RISC Design:

Pipeline Hazards

Virendra Singh

Associate Professor
Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/
E-mail: viren@ee.iitb.ac.in

CP~226 Computer Architectwre

Lecture 13 (06 March 2013) CADSL

Pipelining Idealisms

e Uniform subcomputations
— Can pipeline into stages with equal delay

— Balance pipeline stages

e |dentical computations

— Can fill pipeline with identical work

— Unify instruction types
e |Independent computations
— No relationships between work units

e Are these practical?

— No, but can get close enough to get significant speedup

13 Mar 2013 Computer Architecture @MNIT 2 CADSL

Pipeline Hazards

e Definition: Hazard in a pipeline is a situation in
which the next instruction cannot complete
execution one clock cycle after completion of
the present instruction.

e Three types of hazards:
— Structural hazard (resource conflict)

— Data hazard
— Control hazard

13 Mar 2013 Computer Architecture@MNIT 3 CADSL

Control Hazard

e |Instruction to be fetched is not known!

e Example: Instruction being executed is
branch-type, which will determine the next
Instruction:

add S4, S5, S6
beq S$1,52,40
next instruction

40and S7, S8, S9

13 Mar 2013 Computer Architecture @MNIT 4 CADSL

Stall on Branch

CC1 CC2 CC3 CC4 CC5 > time

= add $4, $5, $6

beq $1, $2, 40

Stall (bubble)

Program instructions «

%
.8
¢
%

DM

next instruction or
and $7, $8, $9

13 Mar 2013 Computer Architecture@MNIT s CADSL

Why Only One Stall?

e Extra hardware in ID phase:

e Additional ALU to compute branch
address

e Comparator to generate zero signal

e Hazard detection unit writes the branch
address in PC

13 Mar 2013 Computer Architecture@MNIT 6 CADSL

Ways to Handle Branch

e Stall or bubble

e Branch prediction:
— Heuristics
e Next instruction

e Prediction based on statistics (dynamic)
e Hardware decision (dynamic)
— Prediction error: pipeline flush

e Delayed branch

13 Mar 2013 Computer Architecture @MNIT 7 CADSL

Delayed Branch Example

e Stall on branch e Delayed branch
add $4, S5, S6 beq S1, S2, skip
beq S1, S2, skip add S4, S5, S6
next instruction next instruction

skip or $7,58, 59 skip or $7,58, S9

Instruction executed irrespective
of branch decision

13 Mar 2013 Computer Architecture@MNIT 8 CADSL

Delayed Branch

time

v

CC1 CC2 CC3 CC4 CC5

+—

=
beq $1, $2, skip

add $4, $5, $6

Program instructions

next instruction or
skip or $7, $8, $9

13 Mar 2013 Computer Architecture@MNIT o CADSL

Branch Hazard

e Consider heuristic — branch not taken.

e Continue fetching instructions in sequence
following the branch instructions.

e If branch is taken (indicated by zero output of
ALU):
— Control generates branch signal in ID cycle.

— branch activates PCSource signal in the MEM cycle to
load PC with new branch address.

— Three instructions in the pipeline must be flushed if
branch is taken — can this penalty be reduced?

13 Mar 2013 Computer Architecture@MNIT 10 CADSL

Branch Not Taken

Branch to Z

NOO® >

cycle b cycle b+1 cycle b+2 cycle b+3 cycle b+4

P » .
< >4 >

»
Ll |

A

v

Branch fetched Branch decoded Branch decision PC keeps D
(br. not taken)

A fetched A decoded A executed A continues
B fetched B decoded B executed
C fetched C decoded

D fetched

13 Mar 2013 Computer Architecture@MNIT 11 CADSL

Branch Taken

Branch to Z

NOO®>

cycle b cycle b+1 cycle b+2 cycle b+3 cycle b+4

< » » » >
< Ll | Ll | Ll |

Branch fetched Branch decoded Branch decision PC gets Z

v

(br. taken)
A fetched A decoded A executed Nop
B fetched B decoded Nop

/ C fetched Nop
/

Three instructions are

flushed if branch is taken Z fetched

13 Mar 2013 Computer Architecture@MNIT 12 CADSL

Branch Prediction

e Useful for program loops.

e A ‘c‘)ne-bit pregliction scheme: a one-bit buffer carries
a history bit™ that tells what happened on the last
branch instruction

e History bit = 1, branch was taken
e History bit = 0, branch was not taken

Not taken
Predict

taken branch Not taken

taken
1

13 Mar 2013 Computer Architecture@MNIT 13 CADSL

Branch Prediction

Address of Target History
recent branch addresses bit(s)
instructions

Low-order PC+4 Next PC
bits used A
as index |

0

A 4

Computer Architecture@MNIT 14 CADS L

A 4
J
J
J

Branch Prediction for a Loo

Execution of Instruction 4

Execu ©Old Next instr. New

-tion hist. hist.

seq. bit Pred. Act. bit

1 0 5 1 1
—

2 1 2 2 2 1 Good

3 171 2 | 3| 2 1 | Good

4 1 2 4 | 2 1 | Good

5 1 2 5 2 1 Good
T T

6 1 2 6 2 1 Good
—

7 1 2 7 2 1 Good
‘_;7 E—_

8 1) 2 8 2 1 Good

9 1 2 9 2 1 Good

| 10 1 2 [10] 5 | o |NEadl

h.bit = 0 branch not taken, h.bit = 1 branch taken.

13 Mar 2013 Computer Architecture@MNIT GADS L

Two-Bit Prediction Buffer

e Can improve correct prediction statistics.

Not taken

taken

Not taken
taken

Not taken

Not taken

13 Mar 2013 Computer Architecture@MNIT 16 CADSL

Branch Prediction for a Loop

s

Execution of Instruction 4

2 —_— _

1 2 1 Good
2 1M1 2 |2 }/11 Good
3 1M« 2 [3] 2111 | Good
4 1M 2 4 | 2 +-11 | Good
5 1M 2 51 2 1-11 | Good
6 1M 2 6 | 2 | -11 | Good
7 M« 2 | 7| 21 1 |Good
8 1M« 2 | 8] 2111 | Good
9 1M 2 9 | 2 +11 | Good
10 | 1] 2 [10] 5 [10 [Bad
Computer Architecture@MNIT 17 CADS L

Summary: Hazards

e Structural hazards
— Cause: resource conflict
— Remedies: (i) hardware resources, (ii) stall (bubble)

e Data hazards
— Cause: data unavailablity
— Remedies: (i) forwarding, (ii) stall (bubble), (iii) code reordering

e Control hazards

— Cause: out-of-sequence execution (branch or jump)

— Remedies: (i) stall (bubble), (ii) branch prediction/pipeline flush,
(iii) delayed branch/pipeline flush

13 Mar 2013 Computer Architecture@MNIT 18 CADSL

Thank You

13 Mar 2013 Computer Architecture@MNIT 19 CADSL

