Model Checking - II

Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab. Dept. of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits

Lecture – 25 (Mar 01, 2012)

The Model Checking Problem

The Model Checking Problem (CE81):

- > Let *M* be a Kripke structure (i.e., state-transition graph).
- Let f be a formula of temporal logic (i.e., the specification).
- Find all states s of M such that M, s | = f

Temporal logic model checking

Finite State Machine (FSM)

<u>Mealy FSM: $\langle I, S, \delta, S_0, O, \lambda \rangle$ </u>

- I: input alphabet
- S: finite, non-empty set of states
- $\delta : S \times I \rightarrow S$, next-state function
- $S^0 \subseteq S$: set of initial (reset) states
- O: output alphabet
- $\lambda : S \times I \rightarrow O$, output function

State Transition Graph

	x = 0	x = 1
S1	S1,0	S2,1
S 2	S1,0	S2,0
S 3	S3,0	S1,1

State Transition Table

3 Step Process

Formal Specification

- Precise statement and property
- Environment constraint
- Logic: Temporal logic
- > Automata, Labeled transition system

Models

- Flexible model generation to specify design
- ➢ Fairness
- Transition system
- Formal Verification
 - Checking that model satisfy the property

Semantic of Finite State System

- Semantic associated with behaviour
- Branching Time Semantics
 - ➤The tree of states obtained by unwinding the state machine transition graph
 - Possible choices are explicitly represented
- Linear Time Semantics
 - ➤The set of all possible runs of the system
 - ➤The set of infinite paths in SM

Computation Tree Logics

EE-709@IITB

Formal Specification

- Describe unambiguously and precisely the expected behaviour of the design
- In general, a list of properties
- Includes, environmental constraints

Classification of Properties

- Safety Property
 - (un) desirable things always (never) happen
 - A bus arbiter never grants the requests to two masters
 - Message received is message sent
- Liveness (Progress) Property

desirable state eventually reached

- Every bus request is eventually granted
- A car at a traffic light is eventually allowed to pass
- Fairness Property
 - Desirable state repeatedly reached
 - A request state and a grant state for each client must be visited infinitely often

Example: traffic light controller

- Guarantee no collisions
- Guarantee eventual service

Property Specification

Properties for traffic light controller

- P1 = (s1 \oplus w1) + (s2 \oplus w2)
- Sequence R, G, Y, R, G, Y,

Thank you

EE-709@IITB