
Sequential Equivalence
Checking - I

Virendra Singh
Associate Professor

Computer Architecture and Dependable Systems Lab.
Dept. of Electrical Engineering
Indian Institute of Technology

Bombay
viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits

Lecture – 14 (Feb 02, 2012)

Jan 24, 2012 EE-709@IITB 2

Functional Equivalence

• If BDD can be constructed for each circuit

represent each circuit as shared (multi-output) BDD

 use the same variable ordering !

BDDs of both circuits must be identical

• If BDDs are too large

 cannot construct BDD, memory problem

 use partitioned BDD method

• decompose circuit into smaller pieces, each as BDD

• check equivalence of internal points

Feb 02, 2012 EE-709@IITB 3

Functional Decomposition
• Decompose each function into functional blocks

 represent each block as a BDD (partitioned BDD method)

define cut-points (z)

 verify equivalence of blocks at cut-points

 starting at primary inputs
F

f2

f1

z

x y

G

g2

g1

z

x y

Feb 02, 2012 EE-709@IITB 4

Cut-Points Resolution Problem

F

f2

f1

z1

x y

G

g2

g1

z2

x y

• If all pairs of cut-points (z1,z2) are equivalent

– so are the two functions, F,G

• If intermediate functions (f2,g2) are not equivalent

 the functions (F,G) may still be equivalent

 this is called false negative

• Why do we have false negative ?

 functions are represented in
terms of intermediate variables

 to prove/disprove equivalence
must represent the functions in
terms of primary inputs (BDD
composition)

Feb 02, 2012 EE-709@IITB 5

Cut-Point Resolution – Theory

• Let f1(x)=g1(x) x

– if f2(z,y) g2(z,y), z,y then f2(f1(x),y) g2(f1(x),y) F G

– if f2(z,y) g2(z,y), z,y f2(f1(x),y) g2(f1(x),y) F G

• False negative

– two functions are equivalent,
but the verification algorithm
declares them as different.

F

f2

f1

z

x y

G

g2

g1

z

x y

We cannot say if F ≡ G or not

Feb 02, 2012 EE-709@IITB 6

Cut-Point Resolution

• Procedure 1: create a miter (XOR) between two

potentially equivalent nodes/functions

 perform ATPG test for stuck-at 0

 find test pattern to prove F G

 efiicient for true negative

 (gives test vector, a proof)

 inefficient when there is no test

 0, F G (false negative)

 1, F G (true negative)

F G

• How to verify if negative is false or true ?

Feb 02, 2012 EE-709@IITB 7

Cut-Point Resolution
• Procedure 2: create a BDD for F G

 perform satisfiability analysis (SAT) of the BDD

• if BDD for F G = , problem is not satisfiable, false negative

• BDD for F G , problem is satisfiable, true negative

Non-empty, F G

 , F G (false negative) F G =
=

F G

Note: must compose BDDs until they

are equivalent, or expressed in terms

of primary inputs

– the SAT solution, if exists, provides a test vector (proof of non-equivalence) – as in
ATPG

– unlike the ATPG technique, it is effective for false negative (the BDD is empty!)

Feb 02, 2012 EE-709@IITB 8

Sequential Equivalence Checking
• Represent each sequential circuit as an FSM

– verify if two FSMs are equivalent

• Approach 1: Reduction to combinational circuit
– unroll FSM over n time frames (flatten the design)

M(t1)

x(1)

s(1)

M(t2)

x(2)

s(2)

…
… M(tn)

x(n)

s(n)

Combinational logic: F(x(1,2, …n), s(1,2, … n))

– check equivalence of the resulting combinational circuits

– problem: the resulting circuit can be too large too handle

Feb 02, 2012 EE-709@IITB 9

Sequential Verification
• Approach 2: Based on isomorphism of state transition graphs

– two machines M1, M2 are equivalent if their state transition
graphs (STGs) are isomorphic

– perform state minimization of each machine

– check if STG(M1) and STG(M2) are isomorphic

State min.
1/0

0 1.2

0/0

1/1

0/1

M1min

1/0

0 1

0/0

1/1

0/1

M2

0/0 0/1

1/0

0 1

0/1 2

1/0

M1

1/1

Feb 02, 2012 EE-709@IITB 10

State Minimization

X-Successor – If an input sequence X takes a machine
from state Si to state Sj, then Sj is said to be the X-
successor of Sj

Strongly connected:- If for every pair of states (Si, Sj) of
a machine M there exists an input sequence which
takes M from state Si to Sj, then M is said to be
strongly connected

Feb 02, 2012 EE-709@IITB 11

State Equivalence

• Two states Si and Sj of machine M are
distinguishable if and only if there exists at least one
finite input sequence which, when applied to M,
causes different output sequences, depending on
whether Si or Sj is the initial state

• The sequence which distinguishes these states is
called a distinguishing sequence of the pair (Si, Sj)

• If there exists for pair (Si, Sj) a distinguishing
sequence of length k, the states in (Si, Sj) are said to
be k-distinguishable

Feb 02, 2012 EE-709@IITB 12

State Equivalence

Machine M1

PS NS, z

X = 0 X = 1

A E, 0 D, 1

B F, 0 D, 0

C E, 0 B, 1

D F, 0 B, 0

E C, 0 F, 1

F B, 0 C, 0

(A, B) – 1 Distinguishable

(A, E) – 3 Distinguishable

 Seq - 111

k-equivalent – The states that
are not k-distinguishable are
said to be k-equivalent

Also r-equivalent r<k

Feb 02, 2012 EE-709@IITB 13

State Equivalence

• States Si and Sj of machine M are said to be
equivalent if and only if, for every possible input
sequence, the same output sequence will be
produced regardless of whether Si or Sj is the initial
state

• States that are k-equivalent for all k < n-1, are
equivalent

• Si = Sj, and Sj=Sk, then Si=Sk

Feb 02, 2012 EE-709@IITB 14

State Equivalence

• The set of states of a machine M can be
partitioned into disjoint subsets, known as
equivalence classes

• Two states are in the same equivalence class if
and only if they are equivalent, and are in
different classes if and only if they are
distinguishable

Property: If Si and Sj are equivalent states, their
corresponding X-successors, for all X, are also
equivalent

Feb 02, 2012 EE-709@IITB 15

State Minimization Procedure
1. Partition the states of M into subsets s.t. all states in same

subset are 1-equivalent

2. Two states are 2-equivalent iff they are 1-equivalent and
their Ii successors, for all possible Ii, are also 1-equivalent

PS NS, z

X = 0 X = 1

A E, 0 D, 1

B F, 0 D, 0

C E, 0 B, 1

D F, 0 B, 0

E C, 0 F, 1

F B, 0 C, 0

P0 = (ABCDEF)

P1 = (ACE), (BDF)

P2 = (ACE), (BD), (F)

P3 = (AC), (E), (BD), (F)

P4 = (AC), (E), (BD), (F)

Feb 02, 2012 EE-709@IITB 16

Machine Equivalence

• Two machines M1, M2 are said to be equivalent if and only
if, for every state in M1, there is corresponding equivalent
state in M2

• If one machine can be obtained from the other by relabeling
its states they are said to be isomorphic to each other

PS NS, z

X = 0 X = 1

AC - α β, 0 γ, 1

E - β α, 0 δ, 1

BD - γ δ, 0 γ, 0

F - δ γ, 0 α, 0

Feb 02, 2012 EE-709@IITB 17

State Equivalence - Example

Machine M2

 PS NS, z

X = 0 X = 1

A E, 0 C, 0

B C, 0 A, 0

C B, 0 G, 0

D G, 0 A, 0

E F, 1 B, 0

F E, 0 D, 0

G D, 0 G, 0

P0 = (ABCDEFG)

P1 = (ABCDFG) (E)

P2 = (AF) (BCDG) (E)

P3 = (AF) (BD) (CG) (E)

P4 = (A) (F) (BD) (CG) (E)

P5 = (A) (F) (BD) (CG) (E)

Reachability-Based Equivalence Checking

• Build product machine of M1 and M2

• Traverse state-space of product machine
starting from reset states S0, S1

• Test equivalence of outputs in each state

• Can use any state-space traversal
technique

M1

M2

=?

Outputs Inputs

S0

S1
Product Machine

S0

S1

Feb 02, 2012 EE-709@IITB 18

Approach 3: Symbolic Traversal Based Reachability Analysis

Feb 02, 2012 EE-709@IITB 19

Sequential Verification

• Symbolic FSM traversal of the product machine

M1 M2
S1 S2

O2 O1

X

O(M)

• Given two FSMs: M1(X,S1, δ1, λ1,O1),
M2(X,S2, δ2 , λ2,O2)

• Create a product FSM: M = M1x M2

 traverse the states of M and check its
output for each transition

 the output O(M) =1, if outputs O1= O2

 if all outputs of M are 1, M1 and M2 are
equivalent

 otherwise, an error state is reached

 error trace is produced to show: M1 ≠ M2

Feb 02, 2012 EE-709@IITB 20

Product Machine - Construction
• Define the product machine M(X, S, S0, , ,O)

– states, S = S1 S2

– next state function, (s, x) : (S1 S2) X (S1 S2)

– output function, (s, x) : (S1 S2) X {0,1}

M1 M2

1 2
2 1

X

• Error trace (distinguishing sequence)
that leads to an error state

- sequence of inputs which
produces 1 at the output of M

- produces a state in M for which
M1 and M2 give different outputs

(s,x) = 1(s1,x) 2(s2,x)
O = 1 if O1=O2

0 otherwise

Feb 02, 2012 EE-709@IITB 21

FSM Traversal - Algorithm
• Traverse the product machine M(X,S,, ,O)

– start at an initial state S0

– iteratively compute symbolic image Img(S0,R)
(set of next states):

Img(S0,R) = x s S0(s) • R(x,s,t)

R = i Ri = i (ti i(s,x))

 until an error state is reached

– transition relation Ri for each next state variable ti

can be computed as ti = (t (s,x))

(this is an alternative way to compute transition relation, when design is
specified at gate level)

Feb 02, 2012 EE-709@IITB 22

Construction of the Product FSM

• For each pair of states, s1 M1, s2 M2

 create a combined state s = (s1. s2) of M

 create transitions out of this state to other states of M

 label the transitions (input/output) accordingly

1/0

0 1

0/0

1/1

0/1
M1

M2

1/1

2

0 1
0/0

0/0

0/1
1/1 1/0

M1

1/0

0

0/1

1

M2 2

0/1

1/0
1

1.1

0/1
11

1/1
0.2

00

Output = { 1 OK

0 error

Feb 02, 2012 EE-709@IITB 23

FSM Traversal in Action

• STOP - backtrack to initial state to get error trace: x={1,1,1,0}

1/0

0 1

0/0

1/1

0/1

M1
M2

2

0 1
0/0

0/0

0/1

1/1

1/1 1/0

1.1
0/1

1/1

0/1

0.2

1/1

1.0
0/0

1/0

0/0 1.2

1/0

0.1

1/0

0/0 Out(M)

State reached x=0 x=1

Error state

0.0
0/1 1/1 M

Initiall states: s1=0, s2=0, s=(0.0)

• New 0 = (0.0) 1 1

• New 1 = (1.1) 1 1

• New 2 = (0.2) 1 1

• New 3 = (1.0) 0 0

24

Thank you

Feb 02, 2012 EE-709@IITB

