RISC Architecture: Pipeline Hazard

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

Computer Organization & Architecture

Lecture 19 (06 May 2013)

CADSL

Pipeline Hazards

- Definition: Hazard in a pipeline is a situation in which the next instruction cannot complete execution one clock cycle after completion of the present instruction.
- Three types of hazards:
 - Structural hazard (resource conflict)
 - Data hazard
 - Control hazard

Ways to Handle Branch

- Stall or bubble
- Delayed branch
- Branch prediction:
 - Heuristics
 - Next instruction
 - Prediction based on statistics (dynamic)
 - Hardware decision (dynamic)
 - Prediction error: pipeline flush

Delayed Branch Example

Stall on branch
 add \$4, \$5, \$6
 beq \$1, \$2, skip
 next instruction

skip or \$7, \$8, \$9

Delayed branch
beq \$1, \$2, skip
add \$4, \$5, \$6
next instruction
...
skip or \$7, \$8, \$9

Instruction executed irrespective of branch decision

Delayed Branch

Branch Hazard

- Consider heuristic branch not taken.
- Continue fetching instructions in sequence following the branch instructions.
- If branch is taken (indicated by zero output of ALU):
 - Control generates branch signal in ID cycle.
 - branch activates PCSource signal in the MEM cycle to load PC with new branch address.
 - Three instructions in the pipeline must be flushed if branch is taken – can this penalty be reduced?

Branch Not Taken

Branch Taken

Thank You

