RISC Architecture:

Multi-Cycle Implementation

Virendra Singh

Associate Professor
Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http.//www.ee.iitb.ac.in/~viren/
E-mail: viren@ee.iitb.ac.in

Computer Organization & Architecture
Lecture 14 (19 April 2013) CADSL

Example Processor MIPS subset

MIPS Instruction — Subset
¢ Arithmetic and Logical Instructions
» add, sub, or, and, slt

*** Memory reference Instructions

> lw, sw

% Branch
» beq, |

16 Apr 2013 Computer Architecture@!IT Mandi 2 CADSL

Multicycle Datapath

Shift
left 2

out
MUX
A
in1 in2
Sign _| Shift
0-15 extend left 2
0-5 § A
control
16 Apr 2013 Computer Architecture@IIT Mandi 3 CADSL

3 to 5 Cycles for an Instruction

R-type Mem. Ref. Branch type J-type

(4 cycles) (4 or 5 cycles) (3 cycles) (3 cycles)
Instruction fetch IR &< Memory[PC]; PC & PC+4
Instr. decode/ A < Reg(IR[21-25]); B < Reg(IR[16-20])
Reg. fetch ALUOut & PC + (sign extend IR[0-15]) << 2
Execution, addr. | ALUOut ¢ ALUOut ¢« If (A= =B) PC<PC[28-3
Comp., branch & AopB A+sign extend then 1]
jump completion (IR[0-15]) PC&ALUOUL ||

(IR[0-25]<<2)

Mem. Access or | Reg(IR[11-1 | MDR¢M[ALUout]

R-type 5]) € or M[ALUOut]<B
completion ALUOut

Memory read Reg(IR[16-20]) ¢
completion MDR

16 Apr 2013 Computer Architecture@IIT Mandi 4 CADSL

Cycle 1 of 5: Instruction Fetch (IF)

e Read instruction into IR, M[PC] = IR

e Control signals used:

» lorD = 0 select PC
» MemRead = 1 read memory
» IRWrite = 1 write IR

e Increment PC, PC+4 - PC

e Control signals used:

» ALUSrcA = 0 select PCinto ALU
» ALUSrcB = 01 select constant 4
» ALUOp = 00 ALU adds

» PCSource = 00 select ALU output
» PCWrite = 1 write PC

16 Apr 2013 Computer Architecture@!IT Mandi 5 CADSL

Cycle 2 of 5: Instruction Decode (ID)

31-26 25-21 20-16 15-11 10-6 5-0

opcode | reg1 | reg 2 | word address increment

opcode | word address jump

SO opcode | reg1 | reg2 | reg 3| shamt|fncode
I
J

e Control unit decodes instruction

e Datapath prepares for execution
e RandItypes,reg 1> Areg,reg2 > Breg
» No control signals needed
e Branch type, compute branch address in ALUOut
» ALUSrcA =0 select PCinto ALU

» ALUSrcB =11 Instr. Bits 0-15 shift 2 into ALU
» ALUOp =00 ALU adds

16 Apr 2013 Computer Architecture@!IT Mandi 6 CADSL

Cycle 3 of 5: Execute (EX)

e R type: execute function on reg A and reg B, result in
ALUOut

e Control signals used:

» ALUSrcA = 1 A reginto ALU
» ALUsrcB = 00 B reginto ALU
» ALUOp = 10 instr. Bits 0-5 control ALU

e |type, lw or sw: compute memory address in ALUOut &< A
reg + sign extend IR[0-15]
e Control signals used:

» ALUSrcA = 1 A reginto ALU
» ALUSrcB = 10 Instr. Bits 0-15 into ALU
» ALUOp = 00 ALU adds

16 Apr 2013 Computer Architecture@IIT Mandi 7 CADSL

Cycle 3 of 5: Execute (EX)

e |type, beq: subtract reg A and reg B, write ALUOut to PC

e Control signals used:
» ALUSrcA =
» ALUsrcB =
» ALUOp =
» If zero=1, PCSource =
» If zero =1, PCwriteCond =
» Instruction complete, go to IF

00
01
01

A reginto ALU
B reg into ALU
ALU subtracts
ALUOut to PC
write PC

e Jtype: write jump address to PC < IR[0-25] shift 2 and four

leading bits of PC

e Control signals used:
» PCSource = 10
» PCWrite = 1
» Instruction complete, go to IF

write PC

16 Apr 2013 Computer Architecture@IIT Mandi

s CADSL

Cycle 4 of 5: Reg Write/Memory

R type, write destination register from ALUOut

e Control signals used:

» RegDst = 1 Instr. Bits 11-15 specify reg.
» MemtoReg = 0 ALUOut into reg.
» RegWrite = 1 write register

» Instruction complete, go to IF

| type, lw: read M[ALUOut] into MDR

e Control signals used:
» lorD = 1 select ALUOut into mem adr.
» MemRead = 1 read memoryto MDR

| type, sw: write M[ALUOut] from B reg

e Control signals used:
» lorD = 1 select ALUOut into mem adr.
» MemWrite = 1 write memory

» _Instruction complete, go to IF
16 Apr 2013 Computer Architecture@IIT Mandi 9 CADSL

Cycle 5 of 5: Reg Write

e | type, lw: write MDR to reg[IR(16-20)]

e Control signals used:

» RegDst = 0 instr. Bits 16-20 are write reg
» MemtoReg = 1 MDR to reg file write input
» RegWrite = 1 read memory to MDR

» Instruction complete, go to IF

16 Apr 2013 Computer Architecture@IIT Mandi 10 CADSL

Control FSM

1
Instr.
[decode/reg.
fetch/branch
addr.
R J
3 B
Read Ilw / Compute ALU Write PC Write
memory memory 6 \ operation on branch jump addr.
data addr. condition to PC
8 9

Write Write

register

register

16 Apr 2013 Computer Architecture@IIT Mandi 11 CADSL

Control FSM (Controller)

Combinational
logic

i Present Next
— , state state

Reset
Clock

16 Apr 2013 Computer Architecture@IIT Mandi 12 CADSL

Designing the Control FSM

e Encode states; need 4 bits for 10 states, e.g.,
— State 0 is 0000, state 1 is 0001, and so on.
e Write a truth table for combinational logic:

Opcode Present state Control signals Next state
000000 0000 0001000110000100 0001

e Synthesize a logic circuit from the truth table.

e Connect four flip-flops between the next state outputs and present
state inputs.

16 Apr 2013 Computer Architecture@IIT Mandi 13 CADSL

Block Diagram of a Processor

MemWrite

ALUOp

-
MemRead 2-bits

—

—>
A A A < q, q’ m o)
) S m o - 2| o e 5 o
B8 ol 8| 2 Clusle v = x o £ £ S8 By O L
Ol = T n nl= = Ql 2 o - = O cl~ 55
O.? () = 5 0l o ol = ®) ; ; = =1 f= '?
@) 2 | 2N ¥ ol o X gl = <
o < o = O
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 n- \ 4 v
Reset >
Clock >

Datapath

Mem. Addr. <+— (PC, register file, registers, ALU)

Mem. write data <«

Mem. data out —»

16 Apr 2013 Computer Architecture@IIT Mandi 14 CADSL

Exceptions or Interrupts

e Conditions under which the processor may produce
incorrect result or may “hang”.
— lllegal or undefined opcode.
— Arithmetic overflow, divide by zero, etc.
— Out of bounds memory address.

e EPC: 32-bit register holds the affected instruction
address.

e Cause: 32-bit register holds an encoded exception
type. For example,
— 0O for undefined instruction
— 1 for arithmetic overflow

16 Apr 2013 Computer Architecture@IIT Mandi 15 CADSL

Implementing Exceptions

PCSource

=1

8000 0180(hex)

PCWrite
etc

N

26-31 to
Control 94_
FSM
o‘_\—’ EPCWrite=1
e |
.
2 & — EPC
- =
CauseWrite=1 <, 3
MUX ‘—> verflow to
out 0 \ ontrol FSM
] control \ 4
i, 1 9" Cause Subtract
in2 .
32-bit 2w ALUOp
register control =01
16 Apr 2013 Computer Architecture@IIT Mandi 16 CADSL

How Long Does It Take”? Again

e Assume control logic is fast and does not
affect the critical timing. Major time
components are ALU, memory read/write,
and register read/write.

e Time for hardware operations, suppose

e Memory read or write 2Nns
e Register read 1ns
e ALU operation 2ns
e Register write 1ns

16 Apr 2013 Computer Architecture@IIT Mandi 17 CADSL

Single-Cycle Datapath

e R-type bns
e Load word (I-type) 8ns
e Store word (l-type) 7ns
e Branch on equal (I-type) 5ns
e Jump (J-type) 2ns
e Clock cycle time = 8ns

e Each instruction takes one cycle

16 Apr 2013 Computer Architecture@IIT Mandi 18 CADSL

Multicycle Datapath

e Clock cycle time is determined by the longest
operation, ALU or memory:

e Clock cycle time = 2ns

e Cycles per instruction (CPI):

e |w 5 (10ns)
* SwW 4 (8ns)
e R-type 4 (8ns)
* beq 3 (bns)
® | 3 (bns)

16 Apr 2013 Computer Architecture@IIT Mandi 19 CADSL

CPI of a Computer

>« (Instructions of type k) x CPI,

CPI =

>« (instructions of type k)
where
CPl, = Cycles for instruction of type k

Note CPl is dependent on the instruction mix of the
program being run. Standard benchmark programs
are used for specifying the performance of CPUs

16 Apr 2013 Computer Architecture@IIT Mandi 20 CADSL

Example

e Consider a program containing:

e |oads 25%
e stores 10%
e branches 11%
® jumps 2%

e Arithmetic 52%

e CPI=0.25%x5+0.10x4 + 0.11x3 +
0.02x3 + 0.52x4

=4.12 for multicycle datapath
e CPI=1.00 for single-cycle datapath

16 Apr 2013 Computer Architecture@IIT Mandi 21 CADSL

Multicycle vs. Single-Cycle

Performance ratio Single cycle time / Multicycle time

(CPI x cycle time) for single-cycle

(CPI x cycle time) for multicycle

1.00 x 8ns

0.97
412 x 2ns

Single cycle is faster in this case, but remember, performance ratio
depends on the instruction mix.

16 Apr 2013 Computer Architecture@!IT Mandi 22 CADSL

Traffic Flow

16 Apr 2013 Computer Architecture@IIT Mandi

ILP: Instruction Level Parallelism

e Single-cycle and multi-cycle datapaths execute
one instruction at a time.

e How can we get better performance?

e Answer: Execute multiple instruction at a
time:
e Pipelining — Enhance a multi-cycle datapath to
fetch one instruction every cycle.

e Parallelism — Fetch multiple instructions every
cycle.

16 Apr 2013 Computer Architecture@IIT Mandi 24 CADSL

Thank You

16 Apr 2013 Computer Architecture@IIT Mandi 25 CADSL

