Formal Equivalence
Checking

Virendra Singh

Associate Professor
Computer Architecture and Dependable Systems Lab
Dept. of Electrical Engineering

: Indian Institute of Technology Bombay, Mumbai
: viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits
Lecture — 6 (Jan 17, 2012)

SoC Verification

e System-on-Chip (SOC) design
e Increase of design complexity
e Move to higher levels of abstraction

Level Number of components

1EO

System level
1E1

Algorithm 1E2

1E3

RTL

1E4

Abstraction

Gate 1E5

1E6

Transistor

1E7

Accuracy

Jan 17, 2012 EE-709@IITB

System-on-Chip (SoC) design

e Specification to architecture and down to
implementation

e Behavior (functional) to structure

— System level: system specification to system architecture

— RT/IS level: component behavior to component micro-
architecture

pProcessor Control] _ Pipeline |[IF FSM .
Memory |+ P Y i - IP Netlist
[[[Bc] E
|I¢te‘face |I¢te"face : :D-D' .
‘ . Bus ‘ Control : Datapath IF FSM Memory
e Interface * e ' IMem RF
Processors Registers ' tat
IPs vemory ALUS/FUs | —
Memories (e Memories :
Busses Gates :D-D_ : :D-D
Custom HW 1
Specification System architecture RTL/IS Implementation
+ constraints + estimates + results
Jan 17, 2012 EE-709@IITB 3

Verification challenge
Simulation/Design Verification _— 51%

Design Creation T 132%
Place & Route __ 32%
Post Layout Optimization __ 26%
Parasitic Extraction __ 17%
System on Chip _— 17%
Design Rule Checking __ 17%
Static Timing Analysis __ 16%
Synthesis __ 15%

Delay Calculation _ 13%

0% 10% 20% 30% 40% 50% 60%
Bottlenecks in Design Cycles:

Survey of 545 engineers by EETIMES 2000
Jan 17, 2012 78\ EE-709@IITB

System-level design & verification

3 minutes

% delay

QEE n

ONONONONO RS
I T

@ Bugs fix time @ Cost due to the delay/late time-to-market

revenue loss

Remove as many bugs as possible in the earlier stages
Do not introduce new design errors when refining designs

U

Formal verification in system-level designs:
Property checking and equivalence checking .

Formal verification

- "Prove” the correctness of designs

— Both design and spec must be represented with
mathemat_lcal models_ Shec e
— Mathematical reasoning

— Equivalent to "“all cases" simulations | . |
e Possible mathematical models Front-end
— Boolean function (Propositional logic) tool

e How to represent and manipulate on computers
— First-order logic

e Need to represent “high level” designs
— Higher-order logic

e Theorem proving = Interactive method

e Front-end is also very important N
— Often, it determines the total performance of the Verification
tools engines
Jan 17, 2012 EE-709@IITB 6

Backgrounds technology in formal verification

e Methods for reasoning about
mathematical models / / / | /
Spec Design
I |
*

— Boolean function (Propositional logic)
e SAT (Satisfiability checker)
. .. . Front-end
e BDD (Binary Decision Diagrams) [tool }
— First-order logic
e Logic of uninterpreted functions

with equality
— Higher-order logic
e Theorem proving = Interactive Verification
method [engines }

Jan 17, 2012 EE-709@IITB 7

Formal Equivalence Checking

Given two designs, prove that for all possible input
stimuli their corresponding outputs are equivalent

Yes/No

Product
Machine

Jan 17, 2012 EE-709@IITB

Formal Equivalence Checking

e Scalable

+ Full chip verification possible

+ e.¢g. Designs of up to several million gates
verified in a few hours or minutes with CEC

+ Hierarchical verification deployed

e Automatic
+ CEC: Nearly full automation possible

¢ High/Full Coverage

CEC Currently most practical and pervasive
formal verification technology used in
industry

Jan 17, 2012 EE-709@IITB 9

Formal Equivalence Checking

« Equivalence checking can be applied
at or across various levels

System
_ Level

-7 1 S

* Device

|
l
|
|
: Level

Jan 17, 2012 EE-709@IITB 10

CEC in Practice

Key observation: The circuit being verified usually have
a number of internal equivalent functions

+f f1 Toprovef(i,i,...i.)=f (i, 1,...1.)
Check
11,x2’x X1(i1!i2="'in}= K1!(i1,i2,..-in)
v X d xz(ivizs---in}? X5 (14, Ig,--.1p)
-~ X2 * o oL
ARARE Xl lpeeein) = X g el
i, | Tee i f(xhxﬂa"'xk) = f’(x1’=K2!!'"xk!)
1 12 h

Jan 17, 2012 EE-709@IITB 11

Formal Equivalence Checking

Canonical Forms
d

—F_ f=ab+
s —{ 7

] >

C

@ ——) D> F = (a+ c)(b+c)

o D

= | == (= | OO |O|O|Q
H _r([OOlRr I R|O|OC|T
= | O=[([O|=|O|l=[O]0O

Jan 17, 2012 EE-709@IITB

12

Formal Equivalence Checking

Complexity
> Efficiency of the conversion to canonical form
»Memory requirement

» Efficiency of the comparison of two
representation of the canonical form

> Efficiency to generate the counter example in
case of a miscompare

Jan 17, 2012 EE-709@IITB

13

Formal Equivalence Checking

o Satisfiability Formulation

— Search for input assignment .
giving different outputs .
e Branch & Bound .
— Assign input(s) .
— Propagate forced values -

— Backtrack when cannot succeed

e Challenge
— Must prove all assignments fail
e Co-NP complete problem
— Typically explore significant
fraction of inputs
— Exponential time complexity

Jan 17, 2012 EE-709@IITB

14

Formal Equivalence Checking

s+ Canonical form representation is only
suitable

s DNF and CNF are not suitable
¢+ BDD is most popular canonical form

» graphical representation of boolean
function

Jan 17, 2012 EE-709@IITB

15

Formal Equivalence Checking

¢ BDD is canonical form of representation
“* Shanon’s expansion theorem
 f(Xy, X5, Xy X)) =

X.f(Xy, X5, ... ,X=1,X) +

X\ f(Xy, X5, ... ,X%=0,X,)

f(xy, X5, ... X

Jan 17, 2012

16

Binary Decision Diagram

e Generate Complete Representation of Circuit Function
— Compact, canonical form

: - Imm) ;i\
e '-”i\e
o]

» Functions equal if and only if representatiuiis wernicical
» Never enumerate explicit function values
> Exploit structure & regularity of circuit functions

Jan 17, 2012 EE-709@IITB

17

Decision Structures

Truth Table Decision Tree

X
=

X
N

X
w

PFRPRPRPPFPOOOO
PRPOORFRLEFRLOO
POFRPORFRLRORFRO
RPORPORFRLROOO

1

3
OI

> Vertex represents decision
> Follow green (dashed) line for value 0
> Follow red (solid) line for value 1

» Function value determined by leaf value.

Jan 17, 2012 EE-709@IITB

18

Variable Ordering

“+Assign arbitrary total ordering to variables
»e.g., X <X <X
+Variables must appear in ascending order along all

paths
OK Not OK
() () (9 (o)
/ / Y4 4

(g
5 98

/

. /

Properties

No conflicting variable assignments along path
Simplifies manipulation

Jan 17, 2012 EE-709@IITB

19

Reduction Rule #1

Merge equivalent leaves

Jan 17, 2012 EE-709@IITB

20

Reduction Rule #2

Merge isomorphic nodes

EE-709@IITB 21

Reduction Rule #3

Eliminate Redundant Tests

Jan 17, 2012 EE-709@IITB

22

Example OBDD

Initial Graph Reduced Graph

@

,/
/>\
0

3
OI

1

e (Canonical representation of Boolean function
% For given variable ordering
» Two functions equivalent if and only if graphs isomorphic
o Can be tested in linear time
> Desirable property: simplest form is canonical.

Jan 17, 2012 EE-709@IITB 23

Example Functions

Constants Variable
O
Unique unsatisfiable function Q Treat variable
1| Unique tautology 5 ' 7] & function
Typical Function Odd Parity

(X, VX5) A Xy

m No vertex labeled x, Linear

¢ independent of x, representation

m Many subgraphs shared

EE-709@IITB 24

Representing Circuit Functions

e Functions
— All outputs of 4-bit adder
— Functions of data inputs

e Shared Representation
— Graph with multiple roots
— 31 nodes for 4-bit adder
— 571 nodes for 64-bit adder

>ALinear growth
Jan 17, 2012

EE-709@IITB 25

Effect of Variable Ordering

1

Exponential Growth

EE-709@IITB

26

Selecting Good Variable Ordering

e Intractable Problem
» Even when problem represented as OBDD
&i.e., to find optimum improvement to current ordering
e Application-Based Heuristics
» Exploit characteristics of application

» e.g., Ordering for functions of combinational
circuit
& Traverse circuit graph depth-first from outputs to inputs
& Assign variables to primary inputs in order encountered

Jan 17, 2012 EE-709@IITB 27

Selecting Good Variable Ordering

@ Static Ordering
» Fan In Heuristic
» Weight Heuristic
@ Dynamic Ordering
» Variable Swap
» Window Permutation

> Sifting

Jan 17, 2012 EE-709@IITB

28

Swapping Adjacent Variables

% Localized Effect
» Add / delete / alter only nodes labeled by swapping variables
» Do not change any incoming pointers

Jan 17, 2012 EE-709@IITB 29

Dynamic Variable Reordering

& Richard Rudell, Synopsys

@ Periodically Attempt to Improve Ordering for
All BDDs
“ Part of garbage collection

“*Move each variable through ordering to find its
best location

& Has Proved Very Successful
“ Time consuming but effective
“ Especially for sequential circuit analysis

Jan 17, 2012 EE-709@IITB 30

Dynamic Reordering By Sifting

» Choose candidate variable
Best

» Try all positions in variable ordering Choices
@ Repeatedly swap with adjacent variable

» Move to best position found

EE-709@IITB 31

ROBDD sizes & variable ordering

e Bad News &
— Finding optimal variable ordering NP-Hard
— Some functions have exponential BDD size for all orders
e.g. multiplier
e Good News ©
— Many functions/tasks have reasonable size ROBDDs
— Algorithms remain practical up to 500,000 node OBDDs
— Heuristic ordering methods generally satisfactory

e \What works in Practice

— Application-specific heuristics e.g. DFS-based ordering for
combinational circuits

— Dynamic ordering based on variable sifting (R. Ruadell)

Jan 17, 2012 EE-709@IITB 32

Thank you

Jan 17, 2012

EE-709@IITB

33

