Sequential Equivalence Checking - I

Virendra Singh Associate Professor

Computer Architecture and Dependable Systems Lab.

Dept. of Electrical Engineering Indian Institute of Technology Bombay viren@ee.iitb.ac.in

INDIAN INSTITU

EE 709: Testing & Verification of VLSI Circuits

Lecture – 14 (Feb 02, 2012)

Functional Equivalence

- If BDD can be constructed for each circuit
 ➢ represent each circuit as *shared* (multi-output) BDD
 ❖ use the same variable ordering !
 ➢ BDDs of both circuits must be *identical*
- If BDDs are too large
 - cannot construct BDD, memory problem
 - use partitioned BDD method
 - decompose circuit into smaller pieces, each as BDD
 - check equivalence of internal points

Functional Decomposition

• Decompose each function into *functional* blocks

represent each block as a BDD (*partitioned BDD* method)

define cut-points (z)

verify equivalence of blocks at cut-points

starting at primary inputs

Cut-Points Resolution Problem

- If all pairs of cut-points (z₁, z₂) are equivalent
 so are the two functions, F,G
- If *intermediate* functions (f_2, g_2) are not equivalent
 - the functions (F,G) may still be equivalent
 - this is called false negative
- Why do we have false negative ?
 - functions are represented in terms of *intermediate* variables
 - to prove/disprove equivalence must represent the functions in terms of *primary inputs* (BDD composition)

Cut-Point Resolution – Theory

- Let $f_1(x)=g_1(x) \forall x$
 - if $f_2(z,y) \equiv g_2(z,y)$, $\forall z,y$ then $f_2(f_1(x),y) \equiv g_2(f_1(x),y) \implies F \equiv G$
 - $\text{ if } f_2(z,y) \neq g_2(z,y), \ \forall z,y \quad \neq \Rightarrow \quad f_2(f_1(x),y) \neq g_2(f_1(x),y) \not \Rightarrow F \neq G$

We *cannot* say if $F \equiv G$ or not

- False negative
 - two functions are equivalent,
 but the verification algorithm
 declares them as different.

Cut-Point Resolution

- How to verify if negative is *false* or *true* ?
- Procedure 1: create a miter (XOR) between two potentially equivalent nodes/functions
 - perform ATPG test for stuck-at 0
 - \succ find test pattern to prove *F* ≠ *G*
 - efiicient for true negative
 - (gives test vector, a proof)
 - inefficient when there is no test

0, $F \equiv G$ (false negative) 1, $F \neq G$ (true negative)

Cut-Point Resolution

- Procedure 2: create a BDD for F ⊕ G
 - perform satisfiability analysis (SAT) of the BDD
 - if BDD for $F \oplus G = \emptyset$, problem is *not* satisfiable, *false* negative
 - BDD for $F \oplus G \neq \emptyset$, problem is satisfiable, *true* negative

 $F \bigoplus G = \begin{cases} \emptyset, F \equiv G \text{ (false negative)} \\ \text{Non-empty, } F \neq G \end{cases}$

Note: must compose BDDs until they are equivalent, or expressed in terms of primary inputs

the SAT solution, if exists, provides a *test vector* (proof of non-equivalence) – as in ATPG

- unlike the ATPG technique, it is effective for false negative (the BDD is empty!)

Sequential Equivalence Checking

- Represent each sequential circuit as an FSM
 verify if two FSMs are equivalent
- Approach 1: Reduction to *combinational* circuit

unroll FSM over *n* time frames (flatten the design)

Combinational logic: *F*(*x*(1,2, ...*n*), *s*(1,2, ... *n*))

- check equivalence of the resulting combinational circuits
- problem: the resulting circuit can be too large too handle

Sequential Verification

- Approach 2: Based on isomorphism of state transition graphs
 - two machines M1, M2 are *equivalent* if their state transition graphs (STGs) are *isomorphic*
 - perform state minimization of each machine
 - check if STG(M1) and STG(M2) are isomorphic

State Minimization

X-Successor – If an input sequence X takes a machine from state S_i to state S_j, then S_j is said to be the Xsuccessor of S_j

Strongly connected:- If for every pair of states (S_i, S_j) of a machine M there exists an input sequence which takes M from state S_i to S_j, then M is said to be strongly connected

- Two states S_i and S_j of machine M are distinguishable if and only if there exists at least one finite input sequence which, when applied to M, causes different output sequences, depending on whether S_i or S_j is the initial state
- The sequence which distinguishes these states is called a distinguishing sequence of the pair (S_i, S_i)
- If there exists for pair (S_i, S_j) a distinguishing sequence of length k, the states in (S_i, S_j) are said to be k-distinguishable

Machine M1

PS	NS, z	
	X = 0	X = 1
А	E, 0	D, 1
В	F, 0	D, 0
С	E, 0	B, 1
D	F, 0	В, 0
E	C, 0	F, 1
F	В, 0	C, 0

- (A, B) 1 Distinguishable
- (A, E) 3 Distinguishable

Seq - 111

k-equivalent – The states that are not *k*-distinguishable are said to be k-equivalent

Also *r-equivalent* r<k

- States S_i and S_j of machine M are said to be equivalent if and only if, for every possible input sequence, the same output sequence will be produced regardless of whether S_i or S_j is the initial state
- States that are k-equivalent for all k < n-1, are equivalent

•
$$S_i = S_j$$
, and $S_j = S_k$, then $S_i = S_k$

- The set of states of a machine M can be partitioned into disjoint subsets, known as equivalence classes
- Two states are in the same equivalence class if and only if they are equivalent, and are in different classes if and only if they are distinguishable

Property: If S_i and S_j are equivalent states, their corresponding X-successors, for all X, are also equivalent

Feb 02, 2012

EE-709@IITB

State Minimization Procedure

- 1. Partition the states of M into subsets s.t. all states in same subset are *1-equivalent*
- 2. Two states are 2-equivalent iff they are 1-equivalent and their I_i successors, for all possible I_i, are also 1-equivalent

PS	NS, z	
	X = 0	X = 1
Α	E, <mark>0</mark>	D, 1
В	F, <mark>0</mark>	D, <mark>0</mark>
С	E, <mark>0</mark>	B, 1
D	F, <mark>0</mark>	B, <mark>0</mark>
Е	C, <mark>0</mark>	F, 1
F	B, <mark>0</mark>	C, <mark>0</mark>

$$PO = (ABCDEF)$$

P1 = (ACE), (BDF)

Feb 02, 2012

Machine Equivalence

- Two machines M1, M2 are said to be equivalent if and only if, for every state in M1, there is corresponding equivalent state in M2
- If one machine can be obtained from the other by relabeling its states they are said to be isomorphic to each other

PS	NS, z	
	X = 0	X = 1
AC - a	β, 0	γ, 1
Ε-β	a, 0	δ, 1
BD - γ	δ, 0	γ, 0
F - δ	γ, 0	a, 0

Feb 02, 2012

EE-709@IITB

PS	NS, z	
	X = 0	X = 1
А	E, 0	C, 0
В	C, 0	A, 0
С	В, О	G, 0
D	G, 0	A, 0
Е	F, 1	В, 0
F	E, 0	D, 0
G	D, 0	G, 0

- P5 = (A) (F) (BD) (CG) (E)
- P4 = (A) (F) (BD) (CG) (E)
- P3 = (AF) (BD) (CG) (E)
- P2 = (AF) (BCDG) (E)
- P1 = (ABCDFG) (E)

PO = (ABCDEFG)

Machine M2

State Equivalence - Example

Reachability-Based Equivalence Checking

Approach 3: Symbolic Traversal Based Reachability Analysis

- Build product machine of M₁ and M₂
- Traverse state-space of product machine starting from reset states S₀, S₁
- Test equivalence of outputs in each state
- Can use any state-space traversal technique

Sequential Verification

- Symbolic FSM traversal of the product machine
- Given two FSMs: $M_1(X,S_1, \delta_1, \lambda_1,O_1)$, $M_2(X,S_2, \delta_2, \lambda_2,O_2)$
- Create a product FSM: $M = M_1 \mathbf{x} M_2$
 - traverse the states of M and check its output for each transition
 - > the output O(M) =1, if outputs $O_1 = O_2$
 - if all outputs of M are 1, M₁ and M₂ are equivalent
 - > otherwise, an *error state* is reached
 - \succ error trace is produced to show: $M_1 \neq M_2$

Product Machine - Construction

- Define the product machine M(X, S, S⁰, δ , λ ,O)
 - $S = S_1 \times S_2$ - states,
 - next state function, $\delta(s, x) : (S_1 \times S_2) \times X \rightarrow (S_1 \times S_2)$
 - output function, $\lambda(s, x) : (S_1 \times S_2) \times X \rightarrow \{0, 1\}$

FSM Traversal - Algorithm

- Traverse the product machine M(X,S, δ , λ ,O)
 - start at an initial state S_0
 - iteratively compute symbolic image Img(S₀, R) (set of next states):

$$Img(S_{0}, R) = \exists_{x} \exists_{s} S_{0}(s) \bullet R(x, s, t)$$
$$R = \prod_{i} R_{i} = \prod_{i} (t_{i} \equiv \delta_{i}(s, x))$$

until an *error state* is reached

- transition relation R_i for each next state variable t_i can be computed as $t_i = (t \otimes \delta(s, x))$

(this is an alternative way to compute transition relation, when design is specified at gate level)

Construction of the Product FSM

- For each pair of states, $s_1 \in M_1$, $s_2 \in M_2$
 - \succ create a combined state s = (s₁. s₂) of M
 - create transitions out of this state to other states of M
 - Iabel the transitions (input/output) accordingly

EE-709@IITB

FSM Traversal in Action

• **STOP** - backtrack to initial state to get *error trace: x*={1,1,1,0}

Thank you

EE-709@IITB