RISC Design:

Pipeline Hazards

Virendra Singh

Associate Professor
Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/
E-mail: viren@ee.iitb.ac.in

CP~226 Computer Architectwre

Lecture 12 (27 Feb 2013) CADSL

Pipelining in a Computer

» Divide datapath into nearly equal tasks, to be
performed serially and requiring non-overlapping
resources.

» Insert registers at task boundaries in the datapath;
registers pass the output data from one task as input
data to the next task.

» Synchronize tasks with a clock having a cycle time that
just exceeds the time required by the longest task.

» Break each instruction down into a fixed number of
tasks so that instructions can be executed in a
staggered fashion.

27 Feb 2013 Computer Architecture @MNIT 2 CADS L

ldeal Pipelining

SERe B |-va=~<1/n>

N Gate n t
' 5 Delay |—>M—> 5 8e aey . BW =~(2/n)

n | N Gate
gk I%téey 3 Delayl—r BW = ~(3/n)

e Bandwidth increases linearly with pipeline depth

e Latency increases by latch delays

27 Feb 2013 Computer Architecture @MNIT 3 CADS L

Pipelining Idealisms

e Uniform subcomputations
— Can pipeline into stages with equal delay

— Balance pipeline stages

e |dentical computations

— Can fill pipeline with identical work

— Unify instruction types
e |Independent computations
— No relationships between work units

e Are these practical?

— No, but can get close enough to get significant speedup

27 Feb 2013 Computer Architecture @MNIT 4 CADS L

Slngle Cycle Datapath .

str. decode, . EX: Execute, | MEM: mem. ! write
reg. fileread ; addresscalc. : access :back

IF: Instr. fetch

Sign
ext.

0-15
0:5

27 Feb 2013 Computer Architecture @MNIT 5 CADS L

Pipelined Datapath

Instruction Instr. Instr. Execu- Data Write
class fetch Decode tion access Back
(F) (alsoreg. (ALU (MEM) (Reg.
file read) Opera- fl!e
(ID tion) write)
(EX) (WB)
s 1115
lw 2ns 2ns 2ns 10ns
2ns 2ns
1nis 11S
SW 2ns 2ns 2ns 10ns
2Nns 2Nns
R-format: add, 1nis 1S
sub, and, or, slt 2ns 2ns 2ns A 2ns 10ns
B-f t: 1rs 11s
orma 2ns | 2ns 2ns | 10ns
beq 2ns 2ns

No operation on data; idle time inserted to equalize instruction lengths.

27 Feb 2013 Computer Architecture @MNIT 6 CADS L

Pipelining of RISC Instructions

Fetch Examine Fetch - Perform - Store
Instruction Opcode Operands Operation Result
IF ID EX MEM WB

Instruction Instruction Execute Memory Write
Fetch Decode and Operation Back
Fetch operands to Reg
file

Although an instruction takes five clock cycles,
one instruction is completed every cycle.

27 Feb 2013 Computer Architecture @MNIT 7 CADS L

Pipeline Hazards

e Definition: Hazard in a pipeline is a situation in
which the next instruction cannot complete
execution one clock cycle after completion of
the present instruction.

e Three types of hazards:
— Structural hazard (resource conflict)

— Data hazard
— Control hazard

27 Feb 2013 Computer Architecture @MNIT 8 CADS L

Structural Hazard

e Two instructions cannot execute due to a
resource conflict.

e Example: Consider a computer with a
common data and instruction memory. The
fourth cycle of a Iw instruction requires
memory access (memory read) and at the
same time the first cycle of the fourth
instruction requires instruction fetch (memory
read). This will cause a memory resource

Computer Architecture@MNIT 9 CADS L

Example of Structural Hazard

time

»
»

CC2 CC3 CC4 CC5

CC1

$10, 20($1)

2

$11, $2, $3

o)
=
2]

suoljonJisul weuboud

gdM/INJIN g NFIN/XST

< —
e &
™ <
& N
= o %)
20 &H &
(L
©
c =
ow
m.mM
m.ma 3
S ®

Nedded by two instructions

CADSL

10

Computer Architecture@MNIT

27 Feb 2013

Possible Remedies for Structural
Hazards

e Provide duplicate hardware resources in
datapath.

e Control unit or compiler can insert delays (no-
op cycles) between instructions. This is known
as pipeline stall or bubble.

27 Feb 2013 Computer Architecture @MNIT 11 CADS L

for Structural Hazard

)

Stall (Bubble

time

»
»

CC2 CC3 CC4 CC5

CC1

> suoljonJisul weiboud

—

™
s B
A -
o o
N &P
o -
- -
N N

3
2 7

gdM/INJIN § INTIN/XSE

TRIRR IR TR

<
\ g4
)
\ g4
]
-
&

Stall (bubble)

add

$13, 24(%$1)

lw

Computer Architecture@MNIT GADS L

2] Feb 2013

Data Hazard

e Data hazard means that an instruction cannot
be completed because the needed data, to be
generated by another instruction in the
pipeline, is not available.

e Example: consider two instructions:
<-add SsO, StO, St1
<sub St2, SsO, St3 # needs SsO

27 Feb 2013 Computer Architecture@MNIT 13 CADSL

Example of Data Hazard

CC1 CC2 CC3 CC4 CC5 > time
. Write s0 in CC5
O n © W
= K < 2 3 0 = add $s0, $t0, $t1
= NTH < T
o K =

DM

sub $t2, $s0, $t3

P
<«

Read s0 and t3 in CC3

We need to read sO from reg file in cycle 3
But sO will not be written in reg file until cycle 5

Program instructions

However, sO will only be used in cycle 4
And it is available at the end of cycle 3

27 Feb 2013 Computer Architecture@MNIT 14 CADSL

Forwarding or Bypassing

e Output of a resource used by an instruction is
forwarded to the input of some resource
being used by another instruction.

e Forwarding can eliminate some, but not all,
data hazards.

27 Feb 2013 Computer Architecture@MNIT 15 CADSL

Forwarding for Data Hazard

time

v

CC1 CC2 CC3 CC4 CC5

N Write s0 in CC5
add $s0, $t0, $t1

=
o

sub $t2, $s0, $t3

d
<

Read s0 and t3 in CC3

Program instructions

27 Feb 2013 Computer Architecture@MNIT 16 CADSL

Forwarding Unit Hardware

ID/EX EX/MEM MEM/WB
X
:E) I
to req. ‘
file
Control slignals
Source reg. | ‘
IDs from
opcode
@
27 Feb 2013 Computer Architecture@MNIT 17 CADS L

Forwarding Alone May Not Work

CC1 CC2 CC3 CC4 CC5 > time
: Write s0 in CC5
Quwo 5 = Ow g | $s0, 20($s1

= mﬁﬁ - @ was W s0, 20($s1)
=

DM

sub $t2, $s0, $t3

<&
<«

; £
Read s0 and t3 in CC3 2
2
0
data needed by sub =
(data hazard) %
o
data available from memory o
only at the end of cycle 4 &
() 27Feb2013 Computer Architecture@MNIT 18 CADSL

Use Bubble and Forwarding

CC1 CC2 CC3 CcC4 CC5 » time
Write s0 in CC5
Iw $s0, 20($s1)
O Y O Y O -~
DAY D50 "
(bubble) .
c
o
©
~
Cc
£
o
(@)
o
o

Computer Architecture@MNIT @ADS L

Hazard Detection Unit Hardware

Disabl
e
write

ID/EX EX/MEM MEM/WB

Control

0

Instruction

)
T Control
signals
Source req.
IDs from
opcode bt

27 Feb 2013 Computer Architecture@MNIT 20 CADSL

Resolving Hazards

»Hazards are resolved by Hazard detection and
forwarding units.

» Compiler’s understanding of how these units
work can improve performance.

27 Feb 2013 Computer Architecture @MNIT 21 CADS L

Avoiding Stall by Code Reorder

C code:
A=B + E;
C=B+F;
MIPS code:
Iw $t1,
Iw $t2,
SW $t3,
Iw $t4,
SW $t5,

0($t0) : $t1 written
4($t0) $t2 written

12($t0)

8($t0) $t4 written

16,($t0) .

27 Feb 2013

Computer Architecture@MNIT 22 CADS L

Reordered Code

C code:
A=B+ E;
C=B+F,
MIPS code:
Iw $t1, 0($t0)
Iw $t2, 4($t0)

Iw $t4, 8($t0)

add $t3, $t1, $t2 no hazard
SW $t3, 12($t0)

add $t5, $t1, $t4 no hazard

sw $t5, 16,($t0)

27 Feb 2013 Computer Architecture@MNIT 23 CADSL

Thank You

27 Feb 2013 Computer Architecture @MNIT 24 CADS L

