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System level 

SoC Verification 

• System-on-Chip (SOC) design 

• Increase of design complexity 

• Move to higher levels of abstraction 
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System-on-Chip (SoC) design 

• Specification to architecture and down to 
implementation 

• Behavior (functional) to structure 
– System level: system specification to system architecture 
– RT/IS level: component behavior to component micro-

architecture 
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System-level design & verification 

Remove as many bugs as possible in the earlier stages 

Do not introduce new design errors when refining designs 

Formal verification in system-level designs: 

Property checking and equivalence checking 

 

System-level 

RTL 
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Bugs fix time 
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Spec 

Formal verification 
• “Prove” the correctness of designs 

– Both design and spec must be represented with 
mathematical models 

– Mathematical reasoning 

– Equivalent to “all cases” simulations 

• Possible mathematical models 
– Boolean function (Propositional logic) 

• How to represent and manipulate on computers 

– First-order logic 

• Need to represent “high level” designs 

– Higher-order logic 

• Theorem proving = Interactive method 

• Front-end is also very important 
– Often, it determines the total performance of the 

tools 
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Spec 

Backgrounds technology in formal verification 

• Methods for reasoning about 
mathematical models 
– Boolean function (Propositional logic) 

• SAT (Satisfiability checker) 

• BDD (Binary Decision Diagrams) 

– First-order logic 

• Logic of uninterpreted functions 
with equality 

– Higher-order logic 

• Theorem proving = Interactive 
method  

Mathematical 
models 

Design 

Front-end 
tool 

Verification 
engines 

Jan 17, 2012 EE-709@IITB 7 



8 

Formal Equivalence Checking 
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Formal Equivalence Checking 
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Formal Equivalence Checking 

• Equivalence checking can be applied 
at or across various levels 
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CEC in Practice 

Key observation: The circuit being verified usually have 
a number of internal equivalent functions 
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Formal Equivalence Checking 
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Formal Equivalence Checking 

Complexity 

 Efficiency of the conversion to canonical form 

Memory requirement 

Efficiency of the comparison of two     
representation of the canonical form 

Efficiency to generate the counter example in 
case of a miscompare 
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Formal Equivalence Checking 
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• Satisfiability Formulation 

– Search for input assignment 
giving different outputs 

• Branch & Bound 

– Assign input(s) 

– Propagate forced values 

– Backtrack when cannot succeed 

• Challenge 

– Must prove all assignments fail 

• Co-NP complete problem 

– Typically explore significant 
fraction of inputs 

– Exponential time complexity 
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Formal Equivalence Checking 

 Canonical form representation is only 
suitable 

 DNF and CNF are not suitable 

 BDD is most popular canonical form 

 graphical representation of boolean 
function 
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Formal Equivalence Checking 

 BDD is canonical form of representation 

 Shanon’s expansion theorem 

 f(x1, x2, ….xi, ……xn) = 

 xi.f(x1, x2, …   ,xi=1, ……xn) + 

 xi’. f(x1, x2, …   ,xi=0, ……xn) 
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Binary Decision Diagram 

• Generate Complete Representation of Circuit Function 
– Compact, canonical form 

 

 

 

 

 

 
 
 Functions equal if and only if representations identical 

 Never enumerate explicit function values 

 Exploit structure & regularity of circuit functions 
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Decision Structures 

Truth Table Decision Tree 

 Vertex represents decision 

 Follow green (dashed) line for value 0 

 Follow red (solid) line for value 1 

 Function value determined by leaf value. 
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Variable Ordering 

Assign arbitrary total ordering to variables 

e.g.,  x1 < x2 < x3 

Variables must appear in ascending order along all 
paths 

OK Not OK 

Properties 

 No conflicting variable assignments along path 

 Simplifies manipulation  
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Reduction Rule #1 

Merge equivalent leaves 
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Reduction Rule #2 
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Reduction Rule #3 
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Example OBDD 

Initial Graph Reduced Graph 

• Canonical representation of Boolean function 

  For given variable ordering 

 Two functions equivalent if and only if graphs isomorphic 

o Can be tested in linear time 

 Desirable property: simplest form is canonical. 
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Example Functions 

Constants 

Unique unsatisfiable function 
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0
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Representing Circuit Functions 
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• Functions 

– All outputs of 4-bit adder 

– Functions of data inputs 
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– Graph with multiple roots 

– 31 nodes for 4-bit adder 

– 571 nodes for 64-bit adder 

Linear growth 
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Effect of Variable Ordering 

Good Ordering Bad Ordering 

Linear Growth 
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Selecting Good Variable Ordering 

• Intractable Problem 

Even when problem represented as OBDD 

i.e., to find optimum improvement to current ordering 

• Application-Based Heuristics 

Exploit characteristics of application 

e.g., Ordering for functions of combinational 
circuit 

Traverse circuit graph depth-first from outputs to inputs 

Assign variables to primary inputs in order encountered 
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Selecting Good Variable Ordering 

Static Ordering 

Fan In Heuristic 

Weight Heuristic 

Dynamic Ordering 

Variable Swap 

Window Permutation 

Sifting   
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Swapping Adjacent Variables 

 Localized Effect 

 Add / delete / alter only nodes labeled by swapping variables 

 Do not change any incoming pointers 
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Dynamic Variable Reordering 

Richard Rudell, Synopsys 

Periodically Attempt to Improve Ordering for 
All BDDs 

Part of garbage collection 

Move each variable through ordering to find its 
best location 

Has Proved Very Successful 

Time consuming but effective 

Especially for sequential circuit analysis 

Jan 17, 2012 EE-709@IITB 



31 

a3

b2 b2

a3

a2

a3

b1

b2

0

b3

b1

1

b2

a3

a2

a1

a3

b2

b3

b2

a3

a2

a3

b2

0

b1

b3

1

b2

a3

a2

a1

a2

a3

b1

b2

0

b3

b2

a3

1

b1

a2

a1

a3

b2

0

b3

b2

a3

a2

1

b1

a1

• • • a3

b2

0

b3

b2

a3

a2

1

a1

b1

Best 

Choices 

Dynamic Reordering By Sifting 

Choose candidate variable 

Try all positions in variable ordering 

 Repeatedly swap with adjacent variable 

Move to best position found 

Jan 17, 2012 EE-709@IITB 



ROBDD sizes & variable ordering 

• Bad News   
– Finding optimal variable ordering NP-Hard 

– Some functions have exponential BDD size for all orders 
e.g. multiplier 

• Good News  
– Many functions/tasks have reasonable size ROBDDs 

– Algorithms remain practical up to 500,000 node OBDDs 

– Heuristic ordering methods generally satisfactory 

• What works in Practice  
– Application-specific heuristics e.g. DFS-based ordering for 

combinational circuits 

– Dynamic ordering based on variable sifting (R. Rudell) 
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Thank you 
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