Sequential ATPG

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Dept. of Electrical Engineering Indian Institute of Technology Bombay viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits Lecture – 16 (Feb 07, 2012)

Static and Dynamic Compaction of Sequences

- Static compaction
 - ATPG should leave unassigned inputs as X
 - Two patterns *compatible* if no conflicting values for any PI
 - Combine two tests t_a and t_b into one test $t_{ab} = t_a \cap t_b$ using D-intersection
 - Detects union of faults detected by $t_a \& t_b$
- Dynamic compaction
 - Process every partially-done ATPG vector immediately
 - Assign 0 or 1 to PIs to test additional faults

Compaction Example

•
$$t_1 = 0 \ 1 \ X$$
 $t_2 = 0 \ X \ 1$
 $t_3 = 0 \ X \ 0$ $t_4 = X \ 0 \ 1$

- Combine t_1 and t_3 , then t_2 and t_4
- Obtain:

$$-t_{13} = 0 \ 1 \ 0 \qquad t_{24} = 0 \ 0 \ 1$$

• Test Length shortened from 4 to 2

Sequential Circuits

- A sequential circuit has memory in addition to combinational logic
- Test for a fault in a sequential circuit is a sequence of vectors, which
 - > Initializes the circuit to a known state
 - > Activates the fault, and
 - Propagates the fault effect to a PO
- Methods of sequential circuit ATPG
 - Time-frame expansion methods
 - Simulation-based methods

Example: A Serial Adder

Time-Frame Expansion

Concept of Time-Frames

 If the test sequence for a single stuck-at fault contains *n* vectors,

- Replicate combinational logic block n times
- Place fault in each block
- Generate a test for the multiple stuck-at fault using combinational ATPG with 9-valued logic

Example for Logic Systems

Five-Valued Logic (Roth)

Nine-Valued Logic (Muth)

Implementation of ATPG

- Select a PO for fault detection based on drivability analysis.
- Place a logic value, 1/0 or 0/1, depending on fault type and number of inversions.
- Justify the output value from PIs, considering all necessary paths and adding backward time-frames.
- If justification is impossible, select another PO and repeat justification (use drivability).
- If the procedure fails for all reachable POs, then the fault is untestable.
- If 1/0 or 0/1 cannot be justified at any PO, but 1/X or 0/X can be justified, the the fault is *potentially detectable*.

Complexity of ATPG

Synchronous circuit -- All flip-flops controlled by clocks; PI and PO synchronized with clock:

- Cycle-free circuit No feedback among flip-flops: Test generation for a fault needs no more than *dseq* + 1 time-frames, where *dseq* is the sequential depth.
- Cyclic circuit Contains feedback among flip-flops: May need 9^{Nff} time-frames, where Nff is the number of flip-flops.

max = Number of distinct vectors with 9-valued elements = 9^{Nff}

Feb 22, 2008

Cycle-Free Circuits

- Characterized by absence of cycles among flip-flops and a sequential depth, dseq.
- Solution of the maximum number of flip-flops on any path between PI and PO.
- Both good and faulty circuits are initializable.
- Test sequence length for a fault is bounded by dseq + 1.

Cycle-Free Example

Thank You

E0-286@SERC