RISC Architecture: Pipelining

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

Computer Organization & Architecture

Lecture 17 (30 April 2013)

CADSL

Pipeline Hazards

- Definition: Hazard in a pipeline is a situation in which the next instruction cannot complete execution one clock cycle after completion of the present instruction.
- Three types of hazards:
 - Structural hazard (resource conflict)
 - Data hazard
 - Control hazard

Possible Remedies for Structural Hazards

- Provide duplicate hardware resources in datapath.
- Control unit or compiler can insert delays (noop cycles) between instructions. This is known as pipeline stall or bubble.

Stall (Bubble) for Structural Hazard

May 2013

Data Hazard

- Data hazard means that an instruction cannot be completed because the needed data, to be generated by another instruction in the pipeline, is not available.
- Example: consider two instructions:

Forwarding or Bypassing

- Output of a resource used by an instruction is forwarded to the input of some resource being used by another instruction.
- Forwarding can eliminate some, but not all, data hazards.

Resolving Hazards

- ➤ Hazards are resolved by Hazard detection and forwarding units.
- Compiler's understanding of how these units work can improve performance.

Control Hazard

- Instruction to be fetched is not known!
- Example: Instruction being executed is branch-type, which will determine the next instruction:

```
add $4, $5, $6
beq $1, $2, 40
```

next instruction

40and \$7, \$8, \$9

Stall on Branch

Why Only One Stall?

- Extra hardware in ID phase:
 - Additional ALU to compute branch address
 - Comparator to generate zero signal
 - Hazard detection unit writes the branch address in PC

Ways to Handle Branch

- Stall or bubble
- Branch prediction:
 - Heuristics
 - Next instruction
 - Prediction based on statistics (dynamic)
 - Hardware decision (dynamic)
 - Prediction error: pipeline flush
- Delayed branch

Delayed Branch Example

Stall on branch
 add \$4, \$5, \$6
 beq \$1, \$2, skip
 next instruction

skip or \$7, \$8, \$9

Delayed branch
beq \$1, \$2, skip
add \$4, \$5, \$6
next instruction
...
skip or \$7, \$8, \$9

Instruction executed irrespective of branch decision

Thank You

