigenvectors of the interaction matrix of the model. The
group detection is cast as a spectral clustering problem. Ex-
tensive experimentation demonstrates a superlative perfor-
mance of our group detection algorithm over state-of-the-art
methods.

CCS Concepts

•Computing methodologies → Spectral methods; Model-
ing methodologies; Motion capture;
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1. INTRODUCTION
Understanding human behavior in different scenarios has

always attracted the researchers. The variability and com-
plexity in the behavior make it a highly challenging task.
However, this decade is witnessing a huge interest of re-
searchers in the area of crowd motion analysis due to its vari-
ous applications in surveillance, safety, public place manage-
ment, hazards prevention, and virtual environments. This
interest has resulted in many interesting papers in the area.
We are aware of at least four survey papers on the subject of
crowd analysis that indicate the amount of attention, it has
drawn in this and the previous decade [8],[18],[7],[20]. The
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latest survey paper [8] by Chang et al. encapsulates the
recent works published after 2009, covering topics of motion
pattern segmentation, crowd behavior and anomaly detec-
tion. Thida et al. [18]provide a review on macroscopic and
microscopic modeling methods. They also present a critical
survey on crowd event detection. Julio et al. cover vari-
ous vision techniques applicable to crowd analysis such as
tracking, density estimation, and computer simulation [7].
Zhan et al. discuss various vision based techniques used in
crowd analysis. They also discuss crowd analysis from the
perspective of different disciplines − psychology, sociology
and computer graphics [20]. At the top level, the techniques
used in crowd motion analysis can be divided into two major
classes − holistic and particle based. The holistic methods
consider crowd as a single entity and analyze the overall
behavior. These methods fail to provide much insight at an
individual or intermediate level. On the other hand, particle
based methods consider crowd as a collection of individuals.
But their performance degrades with the increase in crowd
density due to occlusion and tracking problems. Hence the
group level analysis and consequently group detection algo-
rithm becomes important.

We believe that a moderately dense crowd consists of
groups. We define a group as a set of individuals having
some sort of interaction to achieve a common goal, e.g. walk-
ing together to reach the same destination. Spatial proxim-
ity is required to form a group; if there are agents with a sim-
ilar motion pattern but are far away from each other, they
do not form a group as per our definition. Each group has
its own set of goals that leads to various interaction patterns
among the members of the group and together form a crowd.
The crowd behavior can vary from a highly structured to a
totally unstructured pattern. In case of a structured crowd,
for example − marching of soldiers, all groups are in coordi-
nation and share the same goal (see Figure.1a); whereas in
an unstructured crowd, for example − at railway station or
at a shopping complex, there are multiple groups with dif-
ferent goals (see Figure.1b). We are interested in modeling
such crowd dynamics and identify the groups. The paper
has following contributions:

1. A framework is proposed to model the collective mo-
tion of the crowd by a first order dynamical system.
The model captures the interaction patterns among
the individuals. Although the proposed model does
not capture the possible non-linear relations, its use-
fulness for short-term analysis has been verified exper-
imentally.

2. We also provide an optimization formulation for the



(a) Uniform crowd (b) Mixed crowd

Figure 1: Output of the our proposed group detection algorithm: (a) and (b) give examples of structured and unstructured crowd.
Tracklets for some of the agents over past few frames are also shown. Each color represents a group (Best viewed in color). The videos
are from CUHK [14] datasets

estimation of the interaction matrix under the con-
straints of temporal continuity, spatial restriction and
sparsity of inter-agent relationship.

3. Since the interaction matrix is learned from the tra-
jectory data, it captures the spatio-temporal patterns
among the agents. We observe that the eigenvectors
reflect the spatio-temporal patterns captured by the
matrix. Thus, we propose a spectral clustering [10]
based algorithm to identify the groups present in the
scene. Extensive experimentation demonstrates the ef-
fectiveness of the algorithm.

The remaining part of the paper is organized as follows.
Next section reviews the related literature. Section 3 ex-
plains the proposed mathematical formulation followed by
group detection algorithm in Section 4. The experimental
results are presented in Section 5 followed by conclusions in
Section 6.

2. RELATED WORK
There are numerous research papers in the challenging and

interesting area of crowd behavior analysis and group detec-
tion. There are many holistic approaches (e.g. [9], [16], [2])
as well as particle based algorithms (e.g. [6], [13], [5], [21])
in the literature. Holistic methods analyze crowd as a single
entity and ignore individuals or groups. In many papers, a
dense crowd is considered analogous to fluid and hence con-
cepts from fluid mechanics are applied for analysis. Mehran
et al. in [9] present streakline representation of crowd flow
for behavior analysis. Solmaz et al. recognize crowd behav-
iors such as bottlenecks, fountainheads, lanes, arches and
blocks through stability analysis of a dynamical system [16].
Benabbas et al. detect motion patterns and events in the
crowded scenes by modeling motion and velocity at each
spatial location [2].

The agent based approaches analyze each individual or
group to discover the global behavior. Shao et al. intro-
duce a collective transition prior in [14] and represent each
group by a Markov chain. They define interesting group
descriptors which proved to be useful in group state analy-
sis and crowd classification. In [13], Sethi and Chowdhury
propose phase space algorithm to identify pairwise correla-
tion between the motion patterns. Ge et al. find groups
by hierarchical clustering based on pairwise velocities and

distance [4], [5]. Zhou et al. find groups by using co-
herent filtering [21]. They propose a coherent neighbor in-
variance which characterizes coherent moving individuals.
Sochman et al. [15] infer groups based on social force model
[6]. They define a pairwise group activity confidence to
identify groups. Srikrishnan and Chaudhuri in [17] define
a linear cyclic pursuit based framework for collective mo-
tion modeling with the goal of short-term prediction. But
they do not explore group detection and there is no analysis
of crowd behavior.

Most of the particle based algorithms compute pairwise
velocity and spatial cues to find the groups hierarchically.
They do not model spatio-temporal patterns of the agents
collectively which might capture more complex interactions.
In this work, we model motion trajectories collectively. Also
instead of relying on spatio-temporal information (which is
prone to noise) directly for group detection, we use spectral
clustering to identify groups.

3. MATHEMATICAL FORMULATION
We define a group as a set of agents having spatial prox-

imity and some sort of interaction. In general, such interac-
tions are complex and non-linear in nature. We approximate
these interactions locally in time by a first order dynamical
model. Note that we refer by agent an individual entity
(represented by a point to be tracked) in the crowd.

3.1 Proposed Interaction Model
We model the collective relationship among the agents by

a first order affine system. Our hypothesis is based on the
intuition that each agent takes into consideration (a) the
movement of other agents present nearby and (b) her/his
desired goal, while taking the next step. The model relates
the next positions of the agents to the current positions. Let
x(k) = [x1(k), x2(k), ..., xN (k)]T , then

x(k + 1) = [Ak|ak]

[

x(k)
1

]

= A
′
kx

′(k) (1)

where N is the total number of agents, Ak ∈ R
N×N ,

A′
k ∈ R

(N+1)×(N+1), ak ∈ R
N×1, x′(k) ∈ R

(N+1)×1 and
xi(k) ∈ R is the location of ith agent at time instant k along
x-axis. We call Ak as the interaction matrix which captures
the evolution of an agent as a function of all agents present



in the scene. Note that Ak has no assumption on its form
and entries. It need not be symmetric i.e. agent i may not
depend on agent j in the same way as agent j depends on
agent. For example, consider a case where agent i is station-
ary and agent j approaches him/her. Since their behaviors
are not symmetric with respect to each other, we assume
that it implies ak(i, j) 6= ak(j, i).

In this paper, it is assumed that the motion along x and y

directions are independent and hence can be analyzed inde-
pendently. However, we experimented with concatenated
x and y but that did not improve the results. On the
contrary, it increased the size of interaction matrix lead-
ing to requirement of more past data to learn and leads to
chances of violation of short-term assumption. Hence to
avoid this violation, we analyze the motion in x and y direc-
tion separately. The corresponding model along y direction
is y(k + 1) = Bky(k) + bk. In the rest of the paper, we
discuss the solution for matrix Ak noting this fact that the
same process is also carried out for Bk. We expect matrices
Ak and Bk to be dependent on crowd motion. Since crowd
behavior might change with time, the interaction matrix is
time varying in nature, which we represent as Ak where
k is a time instant. Assuming A′

k has N + 1 independent
eigenvectors, the general solution to Eq.(1) is given as

x(k) =

N+1
∑

i=1
λi 6=1

{ciλ
k
i vi+di

(λk
i − 1)

λi − 1
vi}+

N+1
∑

i=1
λi=1

(ci+kdi)vi, (2)

where λi is the ith eigenvalue, vi is the corresponding
normalized eigenvector, ci and di are the corresponding con-
stant coefficients that depend on the initial condition and a

respectively. Different values of λi and vi generate various
motion patterns for an agent. These patterns can be associ-
ated to different motion tracks generated by an agent while
walking, approaching, splitting or stationary.

3.2 Estimation of Interaction Matrix
The matrix A′

k at any time instant is learned from the
immediate past trajectory data of all the agents in a least
squares framework. We update A′

k with each incoming
frame as interaction patterns may change over the time.
In addition, sudden changes in these interactions are un-
likely. Therefore it is desired that the entries of A′

k do not
change drastically in consecutive time instants − we assume
them to be varying smoothly over time. We incorporate this
constraint by minimizing l2 norm of the difference between
current matrix A′

k and previous estimate at (k − 1)th in-
stant. Furthermore for crowded scenes, it is unlikely that
an agent’s motion depends on all the agents present in the
scene. We capture sparsity in A′

k by minimizing l1 norm of
A′

k. Adding these constraints to the cost function, the final
formulation at kth time instant becomes:

Â
′
k = arg min

A′

k
∈RN×(N+1)

{

||A′
kX

k−1
k−L −Xk

k−L+1||
2
2

+r1||A
′
k −A′

k−1||
2
2 + r2||A

′
k||1

}

, (3)

where X
j
i ∈ R

N×L contains the positions of all N agents
from ith to jth frames concatenated together, A′

k−1 is the
estimate at the previous frame and r1 and r2 are appropriate
regularization parameters. Note that we will use A′ instead

of A′
k for notation convenience.

One requires at least L ≥ (N + 1) past positions to solve
this least squares. Therefore the interaction pattern is as-
sumed to remain constant over L frames. However, a large
N leads to two major problems: (i) longer trajectories (i.e.
higher L) are required to learn the interaction matrix A′

which may not be available and (ii) the interaction may not
remain constant over L past positions. To address these
problems, we identify spatial neighbors of each agent sepa-
rately and learn only the corresponding entries in the matrix
(one row at a time), others are kept as zero. The neighbor-
hood is defined as follows − the agent p is a neighbor to
the agent q if dist(p,q) < Rp. The assumption is that it
is unlikely that far away agents influence the motion of an
agent. The advantage is that the shorter trajectories are
now sufficient as the number of entries of A′ to be learned
are lesser. Note that we estimate matrix A′ in a row-wise
manner where ith row has number of entries to be estimated
as equal to one plus the number of the neighbors of agent
i due to neighborhood constraint. Further, there could be
an agent within the spatial proximity of another agent but
there may not be any interaction between them. Hence it
is required that the corresponding entry in the matrix A′

should be zero. This is enforced by adding sparsity con-
straint in Eq. 3. We use L1General package developed by
Schmidt [12] for solving L1-regularization problems.

For an illustration, see Figure.2. There are a total of
N = 20 agents present in the scene. Estimation of the
row of matrix A corresponding to agent p requires 50 pre-
vious frames (assuming L = 2.5N) whereas the neighbor-
hood based estimation reduces this to 23. Also consider
a case where agents p and r interact with each other but
are not within the spatial proximity owing to neighborhood
constraint. The interaction is captured when intersection of
neighborhoods of p and r has at least one interacting agent,
in this case its q who is in the spatial proximity of both.

Figure 2: Neighborhood criteria: Spatial neighborhoods
around agents p and r are represented as circles around them.
There are a total of 20 agents in the scene out of which only 8 are
neighbors of p. Estimation of elements of row of A correspond-
ing to agent p, considering all agents present in the scene requires
2.5×20 = 50 previous video frames (assuming L = 2.5N). While
the use of neighborhood constraint reduces this to 2.5 ∗ 9 ≈ 23
frames.

3.3 Validation of the Model
We use an average k-step prediction error as a measure to

test the validity of the proposed model on real videos. Fig-
ure. 3 shows average errors for different step size prediction
on videos from BEHAVE and CUHK datasets, each curve
corresponding to a different video. The k-step prediction
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(a) On videos from BEHAVE dataset
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(b) On videos from CUHK dataset

Figure 3: Illustration of suitability of the proposed model:
Average k-step prediction error for sample videos from BEHAVE
and CUHK datasets, each curve corresponds to different video

error at any time instant n is calculated as follows:

En(k) =
1

kN

k
∑

i=1

N
∑

j=1

|xactual
j (n+ i)− x

pred
j (n+ i)|, (4)

It may be noted that matrix A is estimated from the lat-
est video frames upto n and then Eq. 1 is used to obtain
x
pred
j . The k-step prediction error for the video is obtained

by averaging En(k) over all the frames of the video. As
expected, error increases with k but with a marginal incre-
ment. We observe that, for both the databases, prediction
is quite valid up to 1-1.5 seconds (about 40 frames). Since
the model assumes that the interaction remains same for
some time, it may not capture the changes occurred during
the longer duration which may lead to significant error at
higher k. These error plots show that the proposed model
is suitable for short-term analysis, which is the underlying
theme of the proposed algorithm.

4. GROUP DETECTION ALGORITHM
In this section, we discuss the algorithm for identifying

the groups present in the scene by analyzing the interaction
matrix A. Let eigenvector matrix contains all the eigenvec-
tors column-wise. From Eq. 2, notice that if any two rows
of eigenvector matrix are similar, the corresponding agents
belong to same group. Hence, we define a mapping for ith

agent as

f(xi) : xi ∈ R → zi = (v1i, v2i, . . . , vri)
T ∈ R

r×1

where vji is the ith entry of jth eigenvector of interaction
matrix A and r is the number of significant eigenvalues.
A clustering algorithm is applied on the points {zi}, ∀i =
1, 2, . . . , N to identify the groups. The clustering algorithm
runs on the components of eigenvectors, therefore this algo-
rithm falls in the category of spectral clustering [10]. Since
the number of groups is unknown, we apply a threshold
based clustering. The adaptive threshold used for ith point
is c|zi|, where |zi| is its magnitude and c is found empir-
ically. For example, all the agents within the distance of
c|z1| from z1 will form a group with agent 1. In this way, all
the groups are obtained. Also we consider only significant
eigenvectors with |λ| ≥ 0.90, of A for group detection since

the response from the eigenvectors with |λ| < 0.9 dies down
to an insignificant level within the period of L frames (about
10% level for N = 8 and L = 2.5N).
It may be noted that this group detection algorithm re-

mains same in the case where A does not have N indepen-
dent eigenvectors. In such a case, the clustering algorithm
runs on generalized eigenvectors.

Note that the group detection algorithm runs in x and y

directions independently and results need to be combined
together. For group detection, a group is formed only if
it is formed in both the directions. For example, if Zx =
[1, 1, 2, 1] and Zy = [2, 1, 2, 2] are the label vectors (indicat-
ing assigned group number for all the four agents) obtained
in x and y directions respectively, the final label vector would
be Z = [1, 2, 3, 1]. That is, out of 4 agents, 1 and 4 are
grouped together while agents 2 and 3 are separate groups.

5. EXPERIMENTS AND RESULTS
We tested our algorithms on BEHAVE [3] and CUHK

datasets [14] which are quite common among the researchers
for crowd analysis and group activity detection . CUHK
dataset is a comprehensive crowd video dataset containing
474 video clips covering various crowd behaviors with vary-
ing crowd density. BEHAVE dataset has video clips covering
various types of group activities. We tested group detection
algorithm on all the 474 videos from CUHK dataset and on 2
video clips (having duration of more than 10 minutes) from
BEHAVE dataset. We compared the proposed algorithm
with other methods on these selected agents. The ground
truth for CUHK dataset was obtained manually.

Table 1: Performance comparison of different group detection
algorithms

CF [21] CT [14] Proposed

NMI 0.66 0.69 0.86

Purity 0.71 0.72 0.90

RI 0.67 0.69 0.85

We compare the proposed algorithm for group detection
with state-of-the-art methods by Shao et al. [14] and Zhou
et al. [21]. Comparison with other major recent works is
already mentioned in [14]. Hence we restrict our comparison
to these two for brevity. Furthermore, for quantitative anal-
ysis on CUHK videos, we randomly select two time instants
for each video where we compare the proposed algorithm
with other methods and ground truth instead of manually
deciding on the instants when the performance has to be
evaluated. We use Normalized Mutual Information (NMI)
[19], Purity [1] and Rand Index (RI) [11] which are widely
used for evaluation of clustering algorithms. NMI is inspired
by information theory concepts while Rand Index penalizes
both false positives and false negatives during clustering.
Table 1 shows the comparison on these measures. It is quite
evident from the table that the performance of the proposed
algorithm far surpasses those of [14] and [21].

Figure. 4 demonstrates a visual comparison for different
scenarios. Since Zhou et al. in [21] find coherent motion
patterns at one time and then update them over time, hence
it is sensitive to tracking errors and has the possibility of ac-
cumulation of errors if any frame has tracking error. Shao



et al. [14] assign every agent to a collective transition prior.
They have spatial proximity constraint only at the initial
time instant which might not be effective as time progresses,
hence their algorithm groups all the agents moving in the
same direction giving less importance to their spatial rela-
tionships. This can be observed from the output figures in
column (b) of Figure. 4. Further in 4throw, a person with
red hat is moving faster than the group behind him but CT
and CF fail to capture this difference in velocity while the
proposed algorithm could capture it. The groups in last row
have small changes in their directions of movement which
is again not captured by these two methods while proposed
method detects such small changes.

Our algorithm outperforms these state-of-the-art methods
because it is more robust to tracking errors since we extract
groups from the eigenvectors rather than directly using the
tracklets. It is quite evident from the Figure. 4 where the
tracklets for various agents are marked with different col-
ors to indicate the group they belong to, that the proposed
algorithm is able to detect agents in a group much better
than the other existing methods. Also the proposed algo-
rithm yields NMI = 0.92, Purity = 0.94 and RI = 0.93 on
video clips from BEHAVE dataset whereas the correspond-
ing measures for [14] and [21] have very low values (e.g.
Purity for CF is 0.35). It shows that these methods do not
perform well in videos of sparse crowd whereas the proposed
method can also handle a sparse crowd effectively.

6. CONCLUSIONS
In this work, we presented a framework for analysis of

medium dense crowd videos. We proposed a first order dy-
namical system to model agent trajectories collectively and
subsequently demonstrated the effectiveness of this interac-
tion model for group detection. We show that eigenvector
based clustering for group detection is effective. As a next
venture, we are interested in exploring the proposed model
to analyze crowd and group behaviors. Also our algorithm
assumes the availability of tracks which itself is a challenge
in many crowded videos due to occlusion and other track-
ing problems. We also aspire to define a unified framework
where the proposed model and a tracker work together to
improve each other’s performance in crowded videos by in-
corporating group interaction cues.
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(a) CF (b) CT (c) P (d) GT

Figure 4: Comparison of group detection results from Coherent Filtering [21] in column (a), Collective Transition [14] in column (b),
our proposed method in column (c) with the ground truth in column (d) for different types of scenes. Each group is represented by a
different color. Best viewed in color and when zoomed.


