Automatic Test Pattern Generation - IV

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Dept. of Electrical Engineering Indian Institute of Technology Bombay viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits Lecture – 15 (Feb 06, 2012)

ATPG - Algorithmic

Path Sensitization Method

- Fault Sensitization
- Fault Propagation
- Line Justification

Path Sensitization Algorithms

- > D- Algorithm (Roth)
- ➢ PODEM (P. Goel)
- ≻FAN (Fujiwara)
- SOCRATES (Schultz)
- > SPIRIT (Emil & Fujiwara)

Common Concept

- ✤ Fault Activation problem → a LJ Problem
- ✤ The Fault Propagation problem →
 - 1. Select a FP path to PO \rightarrow Decision
 - 2. Once the path is selected \rightarrow a set of LJ problems
- ✤ The LJ Problems → Decisions or Implications

To justify $c = 1 \rightarrow a = 1$, b = 1 (Implication)

To justify $c = 0 \rightarrow a = 0$ or b = 0 (Decision)

✤ Incorrect decision → Backtrack → Another decision

FANout oriented test generation

FAN

(Fujiwara & Shimono, 1983)

EE-709@IITB

Prof. Hideo Fujiwara

- Prof. Fujiwara is Eminent Researcher and Academician in VLSI Testing
- Many contributions to VLSI Testing
- Co-founder of ATS and WRTLT
- Special Workshop was organized in his honour with 20th IEEE ATS 2011

The MIT Press

EE-709@IITB

TG Algorithms

Objective

- TG time reduction
 - Reduce number of backtracks
 - Find out the non-existence of solution as soon as possible
 - Branch and bound

New concepts:

Immediate assignment of uniquelydetermined signals

>Unique sensitization

Stop Backtrace at head lines

>Multiple Backtrace

Strategies:

Strategy1:

Implication

Strategy 2:

Assign faulty signal D or D' that is uniquely determined or implied by the fault in question

PODEM Fails to Determine Unique Signals

- Backtracing operation fails to set all 3 inputs of gate *L* to 1
 - Causes unnecessary search

FAN -- Early Determination of Unique Signals

- Determine all unique signals implied by current decisions immediately
 - Avoids unnecessary search

PODEM Makes Unwise Signal Assignments

n Blocks fault propagation due to assignment J = 0

FAN – Unique sensitization

n FAN immediately sets necessary signals to propagate fault

Unique sensitization and implication

Partial sensitization, which uniquely determined, is called unique sensitization

Strategies:

Strategy 3:

 \blacktriangleright When the D-frontier consists of a single gate, apply a unique sensitization

Strategy 4:

Stop the backtrace at a *headline*, and postpone the line justification for the *headline* to later

Headlines

- When a line L is reachable from a fanout point, L is said to be bound
- A signal line that is not bound is said to be free
- When a line is adjacent to some bound line, it is said to be head line

Decision Trees

Strategies:

Strategy 5:

Multiple backtracing (concurrent backtracing of more than one path) is more efficient than backtracing along a single path

Objective for multiple backtrace

(s, n₀(s), n₁(s))

Multiple Backtrace

Objective for multiple backtrace

Triplet

AND gate

Let X be the easiest to set to 0 input

$$n_0(X) = n_0(Y), n_1(X) = n_1(Y)$$

For other inputs X_i

$$\begin{array}{l} n_0(X_i)=0 \ , \ n_1(X_i)=n_1(Y) \\ \mbox{OR gate} \\ \mbox{Let } X \ be \ the \ easiest \ to \ set \ to \ 1 \ input \\ n_0(X)=n_0(Y), \ \ n_1(X)=n_1(Y) \\ \mbox{For other inputs } X_i \\ n_0(X_i)=n_0(Y) \ , \ n_1(X_i)=0 \end{array}$$

NOT gate $n_0(X) = n_1(Y), n_1(X) = n_0(Y)$

Fanout points

$$n_0(X) = \sum n_0(X_i), n_1(X) = \sum n_1(X_i)$$

AND Gate Vote Propagation

EE-709@IITB

Multiple Backtrace Fanout Stem Voting

- Fanout Stem --
 - **#** 0's = Σ Branch **#** 0's,
 - **#** 1's = Σ Branch **#** 1's

FAN

EE-709@IITB

Strategies:

Strategy 6:

In the multiple backtrace, if an objective at a fanout point p has a contraditory requirement, that is, if both $n_0(p)$ and $n_1(p)$ are non-zero, stop backtrace so as to assign a binary value to the fanout point.

Static and Dynamic Compaction of Sequences

- Static compaction
 - ATPG should leave unassigned inputs as X
 - Two patterns *compatible* if no conflicting values for any PI
 - Combine two tests t_a and t_b into one test $t_{ab} = t_a \cap t_b$ using D-intersection
 - Detects union of faults detected by $t_a \& t_b$
- Dynamic compaction
 - Process every partially-done ATPG vector immediately
 - Assign 0 or 1 to PIs to test additional faults

Compaction Example

•
$$t_1 = 0 \ 1 \ X$$
 $t_2 = 0 \ X \ 1$
 $t_3 = 0 \ X \ 0$ $t_4 = X \ 0 \ 1$

- Combine t_1 and t_3 , then t_2 and t_4
- Obtain:

$$-t_{13} = 0 \ 1 \ 0 \qquad t_{24} = 0 \ 0 \ 1$$

• *Test Length* shortened from 4 to 2

Thank You

EE-709@IITB