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Functional Equivalence 

• If BDD can be constructed for each circuit 

represent each circuit as shared (multi-output) BDD 

 use the same variable ordering ! 

BDDs of both circuits must be identical 

• If BDDs are too large 

 cannot construct BDD, memory problem 

 use partitioned BDD method 

• decompose circuit into smaller pieces, each as BDD 

• check equivalence of internal points 
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Functional Decomposition 
• Decompose each function into functional blocks 

 represent each block as  a BDD (partitioned BDD method) 

define cut-points (z) 

 verify equivalence of blocks at cut-points 

  starting at primary inputs 
F 

f2 

f1 

z 

x y 

G 

g2 

g1 

z 

x y 
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Cut-Points Resolution Problem 

F 

f2 

f1 

z1 

x y 

G 

g2 

g1 

z2 

x y 

• If all pairs of cut-points (z1,z2) are equivalent 

– so are the two functions, F,G 

• If intermediate functions (f2,g2) are not equivalent 

 the functions (F,G) may still be equivalent  

 this is called false negative 

• Why do we have false negative ? 

 functions are represented in 
terms of intermediate variables 

 to prove/disprove equivalence 
must represent the functions in 
terms of primary inputs (BDD 
composition) 
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Cut-Point Resolution – Theory 

• Let  f1(x)=g1(x)  x 

– if f2(z,y)  g2(z,y),  z,y   then   f2(f1(x),y)  g2(f1(x),y)    F  G 

– if f2(z,y)  g2(z,y),  z,y        f2(f1(x),y)  g2(f1(x),y)   F  G 

• False negative 

– two functions are equivalent, 
but the verification algorithm 
declares them as different. 

F 

f2 

f1 

z 

x y 

G 

g2 

g1 

z 

x y 

We cannot say if  F ≡ G  or not 
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Cut-Point Resolution 

• Procedure 1: create a miter (XOR) between two 

potentially equivalent nodes/functions  

 perform ATPG test for stuck-at 0 

 find test pattern to prove F  G  

 efiicient for true negative  

  (gives test vector, a proof) 

 inefficient when there is no test 

 0,  F  G (false negative) 

 1,  F  G (true negative) 

F G 

•  How to verify if negative is false or true ? 
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Cut-Point Resolution  
• Procedure 2: create a BDD for F  G 

 perform satisfiability analysis (SAT) of the BDD 

• if BDD for F G = ,   problem is not satisfiable, false negative 

• BDD for F G  , problem is satisfiable, true negative  

Non-empty,   F  G 

 ,   F  G (false negative) F  G =  
= 

 

F G 

Note: must compose BDDs until they 

are equivalent, or expressed in terms 

of primary inputs 

–  the SAT solution, if exists, provides a test vector  (proof of non-equivalence) – as in 
ATPG 

–  unlike the ATPG technique, it is effective for false negative  (the BDD is empty!) 
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Sequential Equivalence Checking 
• Represent each sequential circuit as an FSM 

– verify if two FSMs are equivalent 

• Approach 1: Reduction to combinational circuit 
– unroll FSM over n time frames (flatten the design) 

M(t1) 

x(1) 

s(1) 

M(t2) 

x(2) 

s(2) 

… 
… M(tn) 

x(n) 

s(n) 

Combinational logic: F(x(1,2, …n), s(1,2, … n)) 

–  check equivalence of the resulting combinational circuits 

–  problem: the resulting circuit can be too large too handle 
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Sequential Verification 
• Approach 2: Based on isomorphism of state transition graphs 

– two machines M1, M2 are equivalent if their state transition 
graphs (STGs) are isomorphic 

– perform state minimization of each machine 

– check if STG(M1) and STG(M2) are isomorphic 

 

State min. 
1/0 

0 1.2 

0/0 

1/1 

0/1 

M1min 

1/0 

0 1 

0/0 

1/1 

0/1 

M2 

0/0 0/1 

1/0 

0 1 

0/1 2 

1/0 

M1 

1/1 
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State Minimization 

X-Successor – If an input sequence X takes a machine 
from state Si to state Sj, then Sj is said to be the X-
successor of Sj 

 

Strongly connected:- If for every pair of states (Si, Sj ) of 
a machine M there exists an input sequence which 
takes M from state Si to Sj, then M is said to be 
strongly connected  
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State Equivalence 

• Two states Si and Sj of machine M are 
distinguishable if and only if there exists at least one 
finite input sequence which, when applied to M, 
causes different output sequences, depending on 
whether Si or Sj is the initial state 

• The sequence which distinguishes these states is 
called a distinguishing sequence of the pair (Si, Sj) 

• If there exists for pair (Si, Sj ) a distinguishing 
sequence of length k, the states in (Si, Sj ) are said to 
be k-distinguishable 
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State Equivalence 

Machine M1 

 
PS NS, z 

X = 0 X = 1 

A E, 0 D, 1 

B F, 0 D, 0 

C E, 0 B, 1 

D F, 0  B, 0 

E C, 0  F, 1 

F B, 0  C, 0 

(A, B) – 1 Distinguishable 

(A, E) – 3 Distinguishable 

  Seq - 111 

k-equivalent – The states that 
are not k-distinguishable are 
said to be k-equivalent 

Also r-equivalent   r<k 
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State Equivalence 

• States Si and Sj of machine M are said to be 
equivalent if and only if, for every possible input 
sequence, the same output sequence will be 
produced regardless of whether Si or Sj is the initial 
state 

• States that are k-equivalent for all k < n-1, are 
equivalent 

•  Si = Sj, and Sj=Sk, then Si=Sk 
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State Equivalence 

• The set of states of a machine M can be 
partitioned into disjoint subsets, known as 
equivalence classes 

• Two states are in the same equivalence class if 
and only if they are equivalent, and are in 
different classes if and only if they are 
distinguishable 

Property: If Si and Sj are equivalent states, their 
corresponding X-successors, for all X, are also 
equivalent 
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State Minimization Procedure 
1. Partition the states of M into subsets s.t. all states in same 

subset are 1-equivalent 

2. Two states are 2-equivalent iff they are 1-equivalent and 
their Ii successors, for all possible Ii,  are also 1-equivalent 

PS NS, z 

X = 0 X = 1 

A E, 0 D, 1 

B F, 0 D, 0 

C E, 0 B, 1 

D F, 0  B, 0 

E C, 0  F, 1 

F B, 0  C, 0 

P0 = (ABCDEF) 

P1 = (ACE), (BDF) 

P2 = (ACE), (BD), (F) 

P3 = (AC), (E), (BD), (F) 

P4 = (AC), (E), (BD), (F) 
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Machine Equivalence 

• Two machines M1, M2 are said to be equivalent if and only 
if, for every state in M1, there is corresponding equivalent 
state in M2 

• If one machine can be obtained from the other by relabeling 
its states they are said to be isomorphic to each other 

PS NS, z 

X = 0 X = 1 

AC - α β, 0 γ, 1 

E - β α, 0 δ, 1 

BD - γ δ, 0 γ, 0 

F - δ γ, 0  α, 0 
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State Equivalence - Example 

Machine M2 

 PS NS, z 

X = 0 X = 1 

A E, 0 C, 0 

B C, 0 A, 0 

C B, 0 G, 0 

D G, 0  A, 0 

E F, 1  B, 0 

F E, 0 D, 0 

G D, 0  G, 0 

P0 = (ABCDEFG) 

P1 = (ABCDFG) (E) 

P2 = (AF) (BCDG) (E) 

P3 = (AF) (BD) (CG) (E) 

P4 = (A) (F) (BD) (CG) (E) 

P5 = (A) (F) (BD) (CG) (E) 



Reachability-Based Equivalence Checking 

• Build product machine of M1 and M2 

• Traverse state-space of product machine 
starting from reset states S0, S1 

• Test equivalence of outputs in each state 

• Can use any state-space traversal 
technique 

M1 

M2 

=? 

Outputs Inputs 

S0 

S1 
Product Machine 

S0 

S1 
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Approach 3: Symbolic Traversal Based Reachability Analysis 
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Sequential Verification 

• Symbolic FSM traversal of the product machine 

M1 M2 
S1 S2 

O2 O1 

X 

O(M) 

• Given two FSMs: M1(X,S1, δ1, λ1,O1),   
M2(X,S2, δ2 , λ2,O2) 

• Create a product FSM: M = M1x M2 

 traverse the states of M and check its 
output for each transition 

 the output O(M) =1, if outputs O1= O2  

 if all outputs of M  are 1, M1 and M2 are 
equivalent 

 otherwise, an error state is reached 

 error trace is produced to show: M1 ≠ M2 



Feb 02, 2012 EE-709@IITB 20 

Product Machine - Construction 
• Define  the product machine M(X, S, S0, , ,O) 

– states,        S = S1  S2 

– next state function,   (s, x) : (S1  S2)  X  (S1  S2) 

– output function,        (s, x) : (S1  S2)  X  {0,1} 

M1 M2 

1 2 
2 1 

X 

• Error trace (distinguishing sequence) 
that leads to an error state 

- sequence of inputs which 
produces 1 at the output of M  

- produces a state in M for which 
M1 and M2 give different outputs 

(s,x) =  1(s1,x)   2(s2,x)  
O = 1  if O1=O2 

0 otherwise  
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FSM Traversal - Algorithm 
• Traverse the product machine M(X,S,, ,O) 

– start at an initial state S0 

– iteratively compute symbolic image Img(S0,R)    
(set of next states): 

Img( S0,R ) = x s S0(s) • R(x,s,t) 

R = i Ri = i (ti  i(s,x))  

 until an error state is reached 

– transition relation Ri for each next state variable ti 

can be computed as ti = (t  (s,x))  

(this is an alternative way to compute transition relation, when design is 
specified at gate level) 
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Construction of the Product FSM 

• For each pair of states, s1 M1, s2 M2 

 create a combined state s = (s1. s2) of M 

 create  transitions out of this state to other states of M 

 label the transitions (input/output) accordingly  

1/0 

0 1 

0/0 

1/1 

0/1 
M1 

M2 

1/1 

2 

0 1 
0/0 

0/0 

0/1 
1/1 1/0 

M1 

1/0 

0 

0/1 

1 

M2 2 

0/1 

1/0 
1 

1.1 

0/1 
11 

1/1 
0.2 

00 

Output = { 1 OK 

0 error 
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FSM Traversal in Action 

• STOP - backtrack to initial state to get error trace: x={1,1,1,0} 

1/0 

0 1 

0/0 

1/1 

0/1 

M1 
M2 

2 

0 1 
0/0 

0/0 

0/1 

1/1 

1/1 1/0 

1.1 
0/1 

1/1 

0/1 

0.2 

1/1 

1.0 
0/0 

1/0 

0/0 1.2 

1/0 

0.1 

1/0 

0/0          Out(M) 

State reached  x=0  x=1 

Error state 

0.0 
0/1 1/1 M 

Initiall states: s1=0, s2=0,  s=(0.0) 

• New 0 = (0.0)    1   1 

• New 1 = (1.1)    1   1 

• New 2 = (0.2)    1   1 

• New 3 = (1.0)    0   0 
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Thank you 
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