RISC Design: Pipeline Hazards

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CP-226: Computer Architecture

Lecture 15 (15 March 2013)

CADSL

Big Picture

- Memory
 - Just an "ocean of bits"
 - Many technologies are available
- Key issues
 - Technology (how bits are stored)
 - Placement (where bits are stored)
 - Identification (finding the right bits)
 - Replacement (finding space for new bits)
 - Write policy (propagating changes to bits)
- Must answer these regardless of memory type

Memory Performance Gap

Types of Memory

Туре	Size	Speed	Cost/bit
Register	< 1KB	< 1ns	\$\$\$\$
On-chip SRAM	8KB-6MB	< 10ns	\$\$\$
Off-chip SRAM	1Mb – 16Mb	< 20ns	\$\$
DRAM	64MB – 1TB	< 100ns	\$
Disk	40GB – 1PB	< 20ms	~0

5

15 Mar 2013

Technology – SRAM

"Bit" Lines -carry data in/out

"Word" Lines -select a row

C = Write Port A.B = Read Ports

6

Technology – DRAM

- Logically similar to SRAM
- Commodity DRAM chips
 - E.g. 1Gb
 - Standardized address/data/control interfaces
- Very dense
 - 1T per cell (bit)
 - Data stored in capacitor decays over time
 - Must rewrite on read, refresh
- Density improving vastly over time
- Latency barely improving

Memory Timing – Read

- Latch-based SRAM or asynchronous DRAM (FPM/EDO)
 - Multiple chips/banks share address bus and tristate data bus
 - Enables are decoded from address to select bank
 - E.g. bbbbbbb0 is bank 0, bbbbbbb1 is bank 1
- Timing constraints: straightforward
 - t_{EN} setup time from Addr stable to EN active (often zero)
 - t_D delay from EN to valid data (10ns typical for SRAM)
 - t_O delay from EN disable to data tristate off (nonzero)

Memory Timing - Write

- WR & EN triggers write of Data to ADDR
- Timing constraints: not so easy
 - t_S setup time from Data & Addr stable to WR pulse
 - t_p minimum write pulse duration
 - t_H hold time for data/addr beyond write pulse end
- Challenge: WR pulse must start late, end early
 - − >t_S after Addr/Data, >t_H before end of cycle
 - Requires multicycle control or glitch-free clock divider

Technology – Disk

- Bits stored as magnetic charge
- Still mechanical!
 - Disk rotates (3600-15000 RPM)
 - Head seeks to track, waits for sector to rotate to it
 - Solid-state replacements are becoming popular
- Glacially slow compared to DRAM (10-20ms)
- Density improvements astounding (100%/year)

Memory System

- Programmers want unlimited amounts of memory with low latency
- Fast memory technology is more expensive per bit than slower memory
- Solution: organize memory system into a hierarchy
 - Entire addressable memory space available in largest, slowest memory
 - Incrementally smaller and faster memories, each containing a subset of the memory below it, proceed in steps up toward the processor
- Temporal and spatial locality insures that nearly all references can be found in smaller memories
 - Gives the allusion of a large, fast memory being presented to the processor

Memory Hierarchy

Memory Hierarchy

Why Memory Hierarchy?

Need lots of bandwidth

$$BW = \frac{1.0inst}{cycle} \times \left[\frac{1Ifetch}{inst} \times \frac{4B}{Ifetch} + \frac{0.4Dref}{inst} \times \frac{4B}{Dref} \right] \times \frac{1Gcycles}{sec}$$
$$= \frac{5.6GB}{sec}$$

- Need lots of storage
 - 64MB (minimum) to multiple TB
- Must be cheap per bit
 - (TB x anything) is a lot of money!
- These requirements seem incompatible

Memory Hierarchy Design

- Memory hierarchy design becomes more crucial with recent multi-core processors:
 - Aggregate peak bandwidth grows with # cores:
 - Intel Core i7 can generate two references per core per clock
 - Four cores and 3.2 GHz clock
 - 25.6 billion 64-bit data references/second +
 - 12.8 billion 128-bit instruction references
 - $= 409.6 \, GB/s!$
 - DRAM bandwidth is only 6% of this (25 GB/s)
 - Requires:
 - Multi-port, pipelined caches
 - Two levels of cache per core
 - Shared third-level cache on chip

Performance and Power

- High-end microprocessors have >10 MB on-chip cache
 - Consumes large amount of area and power budget

Why Memory Hierarchy?

- Fast and small memories
 - Enable quick access (fast cycle time)
 - Enable lots of bandwidth (1+ L/S/I-fetch/cycle)
- Slower larger memories
 - Capture larger share of memory
 - Still relatively fast
- Slow huge memories
 - Hold rarely-needed state
 - Needed for correctness
- All together: provide appearance of large, fast memory with cost of cheap, slow memory

Thank You

