
Formal Equivalence
Checking

Virendra Singh
Associate Professor

Computer Architecture and Dependable Systems Lab
Dept. of Electrical Engineering

Indian Institute of Technology Bombay, Mumbai
viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits

Lecture – 6 (Jan 17, 2012)

System level

SoC Verification

• System-on-Chip (SOC) design

• Increase of design complexity

• Move to higher levels of abstraction

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of components Level

Gate

RTL

Algorithm

Transistor

A
b
s
tr

a
c
ti
o
n

A
c
c
u
ra

c
y

2 Jan 17, 2012 EE-709@IITB

System-on-Chip (SoC) design

• Specification to architecture and down to
implementation

• Behavior (functional) to structure
– System level: system specification to system architecture
– RT/IS level: component behavior to component micro-

architecture

Specification

+ constraints

Memory

Memory

µProcessor

Interface

Comp.
IP

Bus

Interface

Interface

Interface

Custom HW

System architecture

+ estimates

Processors

IPs

Memories

Busses

RTL/IS Implementation

+ results

Registers

ALUs/FUs

Memories

Gates

Mem RF
State

Control

ALU

Datapath

PC

Control Pipeline

State

IF FSM

State

IF FSM
IP Netlist

RAM

IR

Memory

3 Jan 17, 2012 EE-709@IITB

13%

15%

16%

17%

17%

17%

26%

32%

32%

51%

0% 10% 20% 30% 40% 50% 60%

Delay Calculation

Synthesis

Static Timing Analysis

Design Rule Checking

System on Chip

Parasitic Extraction

Post Layout Optimization

Place & Route

Design Creation

Simulation/Design Verification

Bottlenecks in Design Cycles:
Survey of 545 engineers by EETIMES 2000

Verification challenge

4 Jan 17, 2012 EE-709@IITB

System-level design & verification

Remove as many bugs as possible in the earlier stages

Do not introduce new design errors when refining designs

Formal verification in system-level designs:

Property checking and equivalence checking



System-level

RTL

Transistor level

Bugs fix time
Cost due to the delay/late time-to-market

revenue loss

3 minutes
delay

3 days
delay

3 weeks
delay

5

Spec

Formal verification
• “Prove” the correctness of designs

– Both design and spec must be represented with
mathematical models

– Mathematical reasoning

– Equivalent to “all cases” simulations

• Possible mathematical models
– Boolean function (Propositional logic)

• How to represent and manipulate on computers

– First-order logic

• Need to represent “high level” designs

– Higher-order logic

• Theorem proving = Interactive method

• Front-end is also very important
– Often, it determines the total performance of the

tools

Mathematical
models

Design

Front-end
tool

Verification
engines

Jan 17, 2012 EE-709@IITB 6

Spec

Backgrounds technology in formal verification

• Methods for reasoning about
mathematical models
– Boolean function (Propositional logic)

• SAT (Satisfiability checker)

• BDD (Binary Decision Diagrams)

– First-order logic

• Logic of uninterpreted functions
with equality

– Higher-order logic

• Theorem proving = Interactive
method

Mathematical
models

Design

Front-end
tool

Verification
engines

Jan 17, 2012 EE-709@IITB 7

8

Formal Equivalence Checking

Jan 17, 2012 EE-709@IITB

9

Formal Equivalence Checking

Jan 17, 2012 EE-709@IITB

10

Formal Equivalence Checking

• Equivalence checking can be applied
at or across various levels

Jan 17, 2012 EE-709@IITB

11

CEC in Practice

Key observation: The circuit being verified usually have
a number of internal equivalent functions

Jan 17, 2012 EE-709@IITB

12

Formal Equivalence Checking

a

b

c

a

b

c

f = ab + c

F’ = (a+ c)(b+c)

a b c f

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Canonical Forms

Jan 17, 2012 EE-709@IITB

13

Formal Equivalence Checking

Complexity

 Efficiency of the conversion to canonical form

Memory requirement

Efficiency of the comparison of two
representation of the canonical form

Efficiency to generate the counter example in
case of a miscompare

Jan 17, 2012 EE-709@IITB

14

Formal Equivalence Checking

A T
0

A

C

B
O 1

T 1

T 2

B
C

O 2
3

Diff
1

1

0
0

1

1
1

1

1

1

0

• Satisfiability Formulation

– Search for input assignment
giving different outputs

• Branch & Bound

– Assign input(s)

– Propagate forced values

– Backtrack when cannot succeed

• Challenge

– Must prove all assignments fail

• Co-NP complete problem

– Typically explore significant
fraction of inputs

– Exponential time complexity

Jan 17, 2012 EE-709@IITB

15

Formal Equivalence Checking

 Canonical form representation is only
suitable

 DNF and CNF are not suitable

 BDD is most popular canonical form

 graphical representation of boolean
function

Jan 17, 2012 EE-709@IITB

16

Formal Equivalence Checking

 BDD is canonical form of representation

 Shanon’s expansion theorem

 f(x1, x2, ….xi, ……xn) =

 xi.f(x1, x2, … ,xi=1, ……xn) +

 xi’. f(x1, x2, … ,xi=0, ……xn)

Jan 17, 2012 EE-709@IITB

f(x1, x2, … ,xi=1, ……xn)

xi

f(x1, x2, … ,xi=1, ……xn)

17

Binary Decision Diagram

• Generate Complete Representation of Circuit Function
– Compact, canonical form

 Functions equal if and only if representations identical

 Never enumerate explicit function values

 Exploit structure & regularity of circuit functions

A

C

B

O1

T1

T2

A

B
C

O2

T3

b

0 1

c

a

b

0 1

c

a

Jan 17, 2012 EE-709@IITB

18

Decision Structures

Truth Table Decision Tree

 Vertex represents decision

 Follow green (dashed) line for value 0

 Follow red (solid) line for value 1

 Function value determined by leaf value.

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

Jan 17, 2012 EE-709@IITB

19

Variable Ordering

Assign arbitrary total ordering to variables

e.g., x1 < x2 < x3

Variables must appear in ascending order along all
paths

OK Not OK

Properties

 No conflicting variable assignments along path

 Simplifies manipulation

x1

x2

x3

x1

x3

x3

x2

x1

x1

x1

Jan 17, 2012 EE-709@IITB

20

Reduction Rule #1

Merge equivalent leaves

a a

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

a

Jan 17, 2012 EE-709@IITB

21

Reduction Rule #2

y

x

z

x

Merge isomorphic nodes

x3 x3

x2

x3

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1

y

x

z

x

y

x

z

x

Jan 17, 2012 EE-709@IITB

22

Reduction Rule #3

x3

x2

0 1

x3

x2

x1

Eliminate Redundant Tests

y

x

y

x2

0 1

x3

x1

Jan 17, 2012 EE-709@IITB

23

Example OBDD

Initial Graph Reduced Graph

• Canonical representation of Boolean function

 For given variable ordering

 Two functions equivalent if and only if graphs isomorphic

o Can be tested in linear time

 Desirable property: simplest form is canonical.

x2

0 1

x3

x1 (x1+x2)·x3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

Jan 17, 2012 EE-709@IITB

24

Example Functions

Constants

Unique unsatisfiable function

Unique tautology 1

0

Variable

Treat variable
as function

0 1

x

Odd Parity

Linear
representation

x2

x3

x4

10

x4

x3

x2

x1

Typical Function

x2

0 1

x4

x1  (x1  x2)  x4

 No vertex labeled x3

 independent of x3

 Many subgraphs shared

Jan 17, 2012 EE-709@IITB

25

Representing Circuit Functions

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

• Functions

– All outputs of 4-bit adder

– Functions of data inputs

A

B

Cout

S

A
D
D

• Shared Representation

– Graph with multiple roots

– 31 nodes for 4-bit adder

– 571 nodes for 64-bit adder

Linear growth

Jan 17, 2012 EE-709@IITB

26

Effect of Variable Ordering

Good Ordering Bad Ordering

Linear Growth

0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

)
33

()
22

()
11

(bababa 

Jan 17, 2012 EE-709@IITB

27

Selecting Good Variable Ordering

• Intractable Problem

Even when problem represented as OBDD

i.e., to find optimum improvement to current ordering

• Application-Based Heuristics

Exploit characteristics of application

e.g., Ordering for functions of combinational
circuit

Traverse circuit graph depth-first from outputs to inputs

Assign variables to primary inputs in order encountered

Jan 17, 2012 EE-709@IITB

28

Selecting Good Variable Ordering

Static Ordering

Fan In Heuristic

Weight Heuristic

Dynamic Ordering

Variable Swap

Window Permutation

Sifting

Jan 17, 2012 EE-709@IITB

29

b 1 b 1

b 2 b 2 b 2 b 2

e f g h

i j

b 1 b 1

b 2

b 1

b 2

b 1

e f

g h i j

Swapping Adjacent Variables

 Localized Effect

 Add / delete / alter only nodes labeled by swapping variables

 Do not change any incoming pointers

Jan 17, 2012 EE-709@IITB

30

Dynamic Variable Reordering

Richard Rudell, Synopsys

Periodically Attempt to Improve Ordering for
All BDDs

Part of garbage collection

Move each variable through ordering to find its
best location

Has Proved Very Successful

Time consuming but effective

Especially for sequential circuit analysis

Jan 17, 2012 EE-709@IITB

31

a3

b2 b2

a3

a2

a3

b1

b2

0

b3

b1

1

b2

a3

a2

a1

a3

b2

b3

b2

a3

a2

a3

b2

0

b1

b3

1

b2

a3

a2

a1

a2

a3

b1

b2

0

b3

b2

a3

1

b1

a2

a1

a3

b2

0

b3

b2

a3

a2

1

b1

a1

• • • a3

b2

0

b3

b2

a3

a2

1

a1

b1

Best

Choices

Dynamic Reordering By Sifting

Choose candidate variable

Try all positions in variable ordering

 Repeatedly swap with adjacent variable

Move to best position found

Jan 17, 2012 EE-709@IITB

ROBDD sizes & variable ordering

• Bad News 
– Finding optimal variable ordering NP-Hard

– Some functions have exponential BDD size for all orders
e.g. multiplier

• Good News 
– Many functions/tasks have reasonable size ROBDDs

– Algorithms remain practical up to 500,000 node OBDDs

– Heuristic ordering methods generally satisfactory

• What works in Practice 
– Application-specific heuristics e.g. DFS-based ordering for

combinational circuits

– Dynamic ordering based on variable sifting (R. Rudell)

32 Jan 17, 2012 EE-709@IITB

33

Thank you

Jan 17, 2012 EE-709@IITB

