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SoC Verification

e System-on-Chip (SOC) design
e Increase of design complexity
e Move to higher levels of abstraction
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System-on-Chip (SoC) design

e Specification to architecture and down to
implementation

e Behavior (functional) to structure

—  System level: system specification to system architecture

—  RT/IS level: component behavior to component micro-
architecture
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Verification challenge
Simulation/Design Verification _— 51%

Design Creation T 132%
Place & Route __ 32%
Post Layout Optimization __ 26%
Parasitic Extraction __ 17%
System on Chip _— 17%
Design Rule Checking __ 17%
Static Timing Analysis __ 16%
Synthesis __ 15%

Delay Calculation _ 13%

0% 10% 20% 30% 40% 50% 60%
Bottlenecks in Design Cycles:

Survey of 545 engineers by EETIMES 2000
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System-level design & verification
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@ Bugs fix time @ Cost due to the delay/late time-to-market

revenue loss

Remove as many bugs as possible in the earlier stages
Do not introduce new design errors when refining designs

U

Formal verification in system-level designs:
Property checking and equivalence checking .



Formal verification

- "Prove” the correctness of designs

— Both design and spec must be represented with
mathemat_lcal models_ Shec e
— Mathematical reasoning

— Equivalent to "“all cases" simulations | . |
e Possible mathematical models Front-end
— Boolean function (Propositional logic) tool

e How to represent and manipulate on computers
— First-order logic

e Need to represent “high level” designs
— Higher-order logic

e Theorem proving = Interactive method

e Front-end is also very important N
— Often, it determines the total performance of the Verification
tools engines
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Backgrounds technology in formal verification

e Methods for reasoning about
mathematical models / / / | /
Spec Design
I |
*

— Boolean function (Propositional logic)
e SAT (Satisfiability checker)
. .. . Front-end
e BDD (Binary Decision Diagrams) [ tool }
— First-order logic
e Logic of uninterpreted functions

with equality
— Higher-order logic
e Theorem proving = Interactive Verification
method [ engines }
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Formal Equivalence Checking

Given two designs, prove that for all possible input
stimuli their corresponding outputs are equivalent

Yes/No

Product
Machine

Jan 17, 2012 EE-709@IITB




Formal Equivalence Checking

e Scalable

+ Full chip verification possible

+ e.¢g. Designs of up to several million gates
verified in a few hours or minutes with CEC

+ Hierarchical verification deployed

e Automatic
+ CEC: Nearly full automation possible

¢ High/Full Coverage

CEC Currently most practical and pervasive
formal verification technology used in
industry
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Formal Equivalence Checking

« Equivalence checking can be applied
at or across various levels

System
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CEC in Practice

Key observation: The circuit being verified usually have
a number of internal equivalent functions
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Formal Equivalence Checking

Canonical Forms
d
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Formal Equivalence Checking

Complexity
> Efficiency of the conversion to canonical form
»Memory requirement

» Efficiency of the comparison of two
representation of the canonical form

> Efficiency to generate the counter example in
case of a miscompare
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Formal Equivalence Checking

o Satisfiability Formulation

— Search for input assignment .
giving different outputs .
e Branch & Bound .
— Assign input(s) .
— Propagate forced values -

— Backtrack when cannot succeed

e Challenge
— Must prove all assignments fail
e Co-NP complete problem
— Typically explore significant
fraction of inputs
— Exponential time complexity
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Formal Equivalence Checking

s+ Canonical form representation is only
suitable

s DNF and CNF are not suitable
¢+ BDD is most popular canonical form

» graphical representation of boolean
function

Jan 17, 2012 EE-709@IITB

15



Formal Equivalence Checking

¢ BDD is canonical form of representation
“* Shanon’s expansion theorem
 f(Xy, X5, Xy X)) =

X.f(Xy, X5, ... ,X=1, .....X) +

X\ f(Xy, X5, ... ,X%=0, .....X,)

f(xy, X5, ... X
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Binary Decision Diagram

e Generate Complete Representation of Circuit Function
— Compact, canonical form

: - Imm) ;i\
e '-”i\e
o]

» Functions equal if and only if representatiuiis wernicical
» Never enumerate explicit function values
> Exploit structure & regularity of circuit functions
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Decision Structures

Truth Table Decision Tree
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> Vertex represents decision
> Follow green (dashed) line for value 0
> Follow red (solid) line for value 1

» Function value determined by leaf value.
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Variable Ordering

“+Assign arbitrary total ordering to variables
»e.g., X <X <X
+Variables must appear in ascending order along all

paths
OK Not OK
() () (9 (o)
/ / Y4 4

(g
5 98

/

. /

Properties

No conflicting variable assignments along path
Simplifies manipulation
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Reduction Rule #1

Merge equivalent leaves
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Reduction Rule #2

Merge isomorphic nodes
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Reduction Rule #3

Eliminate Redundant Tests
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Example OBDD

Initial Graph Reduced Graph
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e (Canonical representation of Boolean function
% For given variable ordering
» Two functions equivalent if and only if graphs isomorphic
o Can be tested in linear time
> Desirable property: simplest form is canonical.
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Example Functions

Constants Variable
O . . . .
Unique unsatisfiable function Q Treat variable
1| Unique tautology 5 ' 7] & function
Typical Function Odd Parity

(X, VX5 ) A Xy

m No vertex labeled x, Linear

¢ independent of x, representation

m Many subgraphs shared
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Representing Circuit Functions

e Functions
— All outputs of 4-bit adder
— Functions of data inputs

e Shared Representation
— Graph with multiple roots
— 31 nodes for 4-bit adder
— 571 nodes for 64-bit adder

>ALinear growth
Jan 17, 2012
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Effect of Variable Ordering

1

Exponential Growth
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Selecting Good Variable Ordering

e Intractable Problem
» Even when problem represented as OBDD
&i.e., to find optimum improvement to current ordering
e Application-Based Heuristics
» Exploit characteristics of application

» e.g., Ordering for functions of combinational
circuit
& Traverse circuit graph depth-first from outputs to inputs
& Assign variables to primary inputs in order encountered
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Selecting Good Variable Ordering

@ Static Ordering
» Fan In Heuristic
» Weight Heuristic
@ Dynamic Ordering
» Variable Swap
» Window Permutation

> Sifting

Jan 17, 2012 EE-709@IITB

28



Swapping Adjacent Variables

% Localized Effect
» Add / delete / alter only nodes labeled by swapping variables
» Do not change any incoming pointers
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Dynamic Variable Reordering

& Richard Rudell, Synopsys

@ Periodically Attempt to Improve Ordering for
All BDDs
“ Part of garbage collection

“*Move each variable through ordering to find its
best location

& Has Proved Very Successful
“ Time consuming but effective
“ Especially for sequential circuit analysis
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Dynamic Reordering By Sifting

» Choose candidate variable
Best

» Try all positions in variable ordering Choices
@ Repeatedly swap with adjacent variable

» Move to best position found
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ROBDD sizes & variable ordering

e Bad News &
— Finding optimal variable ordering NP-Hard
— Some functions have exponential BDD size for all orders
e.g. multiplier
e Good News ©
— Many functions/tasks have reasonable size ROBDDs
— Algorithms remain practical up to 500,000 node OBDDs
— Heuristic ordering methods generally satisfactory

e \What works in Practice

— Application-specific heuristics e.g. DFS-based ordering for
combinational circuits

— Dynamic ordering based on variable sifting (R. Ruadell)
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Thank you
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