
Combinational Equivalence 
Checking  

Virendra Singh 
Associate Professor 

Computer Architecture and Dependable Systems Lab. 
Dept. of Electrical Engineering 
Indian Institute of Technology  

Bombay 
viren@ee.iitb.ac.in 

 

EE 709: Testing & Verification of VLSI Circuits  

Lecture – 10 (Jan 24, 2012) 



  
C1 

CONFLICT! 

DPLL algorithm for SAT  

Given : CNF formula f(v1,v2,..,vk) , and an 

ordering function Next_Variable 

))()(( bacaba 

Example : 

C1 C2 C3 

1 

  
C3 

  
C2 

  
SAT! 

1 
c 

1 

0 
b 

0 

a 
0 

[Davis, Putnam, Logemann, Loveland 1960,62] 

Jan 24, 2012 EE-709@IITB 2 



Basic Backtracking Search 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

1 

2 

3 

4 

5 

6 

7 

8 

a (a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

b 

c 

d d 

b 

c 

d d 

c 

d (¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

(¬b + ¬c + ¬d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + d) 

Jan 24, 2012 EE-709@IITB 3 



Basic Search with Implications 

1 

2 

3 

4 

5 

6 

7 

8 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

a (a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

b 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

c 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) d 
7 

7 

b 

c 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 8 

8 

8 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) d 
5 

5 

a 

c 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 6 

6 

6 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) c 
3 

3 

a 

b 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 5 

5 

d 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

6 

6 

6 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

b 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

c 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) d 
4 

4 

a 

c 

(a + b + c) 

(a + b + ¬c) 

(¬a + b + ¬c) 

(a + c + d) 

(¬a + c + d) 

(¬a + c + ¬d) 

(¬b + ¬c + ¬d) 

(¬b + ¬c + d) 

Jan 24, 2012 EE-709@IITB 4 



DPLL algorithm: Unit clause rule 

Rule: Assign to true any single literal clauses. 

)( cba =
 

0 

=
 

0 
c = 1 

))()()()()(( edcedeccbacbcaa 

))()()(( edcedeccbc 

)( ede 

Apply Iteratively: Boolean Constraint Propagation (BCP) 

Jan 24, 2012 EE-709@IITB 5 



Pure Literal Rule 

• A variable is pure if its literals are either all 
positive or all negative 

• Satisfiability of a formula is unaffected by 
assigning pure variables the values that 
satisfy all the clauses containing them 

 

 

  

j = (a +c )(b+ c )(b + ¬d)(¬a + ¬b + d) 

 Set c to 1; if j becomes unsatisfiable, then it is also 
unsatisfiable when c is set to 0.   

Jan 24, 2012 EE-709@IITB 6 



Resolution (original DP) 
• Iteratively apply resolution (consensus) to eliminate one 

variable each time 

– i.e., consensus between all pairs of clauses containing x 
and ¬x 

– formula satisfiability is preserved 

• Stop applying resolution when, 

– Either empty clause is derived  instance is unsatisfiable 

– Or only clauses satisfied or with pure literals are obtained 
 instance is satisfiable 

j = (a + c)(b + c)(d + c)(¬a + ¬b + ¬c) Eliminate variable c 

j1 = (a + ¬a + ¬b)(b + ¬a + ¬b )(d + ¬a + ¬b ) 

 = (d + ¬a + ¬b ) 
Instance is SAT ! 

Jan 24, 2012 EE-709@IITB 7 



Stallmarck’s Method (SM) in CNF 
• Recursive application of the branch-merge rule to each 

variable with the goal of identifying common conclusions 

Try a = 0: (a = 0)  (b = 1)  (d = 1) 

Try a = 1: (a = 1)  (c = 1)  (d = 1) 

C(a = 0) = {a = 0, b = 1, d = 1} 

C(a = 1) = {a = 1, c = 1, d = 1} 

C(a = 0)  C(a = 1) = {d = 1} Any assignment to variable a implies d = 1. 
Hence, d = 1 is a necessary assignment ! 

Recursion can be of arbitrary depth 

j = (a + b)(¬a + c) (¬b + d)(¬c + d) j = (a + b)(¬a + c) (¬b + d)(¬c + d) j = (a + b)(¬a + c) (¬b + d)(¬c + d) j = (a + b)(¬a + c) (¬b + d)(¬c + d) 

Jan 24, 2012 EE-709@IITB 8 



Recursion can be of arbitrary depth 

Recursive Learning (RL) in CNF 

• Recursive evaluation of clause satisfiability requirements 
for identifying common assignments 

Try a = 1: 

j = (a + b)(¬a + d) (¬b + d) 

(a = 1)  (d = 1) 

Try b = 1: (b = 1)  (d = 1) 

C(a = 1) = {a = 1, d = 1} 

C(b = 1) = {b = 1, d = 1} 

C(a = 1)  C(b = 1) = {d = 1} Every way of satisfying (a + b) implies d = 1. 
Hence, d = 1 is a necessary assignment ! 

j = (a + b)(¬a + d) (¬b + d) j = (a + b)(¬a + d) (¬b + d) j = (a + b)(¬a + d) (¬b + d) 

Jan 24, 2012 EE-709@IITB 9 



SM vs. RL 

• Both complete procedures for SAT 

• Stallmarck’s method: 

– hypothetic reasoning based on variables 

• Recursive learning: 

– hypothetic reasoning based on clauses 

• Both can be integrated into backtrack 
search algorithms 

 

Jan 24, 2012 EE-709@IITB 10 



Local Search 

• Repeat M times: 

– Randomly pick complete assignment 

– Repeat K times (and while exist unsatisfied clauses): 

• Flip variable that will satisfy largest number of 
unsat clauses 

j = (a + b)(¬a + c) (¬b + d)(¬c + d) Pick random assignment 

j = (a + b)(¬a + c) (¬b + d)(¬c + d) Flip assignment on d 

j = (a + b)(¬a + c) (¬b + d)(¬c + d) Instance is satisfied ! 

Jan 24, 2012 EE-709@IITB 11 



Comparison 

• Local search is incomplete 

– If instances are known to be SAT, local search can be 
competitive  

• Resolution is in general impractical 

• Stallmarck’s Method (SM) and Recursive Learning (RL) are in 
general slow, though robust 

– SM and RL can derive too much unnecessary information 

• For most EDA applications backtrack search (DP) is currently the 
most promising approach ! 

– Augmented with techniques for inferring new 
clauses/implicates (i.e. learning) ! 

Jan 24, 2012 EE-709@IITB 12 



Techniques for Backtrack Search 

• Conflict analysis 

– Clause/implicate recording 

– Non-chronological backtracking 

• Incorporate and extend ideas from: 

– Resolution 

– Recursive learning 

– Stallmarck’s method 

• Formula simplification & Clause inference [Li,AAAI00] 

• Randomization & Restarts [Gomes&Selman,AAAI98] 

Jan 24, 2012 EE-709@IITB 13 



j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) 

Clause Recording 

• During backtrack search, for each conflict create clause 
that explains and prevents recurrence of same conflict 

Assume (decisions) c = 0 and f = 0 

Assign a = 0 and imply assignments 

A conflict is reached: (¬d + ¬e + f) is unsat 

(a = 0)  (c = 0)  (f = 0)  (j = 0) 

(j = 1)  (a = 1)  (c = 1)  (f = 1) 

create new clause: (a + c + f) 

Jan 24, 2012 EE-709@IITB 14 



Clause Recording 

• Clauses derived from conflicts can also be viewed as 
the result of applying selective consensus 

j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) 

(a + c + d) 

consensus 

(a + c + ¬e + f) 

(a + c + f) 

(a + e) 

Jan 24, 2012 EE-709@IITB 15 



Non-Chronological Backtracking 
• During backtrack search, in the presence of conflicts, 

backtrack to one of the causes of the conflict 

j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) 

 (a + c + f)(¬a + g)(¬g + b)(¬h + j)(¬i + k) 

Assume (decisions) c = 0, f = 0, h = 0 and i = 0  

Assignment a = 0 caused conflict  clause (a + c + f) created 

  (a + c + f) implies a = 1 

j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) 

 (a + c + f)(¬a + g)(¬g + b)(¬h + j)(¬i + k) 

j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) 

 (a + c + f)(¬a + g)(¬g + b)(¬h + j)(¬i + k) 

j = (a + b)(¬b + c + d) (¬b + e)(¬d + ¬e + f) 

 (a + c + f)(¬a + g)(¬g + b)(¬h + j)(¬i + k) 

A conflict is again reached: (¬d + ¬e + f) is unsat 

(a = 1)  (c = 0)  (f = 0)  (j = 0) 

(j = 1)  (a = 0)  (c = 1)  (f = 1) 

create new clause: (¬a + c + f) 

Jan 24, 2012 EE-709@IITB 16 



Non-Chronological Backtracking 

Created clauses: (a + c + f) and (¬a + c + f) 

 backtrack to most recent decision: f = 0 

(c + f) 

created clauses/implicates: 

 (a + c + f), 

 (¬a + c + f), and 

 (c + f)  

Apply consensus: 

 new unsat clause (c + f) 

0 

0 

c 

f 

i 

h 

0 

0 

a 

0 1 

Jan 24, 2012 EE-709@IITB 17 



Ideas from other Approaches 
• Resolution, Stallmarck’s method and recursive learning 

can be incorporated into backtrack search (DP) 

– create additional clauses/implicates  

• anticipate and prevent conflicting conditions 

• identify necessary assignments 

• allow for non-chronological backtracking 

(b + c + d) 

consensus 
(b + c + d)  Unit clause ! 

(¬a + b + d) (a + b + c) 

Resolution within DP: 

Clause provides explanation 
for necessary assignment b = 1 

Jan 24, 2012 EE-709@IITB 18 



j = (a + b + e)(¬a + c + f)(¬b + d) (¬c + d + g) 

Implications: 

(a = 0)  (e = 0)  (b = 1)  (d = 1) 

j = (a + b + e)(¬a + c + f)(¬b + d) (¬c + d + g) 

(a = 1)  (f = 0)  (c = 1) 
  (c = 1)  (g = 0)  (d = 1) 

j = (a + b + e)(¬a + c + f)(¬b + d) (¬c + d + g) j = (a + b + e)(¬a + c + f)(¬b + d) (¬c + d + g) 

(e = 0)  (f = 0)  (g = 0)  (d = 1) 

Stallmarck’s Method within DP 

Clausal form: 

(e + f + g + d) Unit clause ! Clause provides explanation 
for necessary assignment d = 1 

(d + e + c + f) 

(b + e + c + f) 

consensus 

(e + f + g + d) 

Jan 24, 2012 EE-709@IITB 19 



Implications: 

j = (a + b + c)(¬a + d + e) (¬b + d + c) 

(a = 1)  (e = 0)  (d = 1)  

j = (a + b + c)(¬a + d + e) (¬b + d + c) 

(b = 1)  (c = 0)  (d = 1)  

j = (a + b + c)(¬a + d + e) (¬b + d + c) 

Recursive Learning within DP 

Clause provides explanation 
for necessary assignment d = 1 

(c + e + d) 

consensus 

(b + c + e + d) 

consensus 

j = (a + b + c)(¬a + d + e) (¬b + d + c) 

(c = 0)  ((e = 0)  (c = 0))  (d = 1)  

Clausal form: 

(c + e + d) Unit clause ! 

Jan 24, 2012 EE-709@IITB 20 



The Power of Consensus 
• Most search pruning techniques can be explained as 

particular ways of applying selective consensus 

– Conflict-based clause recording 

– Non-chronological backtracking 

– Extending Stallmarck’s method to backtrack search 

– Extending recursive learning to backtrack search 

– Clause inference conditions 

• General consensus is computationally too expensive ! 

• Most techniques indirectly identify which consensus 
operations to apply !  

– To create new clauses/implicates 

• To identify necessary assignments 

Jan 24, 2012 EE-709@IITB 21 



SAT Solvers Today  

• Capacity: 
– Formulas upto a million variables and 3-4 million 

clauses can be solved in few hours 

– Only for structured instances e.g. derived from real-
world circuits & systems 

  Tool offerings: 
 Public domain 

 GRASP : Univ. of Michigan 

 SATO: Univ. of Iowa 

 zChaff: Princeton University 

 BerkMin: Cadence Berkeley Labs. 

 Commercial 
 PROVER: Prover Technologies 

Jan 24, 2012 EE-709@IITB 22 



Solving circuit problems as SAT 

a 

b 

c 

d 

e 

f 

g 

h 

i 

Primary Output ‘i’ to 1 ? Input Vector Assignment ? 

Jan 24, 2012 EE-709@IITB 23 



SAT formulas for simple gates 

a 

b 
c 

))(( baba 

a b 

))()(( bacbcac 

a 

b 
c 

))()(( bacbcac 

a 

b 
c 

Jan 24, 2012 EE-709@IITB 24 



Solving circuit problems as SAT 

• Set of clauses representing function of each gate 

))()(( fcbfcfb 

))()(( hfahfha 

))()(( gedgegd 

)(i

))()(( ighigih 

a 

b 

c 

d 

e 

f 

g 

h 

i 

 Unit literal clause asserting output to ‘1’ 

Jan 24, 2012 EE-709@IITB 25 



Combinational Equivalence Checking (CEC) 

• Currently most practical and pervasive 
equivalence checking technology 

• Nearly full automation possible 

• Designs of up to several million gates verified 
in a few hours or minutes 

• Hierarchical verification deployed 

• Full chip verification possible 

• Key methodology: Convert sequential 
equivalence checking to a CEC problem! 
– Match Latches & extract comb. portions for EC 

Jan 24, 2012 EE-709@IITB 26 



CEC in Today’s ASIC Design Flow 

RTL Design 

Synthesis &  

optimization 

DFT insertion 

IO Insertion 

Placement 

Clock tree synthesis 

Routing 

ECO 

CEC 

CEC 

CEC 

CEC 

CEC 
CEC 

Jan 24, 2012 EE-709@IITB 27 



 Major Industrial Offerings of CEC 

• Formality (Synopsys) 

• Conformal Suite (Verplex, now Cadence) 

• FormalPro (Mentor Graphics) 

• Typical capabilities of these tools: 
– Can handle circuits of up to several million gates flat in 

up to a few hours of runtime 

– Comprehensive debug tool to pinpoint error-sources 

– Counter-example display & cross-link of RTL and gate-
level netlists for easier debugging 

– Ability to checkpoint verification process and restart 
from same point later 

– What if capability (unique to FormalPro) 

Jan 24, 2012 EE-709@IITB 28 



Jan 24, 2012 EE-709@IITB 29 

Combinational Equivalence Checking 

• Functional Approach 

 transform output functions of combinational 
circuits into a unique (canonical) representation 

 two circuits are equivalent if their representations 
are identical 

efficient canonical representation: BDD 

 

• Structural  

 identify structurally similar internal points 

prove internal points (cut-points) equivalent 

 find implications 



Jan 24, 2012 EE-709@IITB 30 

Functional Equivalence 

• If BDD can be constructed for each circuit 

represent each circuit as shared (multi-output) BDD 

 use the same variable ordering ! 

BDDs of both circuits must be identical 

• If BDDs are too large 

 cannot construct BDD, memory problem 

 use partitioned BDD method 

• decompose circuit into smaller pieces, each as BDD 

• check equivalence of internal points 



Jan 24, 2012 EE-709@IITB 31 

Functional Decomposition 
• Decompose each function into functional blocks 

 represent each block as  a BDD (partitioned BDD method) 

define cut-points (z) 

 verify equivalence of blocks at cut-points 

  starting at primary inputs 
F 

f2 

f1 

z 

x y 

G 

g2 

g1 

z 

x y 



Jan 24, 2012 EE-709@IITB 32 

Cut-Points Resolution Problem 

F 

f2 

f1 

z1 

x y 

G 

g2 

g1 

z2 

x y 

• If all pairs of cut-points (z1,z2) are equivalent 

– so are the two functions, F,G 

• If intermediate functions (f2,g2) are not equivalent 

 the functions (F,G) may still be equivalent  

 this is called false negative 

• Why do we have false negative ? 

 functions are represented in 
terms of intermediate variables 

 to prove/disprove equivalence 
must represent the functions in 
terms of primary inputs (BDD 
composition) 



Jan 24, 2012 EE-709@IITB 33 

Cut-Point Resolution – Theory 

• Let  f1(x)=g1(x)  x 

– if f2(z,y)  g2(z,y),  z,y   then   f2(f1(x),y)  g2(f1(x),y)    F  G 

– if f2(z,y)  g2(z,y),  z,y        f2(f1(x),y)  g2(f1(x),y)   F  G 

• False negative 

– two functions are equivalent, 
but the verification algorithm 
declares them as different. 

F 

f2 

f1 

z 

x y 

G 

g2 

g1 

z 

x y 

We cannot say if  F ≡ G  or not 



Jan 24, 2012 EE-709@IITB 34 

Cut-Point Resolution 

• Procedure 1: create a miter (XOR) between two 

potentially equivalent nodes/functions  

 perform ATPG test for stuck-at 0 

 find test pattern to prove F  G  

 efiicient for true negative  

  (gives test vector, a proof) 

 inefficient when there is no test 

 0,  F  G (false negative) 

 1,  F  G (true negative) 

F G 

•  How to verify if negative is false or true ? 



Jan 24, 2012 EE-709@IITB 35 

Cut-Point Resolution  
• Procedure 2: create a BDD for F  G 

 perform satisfiability analysis (SAT) of the BDD 

• if BDD for F G = ,   problem is not satisfiable, false negative 

• BDD for F G  , problem is satisfiable, true negative  

Non-empty,   F  G 

 ,   F  G (false negative) F  G =  
= 

 

F G 

Note: must compose BDDs until they 

are equivalent, or expressed in terms 

of primary inputs 

–  the SAT solution, if exists, provides a test vector  (proof of non-equivalence) – as in 
ATPG 

–  unlike the ATPG technique, it is effective for false negative  (the BDD is empty!) 



36 

Thank you 

Jan 24, 2012 EE-709@IITB 


