RISC Design: Pipeline Hazards

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CP-226: Computer Architecture

Lecture 14 (13 March 2013)

CADSL

Branch Hazard

- Consider heuristic branch not taken.
- Continue fetching instructions in sequence following the branch instructions.
- If branch is taken (indicated by zero output of ALU):
 - Control generates branch signal in ID cycle.
 - branch activates PCSource signal in the MEM cycle to load PC with new branch address.
 - Three instructions in the pipeline must be flushed if branch is taken – can this penalty be reduced?

Branch Not Taken

Branch Taken

Branch Prediction

- Useful for program loops.
- A one-bit prediction scheme: a one-bit buffer carries a "history bit" that tells what happened on the last branch instruction
 - History bit = 1, branch was taken
 - History bit = 0, branch was not taken

Branch Prediction

Branch Prediction for a Loop

Execution of Instruction 4

Execu	Old	Next instr.			New	Predi
-tion seq.	hist. bit	Pred.	1	Act.	hist. bit	ction
1	0	5	1	2	_ 1	Bad
2	1	2	2	2	1	Good
3	1	2	3	2	1	Good
4	1	2	4	2	1	Good
5	1	2	5	2	1	Good
6	1	2	6	2	1	Good
7	1	2	7	2	1	Good
8	1	2	8	2	— 1	Good
9	1	2	9	2	<u> </u>	Good
10	1	2	10	5	0	Bad

h.bit = 0 *branch not taken*, h.bit = 1 *branch taken*.

Two-Bit Prediction Buffer

Can improve correct prediction statistics.

Branch Prediction for a Loop

Execution of Instruction 4

Execu	Old	Next instr.			New	Predi
-tion seq.	Pred. Buf	Pred.	-	Act.	pred. Buf	ction
1	10	2	1	2	11	Good
2	11 🕶	2	2	2	11	Good
3	11 🕶	2	3	2	<u> </u>	Good
4	11	2	4	2	<u> </u>	Good
5	11 🕶	2	5	2	11	Good
6	11 🕶	2	6	2	11	Good
7	11 🕶	2	7	2	11	Good
8	11 ←	2	8	2	<u> </u>	Good
9	11	2	9	2	—11	Good
10	11	2	10	5	10	Bad

Summary: Hazards

Structural hazards

- Cause: resource conflict
- Remedies: (i) hardware resources, (ii) stall (bubble)

Data hazards

- Cause: data unavailablity
- Remedies: (i) forwarding, (ii) stall (bubble), (iii) code reordering

Control hazards

- Cause: out-of-sequence execution (branch or jump)
- Remedies: (i) stall (bubble), (ii) branch prediction/pipeline flush,
 (iii) delayed branch/pipeline flush

Limits of Pipelining

- IBM RISC Experience
 - Control and data dependences add 15%
 - Best case CPI of 1.15, IPC of 0.87
 - Deeper pipelines (higher frequency) magnify dependence penalties
- This analysis assumes 100% cache hit rates
 - Hit rates approach 100% for some programs
 - Many important programs have much worse hit rates

Processor Performance

$$= \frac{\text{Instructions}}{\text{Program}} \quad X \quad \frac{\text{Cycles}}{\text{Instruction}} \quad X \quad \frac{\text{Time}}{\text{Cycle}}$$
(code size) (CPI) (cycle time)

- In the 1980's (decade of pipelining):
 - CPI: 5.0 => 1.15
- In the 1990's (decade of superscalar):
 - CPI: 1.15 => 0.5 (best case)
- In the 2000's (decade of multicore):
 - Marginal CPI improvement

Pipelined Performance Model

- g = fraction of time pipeline is filled
- 1-g = fraction of time pipeline is not filled (stalled)

Pipelined Performance Model

- g = fraction of time pipeline is filled
- 1-g = fraction of time pipeline is not filled (stalled)

Pipelined Performance Model

- Tyranny of Amdahl's Law [Bob Colwell]
 - When g is even slightly below 100%, a big performance hit will result
 - Stalled cycles are the key adversary and must be minimized as much as possible

Limits on Instruction Level Parallelism (ILP)

Weiss and Smith [1984]	1.58		
Sohi and Vajapeyam [1987]	1.81		
Tjaden and Flynn [1970]	1.86 (Flynn's bottleneck)		
Tjaden and Flynn [1973]	1.96		
Uht [1986]	2.00		
Smith et al. [1989]	2.00		
Jouppi and Wall [1988]	2.40		
Johnson [1991]	2.50		
Acosta et al. [1986]	2.79		
Wedig [1982]	3.00		
Butler et al. [1991]	5.8		
Melvin and Patt [1991]	6		
Wall [1991]	7 (Jouppi disagreed)		
Kuck et al. [1972]	8		
Riseman and Foster [1972]	51 (no control dependences)		
Nicolau and Fisher [1984]	90 (Fisher's optimism)		

Superscalar Proposal

- Go beyond single instruction pipeline, achieve IPC > 1
- Dispatch multiple instructions per cycle
- Provide more generally applicable form of concurrency (not just vectors)
- Geared for sequential code that is hard to parallelize otherwise
- Exploit fine-grained or instruction-level parallelism (ILP)

Thank You

