## Random Access Scan

#### Virendra Singh

#### Associate Professor

Computer Architecture and Dependable Systems Lab



Dept. of Electrical Engineering Indian Institute of Technology Bombay viren@ee.iitb.ac.in



EE 709: Testing & Verification of VLSI Circuits

Lecture – 23 (Feb 27, 2012)

### **Should Serial Scan Continue?**

- Three Problems with serial-scan
  - Test power
  - Test application time
  - Test data volume
- Efforts and limitations
  - ATPG for low test power consumption
    - $\rightarrow$  Test power  $\downarrow$  Test length  $\uparrow$
  - Reducing scan clock frequency
    - $\rightarrow$  Test power  $\downarrow$  Test application time  $\uparrow$
  - Scan-chain re-ordering (with additional logic insertion)
    - $\rightarrow$  Test power/time  $\downarrow$  Design time  $\uparrow$
  - Test Compression
    - $\rightarrow$ Test time/data size  $\downarrow$  Has limited capability for Compacted test
- Orthogonal attack
  - Random access scan instead of Serial-scan
  - Hardware overhead? Silicon cost << Testing cost</li>



#### Random Access Scan

- First proposed by Ando in 1980
- It was considered impractical due to large area overhead.
- Baik at al. revisited it in 2004 [ITC'04]
- Proposed as a simultaneous solution to test power, test time, and test data volume
- Baik,2005, proposed PRAS which showed around 3x speed up, reduction in test data volume with only minor increase in area compared to Serial Scan, thus making RAS practical



#### Random Access Scan: Architecture

A solution to test power, test time and test data volume

- Architecture
- Each FF has unique address
- Address shift register
- X-Y Decoder
- Select FF to write/read





EE-709@IITB

#### Scan Operation Example

• Test vector

| Test | PPI( <i>i<sub>i</sub></i> ) | <b>PPO(</b> o <sub>i</sub> ) |
|------|-----------------------------|------------------------------|
| t1   | 00101                       | 00110                        |
| t2   | 00100                       | 00101                        |
| t3   | 11010                       | 11010                        |
| t4   | 00111                       | 01011                        |

Scan operation for t2

Complete test application

Total number of scan operation = 15





#### **Test Vector Ordering**

- Test data volume and Test application time is proportional to the random access scan operation
- Goal: Reduce # scan operation

| Test | <b>PPI(</b> <i>i<sub>j</sub></i> ) | PPO(o <sub>i</sub> ) |
|------|------------------------------------|----------------------|
| t1   | 00101                              | 00110                |
| t2   | 00100                              | 00101                |
| t3   | 11010                              | 11010                |
| t4   | 00111                              | 01011                |



# Scan operation = 8



EE-709@IITB

#### **Optimizing Address Scan**

- The cost of address shifting
  - # of scan operation x ASR width
  - Example address set = { 1, 5, 6, 11 } for 4-bit ASR
  - -4X4 = 16
- Proper ordering of address can minimize shifting cost
  - − Apply 11(1011) after 5(0101)  $\rightarrow$  needs only 1 left-shift
- Minimizing address shifting cost
  - Construct Address Shifting Distance Graph (ASD-graph)
  - Find min-cost Hamiltonian path using ATSP algorithm (Result : 5 shifts)



# Thank You





EE-709@IITB