
Spatio-temporal Weighted Histogram based Mean Shift for
Illumination Robust Target Tracking

Kalyani Deopujari
MES College of Engineering

Pune, India
kjdeopujari@gmail.com

Rajbabu Velmurugan
Indian Institute of Technology

Bombay
Mumbai, India

rajbabu@ee.iitb.ac.in

Kanchan Tiwari
MES College of Engineering

Pune, India
kanchan.tiwari@mescoepune.org

ABSTRACT

This paper proposes a simple method to handle illumina-
tion variation in a video. The proposed method is based on
generative mean shift tracker, which uses energy compaction
property of discrete Cosine transform (DCT) to handle il-
lumination variation within and across frames. The pro-
posed method uses spatial and temporal DCT coefficient
based approach to assign weights to target and candidate
histograms in mean shift. The proposed weighing factor
takes care of changes in illumination within a frame i.e., il-
lumination change of the target with respect to background
and also across the frames i.e., varying illumination between
the consecutive time instances. The algorithm was tested us-
ing VOT2015 challenge dataset and also on sequences from
OTB and CAVIAR datasets. The proposed method was also
tested rigorously for illumination attribute. The qualitative
and quantitative evaluation process of the proposed method
was twofold. First, the tracker was compared with existing
DCT coefficient based method and showed improved results.
Secondly, the proposed algorithm was compared with other
state of the art trackers. The results show that the proposed
algorithm outperformed some state-of-the-art trackers while
with others it showed comparable performance.
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1. INTRODUCTION
Video tracking and analysis has wide range of applications

such as human computer interaction, traffic management,
surveillance, medical imaging, military applications, video
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editing, video communication and compression. Most track-
ing methods require an object detection mechanism either
in every frame or when the object first appears in the video.
Object detection involves locating objects in the frame of
a video sequence. One of the main issues in robust visual
tracking is to handle appearance change of the target ob-
ject. Appearance of the target can change due to variation
in illumination, occlusions, pose changes, background clut-
ter and other factors. On the basis of appearance model
used, tracking algorithms can be grouped as generative or
discriminative trackers. Generative tracking represents the
target object in a particular feature space and then searches
for the best matching score within the image region. It
does not require a large dataset for training. On the other
hand discriminative tracking treats visual tracking as a bi-
nary classification problem, to define the boundary between
a target image patch and the background. It requires a large
dataset in order to achieve good performance. While numer-
ous algorithms of both categories have been proposed with
success, it remains a challenging task to develop a track-
ing algorithm that is both accurate and efficient. In order
to address challenging factors in visual tracking, numerous
features and models have been used till date to represent
target objects. The appearance of an object changes dras-
tically when illumination varies significantly. Thus, change
in illumination is one of the major challenges to be dealt
with in the context of appearance changes. In [10] authors
have used locality sensitive histogram model to deal with
variation in illumination. This locality sensitive histogram
takes into account weighted contribution of each pixel of
the image. This method fails because of its low compu-
tational speed for large image sizes. In [16] DCT based
features are used to weigh the probability distribution func-
tions used in mean shift. This method fails for long video
sequences and drastic changes in illumination. A low com-
plexity mean shift tracker is proposed in [4]. It fails when
an object undergoes changes in illumination conditions. Ex-
tensive research addressing these issues of illumination exist
in published literature [11], [18], [19] that refer to overcom-
ing drawbacks of mean shift tracking using color as feature.
Fragmented weighted mean shift tracking using color feature
is proposed in [11] and [19]. However, they cannot handle
sudden changes in light condition. Multi feature tracking
algorithms were proposed in [20] to overcome dependency
on color. These algorithms track various complementary
features enabling robust tracking. Among the existing tech-
niques, [15] can handle minor changes in illumination but
fails with sudden changes in illumination. In [14] the au-



thors proposed a face tracking technique to solve the prob-
lem of flash light by setting the DC coefficient to zero, but
the method cannot handle low illumination and frame wise
illumination changes. The proposed algorithm is based on
modifying the DC coefficients based on spatial and temporal
illumination changes.

2. MEAN SHIFT THEORY AND ILLUMI-

NATION INVARIANCE

2.1 Mean Shift Algorithm
With advances in state-of-the-art tracking algorithms, mean

shift still holds its importance because of its low complexity
and fast convergence. Hence, it is preferred for real-time
applications. Mean shift is a non-parametric method to find
modes of the density functions. In other words, it finds out
the densest region through an iterative process. The target
and candidate histograms are as follows

q̂u = C

n∑

i=1

k (‖x∗

i ‖
2
)δ[b(x∗

i − u)] (1)

p̂u(y) = Ck

n∑

i=1

k(
∥∥∥
y − xi

h

∥∥∥
2

)δ[b(xi)− u] (2)

where q̂u is the target color model in the first frame, p̂u(y)
is the candidate model for consecutive frames, C, Ck are
normalization constants, y is the target center, xb are set of
data points, k represents Epanechnikov kernel, u represents
color of the target model, and h represents bandwidth. The
weights are calculated as

wi =

m∑

u=1

√
q̂u

p̂u(ŷ0)
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Using the target model and target candidate, mean shift
vector estimates the target center in the next frame using
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ŷ0 − xi

h

∥∥∥∥
2

∑n

i=1
wig

∥∥∥∥
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Here wi is obtained using (3) and is used to calculate the new
center for the target as given in (4), where g() is the negative
of derivative of the kernel, and m is the number of histogram
bins. The center of the kernel is then shifted from y0 to a
new center Y . This is repeated till the candidate model
is close to the target model. Here, we use Bhattacharyya
distance ρ for similarity measurement

ρ̂(y) = ρ[p̂(y), q̂] =

m∑

u=1

√
p̂u(y), q̂u. (5)

2.2 Background Weighted Histogram and Il-
lumination Invariance

In target tracking, the background information is often
included in the detected target region. If the similarity be-
tween the target and the background is high, the tracking
process will be poor. To reduce the interference of back-
ground, a representative model for background features is
proposed in [5]. It selects discriminative features from the

target region and the background region to be used as the
weight for target model and target candidate. Here, his-
togram is used as a discriminative feature between fore-
ground and the background to calculate weights. These
weights can be used to define the target and candidate his-
tograms during tracking and obtained as

vu = min
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Ôu

, 1

)

, u = 1, 2, . . . ,m (6)

where Ô∗ is the background color histogram and Ôu is the

target color histogram, and v is the weight. Now let λ̂ be the

weight for target histogram and λ̂p be weight for candidate

histogram. Both λ̂ and λ̂p are derived from discriminative

foreground and background features. Weight λ̂ is used to

modify the target model and λ̂p to modify the target can-
didate. From (1) and (2), the modified target model and
target candidate are obtained as.
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These are used in (4) to calculate the target center. The
weights calculated also determine the convergence of the
tracking algorithm. Since we modify the target model and
target candidate based on illumination, the weights get mod-
ified accordingly. Using (3) modified weight is obtained as
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and from equations (7),(8),(9) we have
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Rewriting using normalization factors c1 and c2 in equation
(10) we have
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Simplifying (11) for particular bin u, we have
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Eq. (12) clearly reflects the fact that the weight calculated
using the modified target representation (using illumination)
makes the algorithm illumination invariant.

3. PROPOSED METHODOLOGY
Figure 1 shows a block diagram for the proposed method-

ology. Video as a sequence of frames is given as an input to
the tracker system. The target is represented as a rectangu-
lar bounding box defined by its center, height, and width.
Target and background areas are defined in the first frame.
Background area is taken two times the target area. In
mean shift algorithm the target and candidate histograms



are calculated as explained in Sec. 2. These histograms are
weighted with a spatio-temporal weighing factor to compen-
sate for changing intensity levels within and across frames.
Thus, target is tracked in consecutive frames using mean
shift with modified histograms resulting in an illumination
robust tracking algorithm.

3.1 Spatio-temporal Weighing Factor
Illumination variations are expected to be captured in the

low frequency components. DCT − II is used to transform
a logarithmic image to frequency domain. The M ×N 2-D
DCT of frame f can be defined as in [8]. Proposed method
is based on energy compaction property of DCT. By energy
compaction property it means that most of the energy is
concentrated in the 0th or DC coefficient of DCT. Hence,
weighing factor for histogram is calculated in order to take
care of illumination variation spatially as well as temporar-
ily. By spatially we mean illumination changes within a
frame, between target and the background. By temporarily
we mean illumination from frame to frame. For calculating
the weighing factor we consider ratio of DC coefficients of
foreground and background in the previous as well as the
present frame. Spatial illumination compensation ratio for
previous and present frame are given by
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and λ
spatial
t are the ratios of DC coefficient of fore-

ground and background of previous frame at (t− 1)ths and
present frame at (t)ths, respectively. The ratio of foreground
to background DC coefficient takes care of spatial illumina-
tion variation. For example, for present frame at (t)ths if
illumination of foreground is increased with respect to back-
ground, the value of (λfr

dc )t will be more with respect to

(λbg

dc)t thus increasing the ratio. Ratio decreases for the vice
verse. The proposed weighing factor λtemporal is the ra-
tio of these two spatial ratios at (t)th and (t − 1)th frames.
Now if illumination in frame is increasing from (t − 1)th

instance to a frame at (t)th instance, value of λ
spatial
t in-

creases with respect to λ
spatial
t−1

, which in turn decreases
λtemporal with respect to weighing factor of previous frame.
When this reduced λtemporal is multiplied with candidate
histogram p̂u(y) in current frame at (t)th instance, it sup-
presses increased illumination effect on histogram feature.
On the other hand, if illumination in frame is decreased
from (t− 1)th instance to a frame at (t)th instance, value of

λ
spatial
t decreases with respect to λ

spatial
t−1

which in turn in-
creases λtemporal with respect to weighing factor of previous
frame. When this reduced λtemporal is multiplied with can-
didate histogram p̂u(y) in current frame at (t)th instance, it
enhances decreased illumination effect on histogram feature.

4. EXPERIMENTAL RESULTS
The proposed tracker was evaluated on VOT2015 bench-

mark. It was also tested on videos that specifically include
illumination variation attribute from other popular bench-

marks like OTB and CAVIAR. In VOT evaluation, first the
proposed tracker was evaluated with the baseline tracker
given in [16]. Secondly, it was evaluated with nine other
state-of-the-art trackers.

4.1 Evaluation in VOT2015 Challenge
The proposed algorithm was compared with baseline tracker

from [16] along with nine other state-of-the-art trackers in
VOT2015 challenge framework. The ten trackers included
for evaluation process were EBT [24], Struck [9], IVT [17],
DSST [6], OAB [1], MIL [2], SRDCF [7], MEEM [22], VOT2015
baseline (NCC) and baseline [16]. For fair evaluation of the
proposed methodology, the tracker selection was done such
that the comparison will be with popular and recent track-
ers. Comparison was done on 15 challenging videos with dif-
ferent attributes such as camera motion, size change, illumi-
nation variation, occlusion and motion change. Two weakly
correlated performance measures (i) Accuracy and (ii) Ro-
bustness are used due to their high level of interpretabil-
ity [12]. Accuracy measures the overlap of the bounding box
predicted by the tracker with the ground truth. Robustness
measures the number of times the tracker loses the target
during tracking. VOT2015 implements an averaging scheme
for participating trackers, i.e., considering a set of trackers in
which four top-performing trackers perform equally well, the
averaging scheme will assign them a rank of 2.5. It means
that no tracker will be ranked as 1. Evaluation scheme used
in the VOT2015 challenge is explained in [12]. In order to
avoid label conflict with VOT baseline tracker, we address
the baseline in [16] as ’wms’. In VOT analysis the proposed
tracker performs significantly better than ’wms’. Figure 2
shows the experimental baseline results for the two trackers.
Accuracy and Robustness rank of proposed tracker was 1
with respect to ’wms’ rank of 1.73. Average overlap score
for the proposed tracker was 0.55 against an overlap score
0.37 of for ’wms’. Average number of failures with the pro-
posed tracker was 1.87 against 10.27 for ’wms’.

To analyse performance w.r.t. the different visual at-
tributes, the two measures can be calculated only on the
subset of frames in the dataset that contain a specific at-
tribute (attribute subset). The trackers are ranked with
respect to each measure. Figure 3 shows attribute specific
ordering plot for the proposed and baseline tracker. It is
a plot of average expected overlap vs rank. From [12] aver-
age expected overlap can be defined as averaging the average
overlap on very large set of frames in long sequences. It can
be seen in Fig. 3 that the proposed tracker outperforms the
baseline tracker in all attributes, especially for illumination
change. Because of its unique weighing parameters there is
a drastic improvement in handling illumination variations.
Better accuracy of features leads to good overlap score. It
not only shows superior performance in illumination change
attribute, but also excels significantly in other attributes like
camera motion, occlusion handling, size change and motion
change.

In Figure 4 sequence specific AR and Ranking plots are
shown. For representation purpose results of 4 sequences
out of 15 have been displayed. In each of the 15 videos pro-
posed tracker surpassed baseline in accuracy and robustness
thus securing first rank. For sequence ball1 accuracy rank
of msdct is 1 with overlap score of 0.80 (0.69 for wms) and
robustness rank is also 1 with 0 failures. For sequence hand-
ball1 accuracy rank of msdct is 1 with overlap score of 0.60



Figure 1: Block diagram of the proposed methodology.

(a) (b)

Figure 2: (a) AR and (b) Ranking plot for proposed (msdct)
and baseline (wms) tracker. Accuracy and Robustness rank
for the proposed tracker is 1 with average overlap score of
0.55 (against 0.37 for wms) and average number of failures
are 1.87 (against 10.27 for ’wms’).

Figure 3: Attribute specific ordering plot of average ex-
pected overlap for proposed tracker and baseline ’wms’
tracker.

(0.32 for wms) and robustness rank is also 1 with 5 failures
(8 failures for wms). For sequence iceskater1 accuracy rank
of msdct is 1 with overlap score of 0.47 (0.20 for wms) and
robustness rank is also 1 with 0 failures (61 failures for wms).
For sequence motocross2 accuracy rank of msdct is 1 with
overlap score of 0.62 (0.27 for wms) and robustness rank is
also 1 with 1 failure (2 failures for wms).

4.1.1 Evaluation of proposed tracker with state of
the art trackers

Proposed tracker was compared with 10 trackers on 15
benchmark videos as an attempt for fair evaluation. Ta-
ble 1 gives AR ranking for all trackers. Proposed method
ranked first (1.00) in accuracy followed by MEEM (1.33)
and SRDCF (1.40). On the other hand, in robustness it
ranked fourth (3.67) after MEEM (3.53). It showed better
performance than other trackers such as EBT, IVT, base-
line, Struck, DSST, OAB and MIL. Figure 6 show plots for
experimental evaluation of proposed tracker with 10 other
trackers. In both AR and ranking plots proposed msdct
can be seen surpassing the performance of other 10 trackers,
quite significantly. But because of the low robustness val-
ues no tracker could show outstanding performance in AR
plot. The proposed tracker was followed by MEEM, Struck,
SRDCF and EBT in baseline performances. Figure 7 shows
attribute specific ordering plot for all 10 trackers. It is a plot
of average expected overlap vs. rank. For all the 5 attributes
the proposed tracker shows comparable results with other
popular state-of-the-art trackers. Since the proposed tracker
does not consider scaling it cannot be seen performing best
in the category, though shows comparable performance with
trackers that handle scale change. Figure 5 shows sequence

Trackers Accuracy Robustness

msdct (Proposed) 1.00 3.67
wms [16] 5.60 8.13

SRDCF [7] 1.40 3.27
EBT [24] 1.53 1.60
IVT [17] 3.87 7.53

baseline (VOT) 2.67 5.20
Struck [9] 1.80 3.27
DSST [6] 2.87 6.67
OAB [1] 3.67 7.80
MIL [2] 3.47 6.20

MEEM [22] 1.33 3.53

Table 1: Ranking of msdct with respect to 10 state-of-the-
art trackers. Color code ‘red’ corresponds to rank 1. Color
code ‘blue’ and ‘green’ corresponds to rank 2 and rank 3,
respectively.



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Sequence specific AR and Ranking plots for proposed tracker comparison with baseline (wms) are shown from (a)-
(h). First row from (a)-(d) are AR plots for sequences ball1, handball1, iceskater1, motocross2, respectively. Second row from
(e)-(h) are Ranking plots for sequences ball1, handball1, iceskater1, motocross2, respectively. Proposed msdct outperformed
baseline (wms) in all the videos.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Sequence specific AR and Ranking plots for the proposed tracker in comparison with state-of-art trackers are
shown from (a)-(h). First row from (a)-(d) are AR plots for sequences ball1, handball1, iceskater1, motocross2 respectively.
Second row from (e)-(h) are Ranking plots for sequences ball1, handball1, iceskater1, motocross2 respectively.Proposed msdct
outperformed in all the videos.

wise performance of the trackers. In majority of the 15
benchmark videos the proposed tracker showed improved re-
sults while in others it showed comparable results with top
state of art trackers like MEEM, EBT, SRDCF, Struck. It

outperformed the other trackers including baseline tracker
for VOT. Analysis in VOT 2015 benchmark confirms that
the proposed tracker not only proved robust to variation
in illumination but it also excelled when compared with 10
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Figure 6: (a) AR and (b) Ranking plot for all the 10 track-
ers. Proposed method ranked first (1.00) in accuracy. In
robustness it ranked fourth (3.67).

Figure 7: Attribute specific ordering plot of average ex-
pected overlap for 10 trackers.

popular state-of-the-art trackers in VOT 2015 challenge. Vi-
sual analysis of different trackers can be shown in Figure 8.
All the sequences are from VOT database.

4.2 Evaluation on OTB and CAVIAR dataset
The quantitative evaluation of the proposed tracker on

sequences specific to illumination changes from OTB [21]
and CAVIAR dataset was performed. The trackers included
in the evaluation were IVT [17], CT [23], Mix model [3] and
VTD [13]. The criteria used was root mean square error
(RMSE) which is the Euclidean distance between center of
the target in tracked frame {xi, yi} and ground truth center
{centerxi, centeryi in each frame i=1,2,..,Nf , where Nf is
the total number of frames. RMSE for both the coordinates
is given by
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√√√√ 1

Nf

Nf∑

i=1

(centerxi − xi)2 (16)

RMSEy =
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Nf

Nf∑
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(centeryi − yi)2 (17)

RMSExy =
RMSEx +RMSEy

2
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and RMSExy is the performance parameter. Figure 9 shows
the plots of RMSE for videos david, trellis, frame and One-
LeaveShop2cor, which have significant illumination variation
throughout the sequences. In all four sequences the proposed

method has minimum Euclidean distance values when com-
pared with other four trackers, indicating that the proposed
method has better robustness for illumination variation than
existing methods included in the study.

5. CONCLUSION
In this work, we proposed a simple but effective tracking

method for handling illumination variations. The method
was compared using the VOT2015 benchmark with track-
ers such as EBT, MEEM, MIL, IVT, OAB, DSST, baseline
(VOT), SRDCF, Struck and wms. We considered 15 video
sequences with challenging illumination variations and other
attributes like camera motion, size change, occlusion, shape
change and motion change. When compared with baseline
trackers the proposed algorithm showed exceptional robust-
ness towards illumination changes. It ranked first in accu-
racy followed by MEEM and SRDCF for both baseline and
overall evaluation on 15 videos. On the other hand, in Ro-
bustness it stood fourth. It showed better performance than
EBT, IVT, baseline, Struck, DSST, OAB and MIL. In the
second stage of evaluation, the proposed tracker was tested
on illumination specific videos from OTB and CAVIAR with
other set of trackers. RMSE plot for all the videos showed
better performance of the proposed method. Limitation of
the proposed method is that it is not adaptive to handle
scale change or orientation of the target. We plan to ad-
dress these issues in future work.
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