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Scan Overheads 
• IO pins: One pin necessary. 

• Area overhead: 

– Gate overhead = [4 nsff/(ng+10nff)] x 100%, where ng 
= comb. gates; nff = flip-flops; Example –  ng = 100k 
gates, nff = 2k flip-flops, overhead = 6.7%. 

– More accurate estimate must consider scan wiring 
and layout area. 

• Performance overhead: 

– Multiplexer delay added in combinational path; 
approx. two gate-delays. 

– Flip-flop output loading due to one additional 
fanout; approx. 5-6%.  
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Hierarchical Scan 
Scan flip-flops are chained within subnetworks 

before chaining subnetworks. 

Advantages: 

Automatic scan insertion in netlist 

Circuit hierarchy preserved – helps in debugging 
and design changes 

Disadvantage: Non-optimum chip layout. 
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Optimum Scan Layout 
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ATPG Example: S5378 
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Original 
 
  2,781 
     179 
         0 
      0.0% 
  4,603 
  35/49 
    70.0% 
    70.9% 
  5,533 s 
     414 
     414 

Full-scan 
 
   2,781 
          0 
      179 
   15.66% 
    4,603 
214/228 
      99.1% 
    100.0% 
           5 s 
       585 
105,662 

Number of combinational gates 
Number of non-scan flip-flops (10 gates each) 
Number of scan flip-flops (14 gates each) 
Gate overhead 
Number of faults 
PI/PO for ATPG 
Fault coverage 
Fault efficiency 
CPU time on SUN Ultra II, 200MHz processor 
Number of ATPG vectors 
Scan sequence length 



Scan Design Rules 

Use only clocked D-type of flip-flops for all 

state variables. 

At least one PI pin must be available for test; 

more pins, if available, can be used. 

All clocks must be controlled from PIs. 

Clocks must not feed data inputs of flip-flops. 
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Correcting a Rule Violation 

• All clocks must be controlled from PIs. 
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Partial-Scan Definition 
A subset of flip-flops is scanned. 

Objectives: 

– Minimize area overhead and scan sequence 
length, yet achieve required fault coverage 

– Exclude selected flip-flops from scan: 

Improve performance 

Allow limited scan design rule violations 

– Allow automation: 

In scan flip-flop selection 

In test generation 

– Shorter scan sequences 
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Partial-Scan Architecture 
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Relevant Results 

Theorem1: A cycle-free circuit is always initializable.  
It is also initializable in the presence of any non-flip-
flop fault. 

 

Theorem 2: Any non-flip-flop fault in a cycle-free 
circuit can be detected by at most dseq + 1 vectors. 

 

ATPG complexity: To determine that a fault is 
untestable in a cyclic circuit, an ATPG program using 
nine-valued logic may have to analyze 9Nff time-
frames, where Nff is the number of flip-flops in the 
circuit. 
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A Partial-Scan Method 

Select a minimal set of flip-flops for scan to 

eliminate all cycles. 

Alternatively, to keep the overhead low only long 

cycles may be eliminated. 

In some circuits with a large number of self-loops, 

all cycles other than self-loops may be eliminated. 
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The MFVS Problem 
 For a directed graph find a set of vertices with smallest 

cardinality such that the deletion of this vertex-set makes 
the graph acyclic. 

 The minimum feedback vertex set (MFVS) problem is NP-
complete; practical solutions use heuristics. 

 A secondary objective of minimizing the depth of acyclic 
graph is useful. 
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Should Serial Scan Continue 
 

A solution to test power, test time and test data volume 
• Three Problems with serial-scan 

– Test power 

– Test application time 

– Test data volume 

• Efforts and limitations 

– ATPG for low test power consumption 

 Test power    Test length  

– Reducing scan clock frequency 

 Test power    Test application time  

– Scan-chain re-ordering (with additional logic insertion) 

 Test power/time    Design time  

– Test Compression 

Test time/data size    Has limited capability for Compacted test 

 

• Orthogonal attack 

– Random access scan instead of Serial-scan 

– Hardware overhead?  Silicon cost << Testing cost 
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Random Access Scan 

 Architecture 

 

 Each FF has unique 
address 

 

 Address shift register 

 

 X-Y Decoder 

 

 Select FF to write/read 
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Saluja et al [ITC’04] 

A solution to test power, test time and test data volume 



Scan Operation Example 

• Test vector 

 

Test PPI(i
i
)
 

PPO(o
i
) 

t1 00101 00110 

t2 00100 00101 

t3 11010 11010 

t4 00111 01011 
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 Scan operation for t2 
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Test Vector Ordering 

• Test data volume and Test application time is 
proportional to the random access scan operation 

• Goal: Reduce # scan operation 

 

 
Test PPI(i

i
)
 

PPO(o
i
) 

t1 00101 00110 

t2 00100 00101 

t3 11010 11010 

t4 00111 01011 

Feb 16, 2012 EE-709@IITB 16 

V3 

Dummy 

V2 

V4 

V1 
5 

5 

5 

5 

0 
1 

1 
3 

3 

5 

4 

2 

4 

5 

1 

4 

# Scan operation = 8 



Hamming Distance Reduction 

• Don’t care values in PPI do not need scan operation 

– Use Don’t care identification method  

     Fully specified test vector  Vectors w/ X values on targeted bit positions 

      without loss of fault coverage  

1. Before vector ordering: Identify don’t cares in PPI 

2. Vector ordering 

3. Simulate test vector in order / Fill X’s with previous vectors PPO 

4. Identify more X’s on targeted bit in PPI  

  - odd vector   

  - even vector  

5. Repeat 3,4 until no more X’s are identified   
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Optimizing Address Scan 
• The cost of address shifting 

– # of scan operation x ASR width 
– Example address set = { 1, 5, 6, 11 } for 4-bit ASR 
– 4 X 4 = 16 

• Proper ordering of address can minimize shifting cost 
– Apply 11(1011) after 5(0101)  needs only 1 left-shift 

• Minimizing address shifting cost 
– Construct Address Shifting Distance Graph (ASD-graph) 
– Find min-cost Hamiltonian path using ATSP algorithm ( Result : 5 shifts ) 
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Result (Test Time/Data) 
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Thank You 
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