Formal Equivalence Checking - II

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Dept. of Electrical Engineering

Indian Institute of Technology Bombay, Mumbai

viren@ee.iitb.ac.in

EE 709: Testing & Verification of VLSI Circuits

Lecture – 7 (Jan 18, 2012)

Formal Equivalence Checking

- BDD is canonical form of representation
- Shannon's expansion theorem

 X_i

$$f(x_1, x_2, ..., x_i=0,x_n)$$

$$f(x_1, x_2, ..., x_i=1,x_n)$$

Example OBDD

Initial Graph

Reduced Graph

- Canonical representation of Boolean function
 - For given variable ordering
 - Two functions equivalent if and only if graphs isomorphic o Can be tested in linear time
 - Desirable property: simplest form is canonical.

Effect of Variable Ordering

$(a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee (a_3 \wedge b_3)$

Good Ordering

Linear Growth

Bad Ordering

Exponential Growth

Sample Function Classes

Function Class	Best	Worst	Ordering Sensitivity
ALU (Add/Sub)	linear	exponential	High
Symmetric	linear	quadratic	None
Multiplication	exponential	exponential	Low

General Experience

- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 500,000 node OBDDs
- Heuristic ordering methods generally satisfactory

ROBDD sizes & variable ordering

- Bad News
 - Finding optimal variable ordering NP-Hard
 - Some functions have exponential BDD size for all orders e.g. multiplier
- Good News ©
 - Many functions/tasks have reasonable size ROBDDs
 - Algorithms remain practical up to 500,000 node OBDDs
 - Heuristic ordering methods generally satisfactory
- What works in Practice
 - Application-specific heuristics e.g. DFS-based ordering for combinational circuits
 - Dynamic ordering based on variable sifting (R. Rudell)

Operations with BDD (1/5)

- *Restriction: A restriction to a function to x=d, denoted $f|_{x=d}$, where $x \in var(f)$, and $d \in \{0,1\}$, is equal to f after assigning x = d.
- ❖ Given BDD of f, deriving BDD of f|_{x=d} is simple

Operations with BDD (2/5)

- Let v_1 , v_2 denote root nodes of f_1 , f_2 respectively, with $var(v_1) = x_1$ and $var(v_2) = x_2$
- ❖ If v₁ and v₂ are leafs, f₁ OP f₂ is a leaf node with value val(v₁) OP val(v₂)

EE-709@IITB

8

Operations with BDD (3/5)

• If $x_1 = x_2 = x$, apply shanon's expansion

$$f_1 ext{ OP } f_2 = x \cdot (f_1|_{x=0} ext{ OP } f_2|_{x=0}) + x' \cdot (f_1|_{x=1} ext{ OP } f_2|_{x=1})$$

Operations with BDD (4/5)

Operations with BDD (5/5)

❖ Else suppose $x_1 < x_2 = x$, in variable order

$$f_1 ext{ OP } f_2 = x_1 (f_1|_{x_1=0} ext{ OP } f_2) + x_1' (f_1|_{x_1=1} ext{ OP } f_2)$$

Operations with BDD: Example

$$\begin{array}{c} \text{BDD for} \\ f_2|_{x1=0} \text{ OP } f_2 \end{array} = \begin{array}{c} \\ \\ \hline 0 \end{array} \begin{array}{c} \\ \hline 1 \end{array} \begin{array}{c} \\ \hline \end{array} \begin{array}{c} \\ \\ \hline \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}$$

Operations with BDD: Example

Operations with BDD: Example

From circuits to BDD

Variants of decision diagrams

- Multiterminal BDDs (MTBDD) Pseudo Boolean functions Bⁿ → N, terminal nodes are integers
- Ordered Kronecker FunctionalDecision Diagrams (OKFDD) uses XOR in OBDDs
- Binary Moment Diagrams (BMD) good for arithmetic operations and word-level representation
- Zero-suppressed BDD (ZDD) good for representing sparse sets
- Partitioned OBDDs (POBDD) highly compact representation which retains most of the features of ROBDDs
- BDD packages
 - CUDD from Univ. of Colorado, Boulder,
 - CMU BDD package from Carnegie Mellon Univ.
 - In addition, companies like Intel, Fujitsu, Motorola etc. have their own internal BDD packages

Formal Equivalence Checking

Satisfiability Formulation

- Search for input assignment giving different outputs
- Branch & Bound
 - Assign input(s)
 - Propagate forced values
 - Backtrack when cannot succeed

Challenge

- Must prove all assignments fail
 - Co-NP complete problem
- Typically explore significant fraction of inputs
- Exponential time complexity

SAT Problem definition

Given a CNF formula, f:

A set of variables, V

- (a,b,c)
- Conjunction of clauses (C_1, C_2, C_3)
- Each clause: disjunction of literals over V

Does there exist an assignment of Boolean values to the variables, V which sets at least one literal in each clause to '1'?

Example:
$$(a+b+c)(a+c)(a+b+c)$$
 C_1
 C_2
 C_3
 C_3

DPLL algorithm for SAT

[Davis, Putnam, Logemann, Loveland 1960,62]

Given: CNF formula $f(v_1, v_2, ..., v_k)$, and an ordering function Next_Variable

Example:

$$(a+b)(\overline{a}+c)(a+\overline{b})$$

$$C_1 \qquad C_2 \qquad C_3$$

$$C_1 \qquad C_2 \qquad C_3$$

DPLL algorithm: Unit clause rule

Rule: Assign to true any single literal clauses.

$$\begin{pmatrix} (a+b+c) \\ \parallel & \parallel \\ 0 & 0 \end{pmatrix}$$
 $c=1$

Apply Iteratively: Boolean Constraint Propagation (BCP)

$$a(\overline{a}+c)(\overline{b}+c)(a+b+\overline{c})(\overline{c}+e)(\overline{d}+e)(c+d+\overline{e})$$

$$c(\overline{b}+c)(\overline{c}+e)(\overline{d}+e)(c+d+\overline{e})$$

$$e(\overline{d}+e)$$

Anatomy of a modern SAT solver

DPLL Algorithm

Efficient BCP

Clause database management

- Discard useless clauses (e.g. inactive or large clauses)
- Efficient garbage collection

Conflict-driven learning

Search Restarts

- To correct for bad choices in variable ordering
- Restart algorithm "periodically"
- Retain some/all recorded clauses

Conflict driven search pruning (GRASP)

Silva & Sakallah '95

Variable ordering

- Significantly impacts size of search tree
- Ordering schemes can be static or dymamic
- Conventional wisdom (pre-chaff):
 - Satisfy most number of clauses OR
 - Maximize BCP
 - -e.g. DLIS, MOMs, BOHMs etc.

Variable ordering: New ideas

- New wisdom: Recorded clauses key in guiding search
- Conflict-driven variable ordering:
 - Chaff (DAC'01): Pick var. appearing in *most* number of *recent* conflict clauses
 - BerkMin (DATE'02): Pick var. *involved* in most number of *recent* conflicts
- Semi-static in nature, for efficiency
 - Statistics updated on each conflict
- Side-effect: Better cache behavior

Efficient Boolean Constraint Propagation

- Observation: BCP almost 80% of compute time, under clause recording
- Traditional implementation:
 - Each clause: Counter for #literals set to false
 - Assgn. to variable 'x': Update all clauses having x, \overline{x}
- New Idea: Only need to monitor event when # free literals in a clause goes from 2 to 1
 - Need to watch only 2 literals per clause : SATO (Zhang'97), Chaff (DAC'01)

The same with the same of the

SAT solvers today

Capacity:

- Formulas upto a *million variables* and *3-4 million clauses* can be solved in *few hours*
- Only for structured instances e.g. derived from realworld circuits & systems

Tool offerings:

- Public domain
 - GRASP : Univ. of Michigan
 - SATO: Univ. of Iowa
 - zChaff: Princeton University
 - BerkMin: Cadence Berkeley Labs.
- Commercial
 - PROVER: Prover Technologies

Thank you

