
Automatic Test Pattern

Generation - II

Virendra Singh
Associate Professor

Computer Architecture and Dependable Systems Lab

Dept. of Electrical Engineering

Indian Institute of Technology Bombay
viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits

Lecture – 12 (Jan 30, 2012)

Jan 30, 2012 EE-709@IITB 2

ATPG - Algorithmic

Path Sensitization Method
Fault Sensitization

Fault Propagation

Line Justification

Path Sensitization Algorithms
D- Algorithm (Roth)

PODEM (P. Goel)

FAN (Fujiwara)

SOCRATES (Schultz)

SPIRIT (Emil & Fujiwara)

Jan 30, 2012 EE-709@IITB 3

Common Concept

 Fault Activation problem  a LJ Problem

 The Fault Propagation problem 

1. Select a FP path to PO  Decision

2. Once the path is selected  a set of LJ problems

 The LJ Problems  Decisions or Implications

To justify c = 1  a = 1, b = 1 (Implication)

To justify c = 0  a = 0 or b = 0 (Decision)

 Incorrect decision  Backtrack  Another decision

Jan 30, 2012 EE-709@IITB 4

D-Algorithm

Fundamental concepts invented:

– First complete ATPG algorithm

– D-Calculus (5 valued logic)

– Implications – forward and backward

– Implication stack

– Backtrack

– Test Search Space

Roth (IBM) - 1966

Jan 30, 2012 EE-709@IITB 5

Singular Cover Example

• Minimal set of logic signal assignments to show

essential prime implicants of Karnaugh map

Gate

AND

1

2

3

Inputs

A

0

X

1

B

X

0

1

Output

d

0

0

1

Gate

NOR

1

2

3

Inputs

d

1

X

0

e

X

1

0

Output

F

0

0

1

Jan 30, 2012 EE-709@IITB 6

D-Cube

• Collapsed truth table entry to characterize logic

• Use Roth’s 5-valued algebra

• Can change all D’s to D’s and D’s to D’s (do both)

• AND gate:

Rows 1 & 3

Reverse inputs

And two cubes

Interchange D and D

A

D

1

D

D

1

D

B

1

D

D

D

D

1

d

D

D

D

D

D

D

Jan 30, 2012 EE-709@IITB 7

D-Cube Operation of

D-Intersection
 y – undefined (same as f)

 m or l – requires inversion of D and D

• D-intersection: 0 0 = 0 X = X 0 = 0

 1 1 = 1 X = X 1 = 1

 X X = X

• D-containment –

Cube a contains

Cube b if b is a

subset of a

0

1

X

D

D

0

0

f

0

y

y

1

f

1

1

y

y

X

0

1

X

D

D

D

y

y

D

m

l

D

y

y

D

l

m






 

  

Jan 30, 2012 EE-709@IITB 8

Primitive D-Cube of Failure

• Models circuit faults:

– Stuck-at-0

– Stuck-at-1

– Bridging fault (short circuit)

– Arbitrary change in logic function

• AND Output sa0: “1 1 D”

• AND Output sa1: “0 X D ”

 “X 0 D ”

• Wire sa0: “D”

• Propagation D-cube – models conditions
under which fault effect propagates through
gate

Jan 30, 2012 EE-709@IITB 9

Implication Procedure

1. Model fault with appropriate primitive D-cube

of failure (PDF)

2. Select propagation D-cubes to propagate fault

effect to a circuit output (D-drive procedure)

3. Select singular cover cubes to justify internal

circuit signals (Consistency procedure)

 Put signal assignments in test cube

 Regrettably, cubes are selected very

arbitrarily by D-ALG

Jan 30, 2012 EE-709@IITB 10

D-Algorithm – Top Level

1. Number all circuit lines in increasing

level order from PIs to POs;

2. Select a primitive D-cube of the fault

to be the test cube;

– Put logic outputs with inputs labeled

as D (D) onto the D-frontier;

3. D-drive ();

4. Consistency ();

5. return ();

Jan 30, 2012 EE-709@IITB 11

D-Algorithm – D-drive
while (untried fault effects on D-frontier)

select next untried D-frontier gate for propagation;

while (untried fault effect fanouts exist)

select next untried fault effect fanout;

generate next untried propagation D-cube;

D-intersect selected cube with test cube;

if (intersection fails or is undefined) continue;

if (all propagation D-cubes tried & failed) break;

if (intersection succeeded)

add propagation D-cube to test cube -- recreate D-frontier;

Find all forward & backward implications of assignment;

save D-frontier, algorithm state, test cube, fanouts, fault;

break;

else if (intersection fails & D and D in test cube) Backtrack ();

else if (intersection fails) break;

if (all fault effects unpropagatable) Backtrack ();

Jan 30, 2012 EE-709@IITB 12

D-Algorithm - Consistency
g = coordinates of test cube with 1’s & 0’s;

if (g is only PIs) fault testable & stop;

for (each unjustified signal in g)

Select highest # unjustified signal z in g, not a PI;

if (inputs to gate z are both D and D) break;

while (untried singular covers of gate z)

select next untried singular cover;

if (no more singular covers)

If (no more stack choices) fault untestable & stop;

else if (untried alternatives in Consistency)

pop implication stack -- try alternate assignment;

else

Backtrack ();

D-drive ();

If (singular cover D-intersects with z) delete z from g, add inputs to
singular cover to g, find all forward and backward implications
of new assignment, and break;

If (intersection fails) mark singular cover as failed;

Jan 30, 2012 EE-709@IITB 13

Backtrack

if (PO exists with fault effect) Consistency ();

else pop prior implication stack setting to try

alternate assignment;

if (no untried choices in implication stack)

fault untestable & stop;

else return;

Jan 30, 2012 EE-709@IITB 14

D-Algorithm
Start

Initialize test cube (tc)

Select a primitive D-cube

of fault as C

D-intersect C with previous

test cube (tc) and

perform implication

Select a gate from D-frontier

and propagate D-cube of the

Selected gate as C

Backtrack to the last

point a choice existed

Line Justification
Is there a D or D’

on any PO?

No test

exists

Test

generated

None

exists

Inconsistent

Consistent

Impossible

None

exists

Yes

done

No

Jan 30, 2012 EE-709@IITB 15

D-Algo (Line Justification)

Line Justification

impossible

Begin

Interset C with previous

test cube tc

Select an unjustified line and

a singular cube C to justify the line

Backtrack to the last

point a choice existed

Is there any line in tc

which are not justified?

Test has

been

generated

No

Inconsistent
Consistent

None

exists

Yes

Jan 30, 2012 EE-709@IITB 16

Circuit Example1

 Inputs

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

C

0

1

0

1

0

1

0

1

Output

F

0

0

0

1

0

0

0

0

Jan 30, 2012 EE-709@IITB 17

Singular Cover & D-Cubes

• Singular cover – Used for

justifying lines

• Propagation D-cubes –

Conditions under which

difference between

good/failing machines

propagates

A
1
0

D
1
D

B
1

0
1
0

1
D
D
D
1
D

C

1

0

1
D
D

d
1
0
0

1
0
D
D
D

D
0
D

e

0
1
1
1

0

D
D
D
0
D
D

F

0
0
1

D
D
D

Jan 30, 2012 EE-709@IITB 18

Steps for Fault d sa0

Step

1

2

3

A

1

B

1

1

C

1

d

D

D

e

0

0

F

D

Cube type

PDF of AND gate

Prop. D-cube for NOR

Sing. Cover of NAND

Jan 30, 2012 EE-709@IITB 19

9 - V Algorithm (Muth)

 Logic values {0/0, 1/1, 0/1, 1/0, 0/u, 1/u, u/0, u/1, u/u}

– 0/u = {0, D’}, 1/u = {D, 1}, u/0 = {0, D}, u/1 = {D’, 1}

– u/u = {0, 1, D, D’}

 Reduces amount of search done in multiple path

sensitization – D-Algo

Jan 30, 2012 EE-709@IITB 20

9 - V Algorithm

D’

Jan 30, 2012 EE-709@IITB 21

9 - V Algorithm

D’

1
0

D

1/u

Jan 30, 2012 EE-709@IITB 22

9-V Algorithm: Value Comp

Jan 30, 2012 EE-709@IITB 23

9-V Algorithm: Value Comp

No Backtracking

Jan 30, 2012 EE-709@IITB 24

Path Oriented DEcision Making

(PODEM)

P. Goel, IBM, 1981

Jan 30, 2012 EE-709@IITB 25

Motivation

 IBM introduced semiconductor DRAM

memory into its mainframes – late 1970’s

Memory had error correction and

translation circuits – improved reliability

– D-ALG unable to test these circuits

Search too undirected

Large XOR-gate trees

Must set all external inputs to define

output

– Needed a better ATPG tool

Jan 30, 2012 EE-709@IITB 26

PODEM

• New concepts introduced:

Expand binary decision tree only around

primary inputs

Use X-PATH-CHECK to test whether D-

frontier still there

Objectives -- bring ATPG closer to

propagating D (D’) to PO

Backtracing

Jan 30, 2012 EE-709@IITB 27

PODEM High-Level Flow

1. Assign binary value to unassigned PI

2. Determine implications of all PIs

3. Test Generated? If so, done.

4. Test possible with more assigned PIs? If maybe,

go to Step 1

5. Is there untried combination of values on

assigned PIs? If not, exit: untestable fault

6. Set untried combination of values on assigned

PIs using objectives and backtrace. Then, go to

Step 2

Jan 30, 2012 EE-709@IITB 28

PODEM-Algorithm
Start

Assign binary value to an unssigned PI

Deternine implications of all PIs

Set untried combination of vaues

On assigned PIs

Is there a D or D’

on any PO?

No test

exists

Test

generated

May be

No

No

Test Possible with additional

Assigned PIs?

Is there an untried combination of

Values on assigned PIs?

No

No

Yes

Yes

Jan 30, 2012 EE-709@IITB 29

PODEM

Jan 30, 2012 EE-709@IITB 30

D-Algorithm : Example

D’

1

1

1

D’

D

D’
1

D’

1

0 1
D’ D’ 1

1 0

Jan 30, 2012 EE-709@IITB 31

PODEM : Example

Jan 30, 2012 EE-709@IITB 32

PODEM : Value Comp

Jan 30, 2012 EE-709@IITB 33

PODEM : Decision Tree

Thank You

Jan 30, 2012 EE-709@IITB 34

