
Sequential Equivalence
Checking - IV

Virendra Singh
Associate Professor

Computer Architecture and Dependable Systems Lab.
Dept. of Electrical Engineering
Indian Institute of Technology

Bombay
viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits

Lecture – 20 (Feb 14, 2012)

Feb 14, 2012 EE-709@IITB 2

Symbolic FSM Traversal

 Implicit representation

 Graphs and their traversal are converted to
Boolean functions and Boolean operations

 BDD can be use for symbolic computation

Feb 14, 2012 EE-709@IITB 3

Symbolic FSM Representation

• M (Q, , , q0, F)

• Characteristic Function

• Transition Function

Feb 14, 2012 EE-709@IITB 4

Symbolic FSM Traversal

Relational representation of transition function

s2 = p1 + a2

Feb 14, 2012 EE-709@IITB 5

Symbolic FSM Traversal

Transition relation

Set of all next state for all possible inputs

Next state

Present state: 00, Input: 10

T(0,0,s1,s2,0,1) = S1 . S2

11

Feb 14, 2012 EE-709@IITB 6

Symbolic Model Checking

 set of all next states if the present state is
either 00 or 11

characteristic function

Next state

Feb 14, 2012 EE-709@IITB 7

Symbolic FSM Traversal

N(S1 , S2) = S1 + S2

Next Sates: 01, 10, 11

Feb 14, 2012 EE-709@IITB 8

Forward Reachability
Forward Reachable States by Symbolic Computation

Input: transition relation T(p, s, a) and initial state I(s)

Output: a characteristic function R(s) of all reachable states

ReachableState(T, I):

1. Set S = I

2. Compute N(s) =  (p,a)(T(p,s,a)·S(p))

3. R = S + N

4. If R S, set S = R and repeat steps 2 and 3; otherwise,
return R.

Feb 14, 2012 EE-709@IITB 9

Forward Reachability
• BDD is used

Feb 14, 2012 EE-709@IITB 10

Symbolic Model Checking

Forward Faulty State Reachability Analysis

Input: transition relation T(p, s, a), initial state I(s), and a fault
state F(s)

Output: a resolution on whether any faulty state is reachable

FaultyStateReachability(T, I, F):

1. Set S = I.

2. If (S·F) 0, return YES.

3. Compute N(s) =  (p, a)(T(p, s, a) ·S(p)).

4. R = S + N.

5. If R S, set S = R and repeat steps 2 through 5; otherwise,
return NO.

Solving Seq. EC as Comb. EC

LATCHES

NS1

PI PO

PS1

Comb.

Logic

PI PO

NS2
PS2

Comb.

Logic

C
IR

C
U

IT
 1

C

IR
C

U
IT

 2

MATCH PI

PS

PO

NS

Comb.

Logic 1

Comb.

Logic 2

=
?

PO

NS

Combinational Equiv.
Checking

Feb 14, 2012 EE-709@IITB 11

Combinational EC with BDD and SAT

LATCHES

NS1

PI PO

PS1

Comb.

Logic

PI PO

NS2
PS2

Comb.

Logic

C
IR

C
U

IT
 1

C

IR
C

U
IT

 2

MATCH PI

PS

PO

NS

Comb.

Logic 1

Comb.

Logic 2

=
?

PO

NS

Combinational Equiv.
Checking

Represent logic functions

for this entire circuit with

BDD or SAT

Feb 14, 2012 EE-709@IITB 12

Methods for Latch Mapping

• Incomplete Methods

– Regular expression-based using latch names

– Using simulation (Cho & Pixley ‘97):
• Group latches with identical simulation signatures

– Group based on structural considerations e.g. cone of
influence

– Incomplete run of complete method below
(Anastasakis et al DAC ‘02)

• Complete Methods

– Functional fixed-point iteration based on Van Eijk’s
algorithm (van Eijk ’95)

Feb 14, 2012 EE-709@IITB 13

Van Eijk’s Method for Latch Mapping

PI

PS

Comb.

Logic 1

Comb.

Logic 2

NS

NS

=
?

Apply Latch
Mapping

Assumptions

Initial Latch
Mapping

Approximation

Verify Latch
Mapping

Assumptions

Fixed-point ? Iterate

Done !!

Yes

No

Feb 14, 2012 EE-709@IITB 14

Van Eijk’s Method for Latch Mapping

Feb 14, 2012 EE-709@IITB 15

Move to System-Level Design

System-level design

Manual effort

RTL

Gate-level design

Architecture exploration

Current design

iterations

Barrier to adoption of

System-level design

Methodology!

Feb 14, 2012 EE-709@IITB 16

System-Level Verification

Manual effort

RTL

Gate-level design

Property & Model

Checking

Equivalence

Checking

Feb 14, 2012 EE-709@IITB 17

System-level Synthesis

System-level design

Manual effort

RTL

Gate-level design

Automatic
Synthesis

Feb 14, 2012 EE-709@IITB 18

19

Quote from Clarke & Emerson 81

“The task of proof construction is in general quite tedious and a good deal of
ingenuity may be required to organize the proof in a manageable fashion.

We argue that proof construction is unnecessary in the case of finite state
concurrent systems and can be replaced by a model-theoretic approach which
will mechanically determine if the system meets a specification expressed in
propositional temporal logic.

The global state graph of the concurrent systems can be viewed as a finite Kripke
structure and an efficient algorithm can be given to determine whether a structure
is a model of a particular formula (i.e. to determine if the program meets its
specification)”.

Feb 14, 2012 EE-709@IITB

Turing Award 2007
• Edmund M. Clark
• E. Allen Emerson
• Joseph Sifakis

20

The Model Checking Problem

The Model Checking Problem (CE81):

 Let M be a Kripke structure (i.e., state-transition graph).

 Let f be a formula of temporal logic (i.e., the
specification).

 Find all states s of M such that M, s ² f

Preprocessor Model Checker

Kripke Structure M

Formula f
True or Counterexample

Feb 14, 2012 EE-709@IITB

21

 No proofs!!

 Fast (compared to other rigorous methods such)

 Diagnostic counterexamples

 No problem with partial specifications

 Logics can easily express man concurrency properties

Advantages of Model Checking

Safety Property:
bad state unreachable

Counterexample

Initial State

Feb 14, 2012 EE-709@IITB

22

Main Disadvantages

• Proving a program helps you understand it.
 Bogus!

• Temporal logic specifications are ugly.
 Depends on who is writing them.

• Writing specifications is hard.
 True, but perhaps partially a matter of education.

• State explosion is a major problem.
 Absolutely true, but we are making progress!

Feb 14, 2012 EE-709@IITB

23

Temporal Logic

Temporal logics describe the ordering of events in time without
introducing time explicitly.

They were developed by philosophers for investigating how time is
used in natural language arguments.

Most have an operator like G f that is true in the present if f is
always true in the future.

To assert that two events e1 and e2 never occur at the same time,
one writes G (: e1 Ç : e2).

The meaning of a temporal logic formula is determined
with respect to a labeled state-transition graph or
Kripke structure.

• Hughes and Creswell 77

Feb 14, 2012 EE-709@IITB

24

Temporal Logic and Program Verification

Burstall 74, Kroeger 77, and Pnueli 77, all proposed using
temporal logic for reasoning about computer programs.

Pnueli 77 was the first to use temporal logic for
reasoning about concurrency.

He proved program properties from a set of axioms that
described the behavior of the individual statements.

The method was extended to sequential circuits
by Bochmann 82 and Owicki and Malachi 81.

Since proofs were constructed by hand, the technique was
often difficult to use in practice.

Feb 14, 2012 EE-709@IITB

25

Computation Tree Logics

Feb 14, 2012 EE-709@IITB

26

Expressive Power of Temporal Logic

Lamport was the first to investigate the expressive power
of various temporal logics for verification.

His 1980 POPL paper discussed two logics: a simple linear-time logic
and a simple branching-time logic.

Branching-time logic could not express certain natural fairness
properties that can easily expressed in the linear-time logic.

Linear-time logic could not express the possibility of an event
occurring at sometime in the future along some computation path.

Technical difficulties with method that Lamport used for his results
(somewhat like comparing "apples and oranges").

Emerson and Halpern fixed these problems in an 83 POPL paper

Feb 14, 2012 EE-709@IITB

27

Clarke and Emerson 81

Edmund M. Clarke and E. Allen Emerson, Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic.
Logics of Programs Workshop, Yorktown Heights, New York, May
1981, LNCS 131. Also in Emerson’s Thesis (81).

The temporal logic model checking algorithms of Clarke and
Emerson 1980's allowed this type of reasoning to be automated.

Checking that a single model satisfies a formula is much easier
than proving the validity of a formula for all models.

The algorithm of Clarke and Emerson for CTL was polynomial in
|M | and in |f |.

We also showed how fairness could be handled without
changing the complexity of the algorithm.

Feb 14, 2012 EE-709@IITB

28

The EMC Model Checker

Clarke, Emerson, and Sistla (83 / 86) devised an improved
algorithm that was linear in the product of the |M | and |f |.

The algorithm was implemented in the EMC model checker and
used to check a number of network protocols and sequential
circuits.

Could check state transition graphs with between 104 and 105
states at a rate of about 100 states per second for typical formulas.

In spite of these limitations, EMC was used successfully to find
previously unknown errors in several published circuit designs.

• EMC tool
• Fairness Constraints
• Emptiness of Non-deterministic Buchi Automata

Feb 14, 2012 EE-709@IITB

29

Hardware Verification

• B. Mishra and E. M. Clarke, Automatic and Hierarchical
Verification of Asynchronous Circuits using Temporal Logic, CMU
Tech Report (CMU-CS-83-155) and Theoretical Computer Science
38, 1985, pages 269-291.

First use of Model Checking for
Hardware Verification

(found bug in the Sietz FIFO Queue
from Mead and Conway,
Introduction to VLSI Systems).

• Mishra and Clarke 83;
Browne, Clarke, and Dill 86;
Dill and Clarke 86

Feb 14, 2012 EE-709@IITB

30

Big Events in Model Checking since 1990

• Timed and Hybrid Automata

• Model Checking for Security Protocols

• Bounded Model Checking

• Localization Reduction and CEGAR

• Compositional Model Checking and Learning

• Infinite State Systems (e.g., pushdown systems)

Feb 14, 2012 EE-709@IITB

31

Challenges for the Future

• Software Model Checking, Model Checking and Static Analysis

• Model Checking and Theorem Proving (PVS, STEP, SyMP)

• Exploiting the Power of SAT, Satisfiability Modulo Theories (SMT)

• Probabilistic Model Checking

• Efficient Model Checking for Timed and Hybrid Automata

• Interpreting Counterexamples

• Coverage (incomplete Model Checking, have I checked enough
properties?)

• Scaling up even more!!

Feb 14, 2012 EE-709@IITB

Thank you

Feb 14, 2012 EE-709@IITB 32

