Scan Design

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Dept. of Electrical Engineering Indian Institute of Technology Bombay viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits Lecture – 19 (Feb 13, 2012)

Sequential Circuits

- A sequential circuit has memory in addition to combinational logic
- Test for a fault in a sequential circuit is a sequence of vectors, which
 - > Initializes the circuit to a known state
 - Activates the fault, and
 - Propagates the fault effect to a PO
- Methods of sequential circuit ATPG
 - Time-frame expansion methods
 - Simulation-based methods

Difficulties in Seq. ATPG

- Poor initializability.
- Poor controllability/observability of state variables.
- Gate count, number of flip-flops, and sequential depth do not explain the problem.
- Cycles are mainly responsible for complexity.
- An ATPG experiment:

Circuit	Number of gates	Number of flip-flops	Sequential depth	ATPG CPU s	Fault coverage
TLC	355	21	14*	1,247	89.01%
Chip A	1,112	39	14	269	98.80%

* Maximum number of flip-flops on a PI to PO path

Benchmark Circuits

Circuit	s1196	s1238	s1488	s1494
PI	14	14	8	8
PO	14	14	19	19
FF	18	18	6	6
Gates	529	508	653	647
Structure	Cycle-free	Cycle-free	Cyclic	Cyclic
Sequential depth	4	4		
Total faults	1242	1355	1486	1506
Detected faults	1239	1283	1384	1379
Potentially detected faults	0	0	2	2
Untestable faults	3	72	26	30
Abandoned faults	0	0	76	97
Fault coverage (%)	99.8	94.7	93.1	91.6
Fault efficiency (%)	100.0	100.0	94.8	93.4
Max. sequence length	3	3	24	28
Total test vectors	313	308	525	559
Gentest CPU s (Sparc 2)	10	15	19941	19183

Finite State Machines

- A fault in a machine M₀ transforms into another machine M_i with n or fewer states
- A test sequence is a sequence of inputs that distinguishes M₀ from each of M_i defined by a fault
- A synchronizing sequence for a sequential machine M is an input sequence whose application is guaranteed to leave M in a certain final state irrespective of initial state of M
- A homing sequence for M is an input sequence whose application makes it possible to determine the final state of M by observing the corresponding output sequence that M produces

Finite State Machines

- A distinguishing sequence is an input sequence whose application makes it possible to determine the initial state of M by observing the corresponding output sequence M produces
- A test sequence is a sequence of inputs that distinguishes M₀ from each of M_i defined by a fault
- Test sequence can be generated from the counter example of equivalence of M₀ and M_i

Scan Design

Circuit is designed using pre-specified design rules.

- Test structure (hardware) is added to the verified design:
 - >Add a *test control* (TC) primary input.
 - Replace flip-flops by scan flip-flops (SFF) and connect to form one or more shift registers in the test mode.
 - Make input/output of each scan shift register controllable/observable from PI/PO.
- Use combinational ATPG to obtain tests for all testable faults in the combinational logic.
- Add shift register tests and convert ATPG tests into scan sequences for use in manufacturing test.

Scan Flip-Flop (SFF)

Level-Sensitive Scan-Design Flip-Flop (LSSD-SFF)

Adding Scan Structure

Comb. Test Vectors

Comb. Test Vectors

 $n_{\rm sff}$ = number of scan flip-flops

Testing Scan Register

- Scan register must be tested prior to application of scan test sequences.
- A shift sequence 00110011 . . . of length n_{sff}+4 in scan mode (TC=0) produces 00, 01, 11 and 10 transitions in all flip-flops and observes the result at SCANOUT output.
- Total scan test length: $(n_{comb} + 2) n_{sff} + n_{comb} + 4$ *clock periods*.
- Example: 2,000 scan flip-flops, 500 comb. vectors, total scan test length ~ 10⁶ clocks.
- Multiple scan registers reduce test length.

Multiple Scan Registers

- Scan flip-flops can be distributed among any number of shift registers, each having a separate scanin and scanout pin.
- Test sequence length is determined by the longest scan shift register.
- Just one test control (TC) pin is essential.

Scan Overheads

- IO pins: One pin necessary.
- Area overhead:
 - Gate overhead = $[4 n_{sff}/(n_g+10n_{ff})] \times 100\%$, where $n_g = comb. gates$; $n_{ff} = flip-flops$; Example $n_g = 100k$ gates, $n_{ff} = 2k flip-flops$, overhead = 6.7%.
 - More accurate estimate must consider scan wiring and layout area.
- Performance overhead:
 - Multiplexer delay added in combinational path; approx. two gate-delays.
 - Flip-flop output loading due to one additional fanout; approx. 5-6%.

Hierarchical Scan

Scan flip-flops are chained within subnetworks before chaining subnetworks.

Advantages:

>Automatic scan insertion in netlist

Circuit hierarchy preserved – helps in debugging and design changes

Disadvantage: Non-optimum chip layout.

Optimum Scan Layout

ATPG Example: S5378

	Original	Full-scan
Number of combinational gates Number of non-scan flip-flops (10 gates each) Number of scan flip-flops (14 gates each) Gate overhead Number of faults PI/PO for ATPG Fault coverage Fault efficiency CPU time on SUN Ultra II, 200MHz processor Number of ATPG vectors	Original 2,781 179 0 0.0% 4,603 35/49 70.0% 70.9% 5,533 s 414	Full-scan 2,781 0 179 15.66% 4,603 214/228 99.1% 100.0% 5 s
Scan sequence length	414	105,662

Thank You

EE-709@IITB