Sequential Equivalence Checking - II

Virendra Singh Associate Professor

Computer Architecture and Dependable Systems Lab.

Dept. of Electrical Engineering Indian Institute of Technology Bombay viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits Lecture – 17 (Feb 08, 2012)

Reachability-Based Equivalence Checking

Approach 3: Symbolic Traversal Based Reachability Analysis

- Build product machine of M₁ and M₂
- Traverse state-space of product machine starting from reset states S₀, S₁
- Test equivalence of outputs in each state
- Can use any state-space traversal technique

Sequential Verification

- Symbolic FSM traversal of the product machine
- Given two FSMs: $M_1(X,S_1, \delta_1, \lambda_1,O_1)$, $M_2(X,S_2, \delta_2, \lambda_2,O_2)$
- Create a product FSM: $M = M_1 \mathbf{x} M_2$
 - traverse the states of M and check its output for each transition
 - > the output O(M) =1, if outputs $O_1 = O_2$
 - if all outputs of M are 1, M₁ and M₂ are equivalent
 - > otherwise, an *error state* is reached
 - \succ error trace is produced to show: $M_1 \neq M_2$

Product Machine - Construction

- Define the product machine M(X, S, S⁰, δ , λ ,O)
 - states, $S = S_1 \times S_2$
 - next state function, $\delta(s, x) : (S_1 \times S_2) \times X \rightarrow (S_1 \times S_2)$
 - output function, $\lambda(s, x) : (S_1 \times S_2) \times X \rightarrow \{0, 1\}$

FSM Traversal - Algorithm

- Traverse the product machine M(X,S, δ , λ ,O)
 - start at an initial state S_0
 - iteratively compute symbolic image Img(S₀, R) (set of next states):

$$Img(S_{0}, R) = \exists_{x} \exists_{s} S_{0}(s) \bullet R(x, s, t)$$
$$R = \prod_{i} R_{i} = \prod_{i} (t_{i} \equiv \delta_{i}(s, x))$$

until an *error state* is reached

- transition relation R_i for each next state variable t_i can be computed as $t_i = (t \otimes \delta(s, x))$

(this is an alternative way to compute transition relation, when design is specified at gate level)

Construction of the Product FSM

- For each pair of states, $s_1 \in M_1$, $s_2 \in M_2$
 - \succ create a combined state s = (s₁. s₂) of M
 - create transitions out of this state to other states of M
 - Iabel the transitions (input/output) accordingly

EE-709@IITB

FSM Traversal in Action

• **STOP** - backtrack to initial state to get *error trace: x*={1,1,1,0}

FSM Traversal in Action

• STOP: No new reachable state

FSM Traversal in Action

• Erroneous states are not reachable

How to Represent States ?

Not practical to represent individual states

- Represent s set of states symbolically
- OBDD encodes boolean functions
 - Code elements S
- Represent a subset T as boolean function f_T

$$\clubsuit \quad \mathsf{f}_{\mathsf{T}} = \{0,1\}^n \rightarrow \{0.1\}$$

How to Represent States ?

- Computation uses symbolic BFS approach to all reachable states by shortest path
- Key step is image computation

Img(δ(s,x), C(s))

- BFS allows to deal multiple states simultaneously
- BDD is used to represent TF

♣ Let
$$t_i = \delta_i(s,x)$$
 i = 1,2,...n

C(s) is a symbolic state set

How to Represent TF?

- Given a deterministic transition function (s,x) the corresponding transition relation is defined by
 - $\succ T(s,x,t) = \Pi (t_i = \delta_i(s,x))$
- T(s,x,t) = 1 denotes a set of encoded tripples (s,x,t) , each representing a transition in the FST of a given FSM
- Straight forward to compute image
- Need new boolean operation
 - Existential Abstraction
 - $\ge \exists_{xi} \cdot f = f_{xi} + f_{x'i}$
 - f_{xi}- smallest (fewest minterm) function that contains all minterms of f and independent of xi

Thank you

EE-709@IITB