Combinational Equivalence
Checking

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab.

Dept. of Electrical Engineering

Indian Institute of Technology
Bombay

viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits
Lecture — 10 (Jan 24, 2012)

DPLL algorithm for SAT

[Davis, Putnam, Logemann, Loveland 1960,62]

Given : CNF formula f(vy,v,,..,v,) , and an
ordering function Next Variable

Example : a
LN
(a+b)(a+c)(a+h)
—— 0 b L0 \C/<1
c, ¢, G, /N7 %

CONFLICT! X X X
C, C; G, SAT!

Jan 24, 2012 EE-709@IITB 2

Basic Backtracking Search

(+ Db+ 0)
(2+ b+ =0
(ma+ b+ -0

(7+ c+)

(na+c+a)

(ma+c+)

(—O+ ac+ —0) r r
(7O+ac+q)

\AAAALAA

r

Jan 24, 2012 EE-709@IITB

Basic Search with Implications

\AAAALAA

Jan 24, 2012 EE-709@IITB

DPLL algorithm: Unit clause rule

Rule: Assign to true any single literal clauses.

(a+b+c) A

I _
b b o=

Apply lteratively: Boolean Constraint Propagation (BCP)

a(a+c)b+c)a+b+c)c+e)d+e)(c+d+e)

c(b+c)(c+ eﬁm e)(c+d +e)

]

e(d +¢)

Jan 24, 2012 EE-709@IITB

Pure Literal Rule

e Avariable is pure if its literals are either all
positive or all negative

e Satisfiability of a formula is unaffected by
assigning pure variables the values that
satisfy all the clauses containing them

P = (a 4‘([74“)([7 + —|a)(—|a + b + 0)

e Set cto 1; if ¢ becomes unsatisfiable, then it is also
unsatisfiable when cis set to 0.

Jan 24, 2012 EE-709@IITB

Resolution (original DP)

o TIteratively apply resolution (consensus) to eliminate one
variable each time

— i.e., consensus between all pairs of clauses containing x
and =x

— formula satisfiability is preserved
e Stop applying resolution when,
— Either empty clause is derived = instance is unsatisfiable

— Or only clauses satisfied or with pure literals are obtained
— instance is satisfiable

p=(a+ b+)(d+ O)(~a+ ~b+ =0 Eliminate variable ¢
¢, =(@+-a+-b)(b+-a+-b)d+-a+-b) Instance is SAT !
= (d + -a + =b)

Jan 24, 2012 EE-709@IITB 7

Stallmarck’s Method (SM) in CNF

e Recursive application of the branch-merge rule to each
variable with the goal of identifying common conclusions

o=@+ b)(-a+ o) (~b+ d)(-c+ d
Try @ = 0: (a=0)=Mb=1)=((d=1) Cla=0)={a=0,b=1,d=1}

Try a = 1: (a=1)=(c=1)=(d=1) Cla=1)={a=1,c=1,d=1}

Cla=0nCla=1)={d=1} Any assignment to variable @ implies d = 1.
Hence, d = 1 is a necessary assignment !

Recursion can be of arbitrary depth

EE-709@IITB 8

Jan 24, 2012

Recursive Learning (RL) in CNF

e Recursive evaluation of requirements
for identifying

o=@+ Db)(na+d(=b+ 0d
Try a = 1: (a=1)=(d=1) Cla=1)={a=1,d=1}

Try b= 1: (b=1)=(d=1) Cb=1)={b=1,d=1}

C(a=1)nCb=1)={d=1} Every way of satisfying (a + 0) implies d = 1.
Hence, d = 1 is a necessary assignment !

Recursion can be of arbitrary depth

EE-709@IITB 9

Jan 24, 2012

SM vs. RL

e Both complete procedures for SAT
o Stallmarck’s method:

e Recursive learning:

e Both can be integrated into backtrack
search algorithms

Jan 24, 2012 EE-709@IITB

10

Local Search

e Repeat Mtimes:
— Randomly pick complete assignment
— Repeat K'times (and while exist unsatisfied clauses):

e Flip variable that will satisfy largest number of
unsat clauses

o= (a+ b)(-a+ o) (=b+ d)(~c+ ad Pick random assignment
o= (a+ b)(=a+ o) (=b+ d)(~c+ ad) Flip assignment on ¢
o= (a+ b)(—a+ o) (=b+ d)(~c+ ad) Instance is satisfied !

Jan 24, 2012 EE-709@IITB 11

Comparison

Local search is incomplete

— If instances are known to be SAT, local search can be
competitive

Resolution is in general impractical

Stallmarck’s Method (SM) and Recursive Learning (RL) are in
general slow, though robust

— SM and RL can derive too much unnecessary information

For most EDA applications backtrack search (DP) is currently the
most promising approach !

— Augmented with techniques for inferring new
clauses/implicates (i.e. learning) !

Jan 24, 2012 EE-709@IITB 12

Techniques for Backtrack Search

o Conflict analysis
— Clause/implicate recording
— Non-chronological backtracking
e Incorporate and extend ideas from:
— Resolution
— Recursive learning
— Stallmarck’s method
e Formula simplification & Clause inference [Li,AAAIOQ]

e Randomization & Restarts [Gomes&SeIman,AAAI98]

Jan 24, 2012 EE-709@IITB 13

Clause Recording

e During backtrack search, for each conflict create clause
that explains and prevents recurrence of same conflict

o=(a+ b)(=b+c+ad (=b+ e(~d+ —e+ ...

Assume (decisions) c=0and F=0

Assign @ = 0 and imply assignments

A conflict is reached: (-d + —e + /) is unsat
(@a=0)A(c=0)A(f=0)=(p=0)
(p=1)=(@=1v(c=1v(f=1)

~.create new clause (a+ c+ /)

EE-709@IITB 14

Jan 24, 2012

Clause Recording

e Clauses derived from conflicts can also be viewed as
the result of applying

o= (a +_b)(_'b + c + d) (—lb:l- e)(—.d+/—.e + ...
@rcvad (e
(a+5{56+0

(a + c+ f

Jan 24, 2012 EE-709@IITB 15

Non-Chronological Backtracking

e During backtrack search, in the presence of conflicts,

¢= (a+b)(=b+c+d)(-b+e)(~d+-e+f
(a+c+f)(-a+g)(=g +Db)(=h+))(-i +k)...

Assume (decisions) c=0, f=0, h=0and /=0

Assignment a = 0 caused conflict = clause (a + c + f) created
(a+c+f)impliesa=1

A conflict is again reached: (-d + —e + /) is unsat
(@a=DA(c=0)A(f=0)=(p=0)
(p=1)=(@=0)v(c=1)v(f=1)

-.create new clause: (ma+ c+ /)

Jan 24, 2012 EE-709@IITB 16

Non-Chronological Backtracking

Created clauses: (g + ¢+ f)and (ma+ c+ /) 0
Apply consensus: ‘
new unsat clause (c + f) 0
backtrack to most recent decision: 7= 0 ‘
0

y 0

(a+ c +f)

(ra+c+f), 0 '1

" (c+
Jan 24, 2012 EE-709@IITB 17

ldeas from other Approaches

e Resolution, Stallmarck’s method and recursive learning
can be incorporated into

— create additional clauses/implicates
e anticipate and prevent conflicting conditions
e identify necessary assignments
e allow for non-chronological backtracking

Resolution within DP:

(a+ b+ 9 (mg + b+d)

(b+ c+ d) Unit clause!

Clause provides explanation

consensus

for necessary assignment 6 = 1

Jan 24, 2012 EE-709@IITB 18

Stallmarck’s Method within DP

o = (l+ b +) (il + c+ /)(—.b:k d) (-c+ d + g)

Implications:

(a=0)r(e=0)= (b=1)= (d= 1) C brerces
(a=1DA(f=0)=(c=1)
(c=1)Ar(g=0)=(d=1)

(d+ e+ c+
(e=0)A(F=0)A(g=0)=(d=1)

e+ f++
Clausal form: (S

(e+ f+ g+ d) Unit clause ! Clause provides explanation

for necessary assignment ¢ = 1

Jan 24, 2012 EE-709@IITB 19

Recursive Learning within DP

o=(a+b+c(na+d+e)(~b+d+c

Implications:

(a=1)A(e=0)=(d=1)

(b + c+ e+ ad
(b=1)A(c=0)=(d=1)

(c=0)A((e=0)a(c=0)=(d=1) (C+ ot &

Clausal form:

Clause provides explanation
for necessary assignment d = 1

(c+ e+ d Unitclause!

Jan 24, 2012 EE-709@IITB 20

The Power of Consensus

e Most search pruning techniques can be explained as
particular ways of applying selective consensus

e General consensus is computationally too expensive !

e Most techniques indirectly identify which consensus
operations to apply !

Jan 24, 2012 EE-709@IITB 21

SAT Solvers Today

e Capacity:
— Formulas upto a million variables and 3-4 million
clauses can be solved in few hours

— Only for structured instances e.g. derived from real-
world circuits & systems

e Tool offerings:

+ Public domain
= GRASP : Univ. of Michigan
= SATO: Univ. of lowa
= zChaff: Princeton University
= BerkMin: Cadence Berkeley Labs.

¢ Commercial
* PROVER: Prover Technologies

Jan 24, 2012 EE-709@IITB 22

Solving circuit problems as SAT

C D
i s =

Input Vector Assignment ? === Primary Output i’ to 1 ?

i

Jan 24, 2012 EE-709@IITB 23

SAT formulas for simple gates

a) a D_)
b — b
(C+a)c+b)c+a+b) (c+a)(c+b)(+a+b)
a
a —b C
>O b—}
(a+b)@+b) (c+a)(c+b)(C+a+b)

Jan 24, 2012 EE-709@IITB 24

Solving circuit problems as SAT

Set of clauses representing function of each gate

Unit literal clause asserting output to ‘7’

(b+f)C+f)b+c+f)

=) A (d+g)(e+g)d +e+Q)

(a+h)(f+h)@+ f +h)

ollal oo o

e (i g)

(1)

Jan 24, 2012 EE-709@IITB 25

Combinational Equivalence Checking (CEC)

e Currently most practical and pervasive
equivalence checking technology

e Nearly full automation possible

e Designs of up to several million gates verified
in @ few hours or minutes

e Hierarchical verification deployed
e Full chip verification possible

o Key methodology: Convert sequential
equivalence checking to a CEC problem!

— Match Latches & extract comb. portions for EC

Jan 24, 2012 EE-709@IITB 26

CEC in Today’s ASIC Design Flow

RTL Design

i Synthesis &

(Routing \
_ optimization K ‘ T i:@
: DFT insertion ig \ ECO)

|O Insertion

Placement

Jan 24, 2012 EE-709@IITB 27

Major Industrial Offerings of CEC

e Formality (Synopsys)
o Conformal Suite (Verplex, now Cadence)
e FormalPro (Mentor Graphics)

e Typical capabilities of these tools:

— Can handle circuits of up to several million gates flat in
up to a few hours of runtime

— Comprehensive debug tool to pinpoint error-sources

— Counter-example display & cross-link of RTL and gate-
level netlists for easier debugging

— Ability to checkpoint verification process and restart
from same point later

— What if capability (unique to FormalPro)

Jan 24, 2012 EE-709@IITB 28

Combinational Equivalence Checking

e Functional Approach

» transform output functions of combinational
circuits into a unique (canonical) representation

» two circuits are equivalent if their representations
are identical

> efficient canonical representation: BDD

e Structural
» identify structurally similar internal points
» prove internal points (cut-points) eguivalent
» find implications

Jan 24, 2012 EE-709@IITB

29

Functional Equivalence

e |f BDD can be constructed for each circuit
»represent each circuit as shared (multi-output) BDD
¢ use the same variable ordering !
» BDDs of both circuits must be identical

e |f BDDs are too large
» cannot construct BDD, memory problem
» use partitioned BDD method

e decompose circuit into smaller pieces, each as BDD
e check equivalence of internal points

Jan 24, 2012 EE-709@I1ITB 30

Functional Decomposition

e Decompose each function into functional blocks
» represent each block as a BDD (partitioned BDD method)
» define cut-points (z)
» verify equivalence of blocks at cut-points
» starting at primary inputs

A
f2 92
Z Z
fl gl
x| y x| y

Jan 24, 2012 EE-709@IITB 31

Cut-Points Resolution Problem

e If all pairs of cut-points (z,,z,) are equivalent

— so are the two functions, F,G

e |f intermediate functions (f,,g,) are not equivalent

» the functions (F,G) may still be equivalent

» this is called false negative

e Why do we have false negative ?
» functions are represented in

terms of intermediate variables

» to prove/disprove equivalence
must represent the functions in

terms of primary inputs (BDD

composition)

IG
J
Z;
J1
X | y

Jan 24, 2012

EE-709@IITB

32

Cut-Point Resolution — Theory

e Let f,(x)=g,(x) Vx
— iff,(z,y) =8,(z,y), Vz,y then f,(f,(x)y)=g,(f,(x),y) =>F=G
— If fz(Z,y) * gZ(Z/y)i ‘v’z,y += fZ(fl(X)iy) * gZ(fl(X)ly) # F a G

I F IG We cannot say if F=G or not
. . e false negative
— two functions are equivalent,
fy 01 but the verification algorithm
X | y x| y declares them as different.

Jan 24, 2012 EE-709@I1ITB 33

Cut-Point Resolution

e How to verify if negative is false or true ?

e Procedure 1: create a miter (XOR) between two

potentially equivalent nodes/functions

» perform ATPG test for stuck-at O 0, F=G (false negative)
> find test pattern to prove F#G { 1, F# G (true negative)
» efiicient for true negative

» (gives test vector, a proof)

» inefficient when there is no test

Jan 24, 2012 EE-709@IITB 34

Cut-Point Resolution
 Procedure 2: create a BDD for F® G
» perform satisfiability analysis (SAT) of the BDD

e if BDD for r®G = &, problem is not satisfiable, false negative

e BDD for F @6 # J, problem is satisfiable, true negative

FOG = &, F=G (false negative)

F G
= Non-empty, F#G
S |
Note: must compose BDDs until they
are equivalent, or expressed in terms

of primary inputs

— the SAT solution, if exists, provides a test vector (proof of non-equivalence) —as in
ATPG

— unlike the ATPG technique, it is effective for false negative (the BDD is empty!)

Jan 24, 2012 EE-709@I1ITB 35

Thank you

Jan 24, 2012

EE-709@IITB

36

