RISC Design:

Memory System Design

Virendra Singh

Associate Professor
Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/
E-mail: viren@ee.iitb.ac.in

CP-226: Compuler Architecture

Lecture 16 (16 March 2013) CADSL

Memory Performance Gap

100,000

Performance

I I I
1995 2000 2005 2010

Year

I I
1980 1985 1990

16 Mar 2013 Computer Architecture@MNIT 2 CADSL

Why Memory Hierarchy?

Need lots of bandwidth

BW
sec

_l.Oinstx_llfetch>< 4B +O.4Dref y 4B ><chycles
cycle | inst Ifetch inst Dref

_ 5.6GB
SeC

Need lots of storage
— 64MB (minimum) to multiple TB

Must be cheap per bit
— (TB x anything) is a lot of money!
These requirements seem incompatible

16 Mar 2013 Computer Architecture@MNIT

CADSL

Why Memory Hierarchy?

e Fast and small memories

— Enable quick access (fast cycle time)

— Enable lots of bandwidth (1+ L/S/I-fetch/cycle)
e Slower larger memories

— Capture larger share of memory

— Still relatively fast
e Slow huge memories

— Hold rarely-needed state

— Needed for correctness

e All together: provide appearance of large, fast
memory with cost of cheap, slow memory

16 Mar 2013 Computer Architecture @MNIT 4 CADSL

Memory Hierarchy

L1 L2 L3
C C C B Memory
CPU a a a bus k
Memory I’O bus [Disk storage
c : ;
= = © Disk
memo
Register Level 1 Level 2 Level 3 Memory referenrcye
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4MB 4-16 GB 4-16 TB
Speed: 300 ps 1ns 3-10ns 10-20ns 50-100 ns 5-10 ms

(a) Memory hierarchy for server

L1 L2
C c @ Memory
CPU a a bus
ﬁ f]
- - FLASH
Register Level 1 Level 2 Memory n}emory
reference Cache Cache reference ISierance
reference reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

16 Mar 2013

Computer Architecture@MNIT S C ADS L

Why Does a Hierarchy Work?

e Locality of reference

— Temporal locality
e Reference same memory location repeatedly

— Spatial locality
e Reference near neighbors around the same time

e Empirically observed
— Significant!

— Even small local storage (8KB) often satisfies >90%
of references to multi-MB data set

16 Mar 2013 Computer Architecture@MNIT 6 CADSL

Why Locality?

e Analogy:
— Library (Disk)
— Bookshelf (Main memory)
— Stack of books on desk (off-chip cache)
— Opened book on desk (on-chip cache)

e Likelihood of:

— Referring to same book or chapter again?
e Probability decays over time
e Book moves to bottom of stack, then bookshelf, then library

— Referring to chapter n+1 if looking at chapter n?

16 Mar 2013 Computer Architecture @MNIT 7 CADSL

Memory Hierarchy

Temporal Locality

e Keep recently referenced
items at higher levels

e Future references satisfied
quickly

]

Spatial Locality

I & D L1 Cache

¢ Bring neighbors of recently
referenced to higher levels
e Future references satisfied

quickly

1L

Shared L2 Cache

1L

Main Memory

16 Mar 2013

Computer Architecture @MNIT 8

CADSL

Performance

CPU execution time = (CPU clock cycles + memory stall
cycles) x Clock Cycle time

Memory Stall cycles = Number of misses x miss penalty

= |C x misses/Instruction x miss penalty

=IC x memory access/instruction x miss rate x miss penalty

16 Mar 2013 Computer Architecture@MNIT 9 CADS L

Memory Hierarchy Basics

e Four Basic Questions
— Where can a block be placed in the upper level?
e Block Placement
— How a block found if it is in the upper level?
e Block Identification

— Which block should be replaced on miss
e Block Replacement

— What happens on write
e Write Strategy

16 Mar 2013 Computer 10 CADSL

Architecture@MNIT

Four Burning Questions

e These are:

— Placement

e Where can a block of memory go?
— ldentification

e How do | find a block of memory?

— Replacement
e How do | make space for new blocks?

— Write Policy

e How do | propagate changes?

e Consider these for caches
— Usually SRAM

e Will consider main memory, disks later

16 Mar 2013 Computer Architecture@MNIT 1

[

CADSL

Placement

Memory Placement Comments
Type
Registers Anywhere; Compiler/programmer
Int, FP, SPR manages

Cache Fixed in H/W | Direct-mapped,

(SRAM) set-associative,
fully-associative

DRAM Anywhere O/S manages

Anywhere O/S manages

16 Mar 2013 Computer Architecture @MNIT 12 CADSL

Placement

Block Size
Address
e Address Range
— Exceeds cache capacity Index
Hash
 Map address to finite capacity] G

— Called a hash
— Usually just masks high-order bits

e Direct-mapped

— Block can only exist in one location Offset \ 7

— Hash collisions cause problems Data Out

32-bit Address

Index

Offset

16 Mar 2013 Computer Architecture@MNIT 13 CADSL

Placement

Tag
Address
e Fully-associative e
— Block can exist anywhere Hit
— No more hash collisions |
SRAM Cache

e |dentification

— How do | know | have the right
block?

— Called a tag check

e Must store address tags

Offset

e Compare against address

e Expensivel!
32-bit Address

\'_/

Data Out

— Tag & comparator per block
Tag

Offset

16 Mar 2013 Computer Architecture @MNIT 14

CADSL

Placement

e Set-associative

— Block can be in a
locations

— Hash collisions:
e a still OK

e |dentification

— Still perform tag check
— However, only a few in

parallel

Address

Hash

Tag

ndex

a Tags

Index

SRAM |Cache

a Data Blocks

®

O
L

NI/

Offset

(2=,
7

32-bit Address

Tag

Index

Offset

Data Out

16 Mar 2013

Computer Architecture@MNIT

15

CADSL

Placement and Identification

32-bit Address

Tag Index |Offset
Portion Length Purpose
Offset o=log,(block size) Select word within block
Index i=log,(number of sets) |Select set of blocks
Tag t=32-0-i ID block within set

e Consider: <BS=block size, S=sets, B=blocks>
— <64,64,64>: 0=6, i=6, t=20: direct-mapped (S=B)
— <64,16,64>: 0=6, i=4, t=22: 4-way S-A (S = B / 4)
— <64,1,64>: 0=6, i=0, t=26: fully associative (S=1)
e Total size=BSxB=BS xS x (B/S)

16 Mar 2013 Computer Architecture@MNIT 16 CADSL

Replacement

e Cache has finite size
— What do we do when it is full?

e Analogy: desktop full?
— Move books to bookshelf to make room

e Same idea:

— Move blocks to next level of cache

16 Mar 2013 Computer Architecture@MNIT 17 CADSL

Replacement

e How do we choose victim?
— Verbs: Victimize, evict, replace, cast out
e Several policies are possible
— FIFO (first-in-first-out)
— LRU (least recently used)
— NMRU (not most recently used)
— Pseudo-random (yes, really!)
e Pick victim within set where a = associativity
— Ifa<=2, LRU is cheap and easy (1 bit)
— If a > 2, it gets harder
— Pseudo-random works pretty well for caches

16 Mar 2013 Computer Architecture@MNIT 18 CADSL

Write Policy

e Memory hierarchy

— 2 or more copies of same block
e Main memory and/or disk
e Caches

e \What to do on a write?

— Eventually, all copies must be changed
— Write must propagate to all levels

16 Mar 2013 Computer Architecture@MNIT 19 CADSL

Write Policy

e Easiest policy: write-through
e Every write propagates directly through hierarchy
— Write in L1, L2, memory, disk (?!7?)
e Why is this a bad idea?
— Very high bandwidth requirement
— Remember, large memories are slow
e Popularin real systems only to the L2
— Every write updates L1 and L2
— Beyond L2, use write-back policy

16 Mar 2013 Computer Architecture@MNIT 20 CADSL

Write Policy

e Most widely used: write-back

e Maintain state of each line in a cache
— Invalid — not present in the cache
— Clean — present, but not written (unmodified)
— Dirty — present and written (modified)

e Store state in tag array, next to address tag
— Mark dirty bit on a write

e On eviction, check dirty bit
— |If set, write back dirty line to next level
— Called a writeback or castout

16 Mar 2013 Computer Architecture@MNIT 21 CADSL

Write Policy

e Complications of write-back policy
— Stale copies lower in the hierarchy

— Must always check higher level for dirty copies before
accessing copy in a lower level

e Not a big problem in uniprocessors
— In multiprocessors: the cache coherence problem

e |/O devices that use DMA (direct memory access)
can cause problems even in uniprocessors

— Called coherent I/O

— Must check caches for dirty copies before reading main
memory

16 Mar 2013 Computer Architecture @MNIT 22 CADS L

Cache Example

e 32B Cache: <BS=4,5=4,B=8> Tag Array
— 0=2, i=2, t=2; 2-way set-associative Tag0 | Tagl | LRU
— Initially empty
— Only tag array shown on right 0
e Trace execution of: 5
Reference | Binary Set/Way | Hit/Miss
0
0

16 Mar 2013 Computer Architecture@MNIT 23 CADSL

Cache Example
e 32B Cache: <BS=4,5=4,B=8>

Tag Array

— 0=2, i=2, t=2; 2-way set-associative Tag0 | Tagl |LRU

— Initially empty
— Only tag array shown on right 0
e Trace execution of:
Reference | Binary Set/Way | Hit/Miss 0
Load Ox2A | 101010 |2/0 Miss 10 1
0

16 Mar 2013 Computer Architecture @MNIT 24 CADSL

Cache Example

e 32B Cache: <BS=4,5=4,B=8> Tag Array
— 0=2, 1=2, t=2; 2-way set-associative Tag0 | Tagl | LRU
— Initially empty
— Only tag array shown on right 0
e Trace execution of:
Reference | Binary Set/Way | Hit/Miss 0
Load Ox2A | 101010 |2/0 Miss 10 1
Load 0x2B | 101011 | 2/0 Hit
0

16 Mar 2013 Computer Architecture@MNIT 25 CADSL

Cache Example
e 32B Cache: <BS=4,5=4,B=8>

Tag Array
— 0=2, 1=2, t=2; 2-way set-associative Tag0 | Tagl | LRU
— Initially empty
— Only tag array shown on right 0
e Trace execution of:
Reference | Binary Set/Way | Hit/Miss 0
Load Ox2A | 101010 |2/0 Miss 10 1
Load Ox2B | 101011 |2/0 Hit
Load Ox3C | 111100 |3/0 Miss 11 1

16 Mar 2013 Computer Architecture@MNIT 26 CADSL

Cache Example
e 32B Cache: <BS=4,5=4,B=8>

Tag Array

— 0=2, i=2, t=2; 2-way set-associative Tag0 | Tagl | LRU

— Initially empty

— Only tag array shown on right 10 1
e Trace execution of:
Reference | Binary Set/Way | Hit/Miss 0
Load 0x2A | 101010 |2/0 Miss 10 1
Load Ox2B | 101011 |2/0 Hit
Load 0x3C | 111100 |3/0 Miss 11 1
Load 0x20 | 100000 |0/0 Miss

16 Mar 2013 Computer Architecture@MNIT 27 CADSL

Cache Example

e 32B Cache: <BS=4,5=4,B=8> Tag Array
— 0=2, i=2, t=2; 2-way set-associative Tag0 | Tagl | LRU
— Initially empty
— Only tag array shown on right 10 |11 |0
e Trace execution of:
Reference | Binary Set/Way | Hit/Miss 0
Load 0Ox2A | 101010 |2/0 Miss 10 1
Load Ox2B | 101011 |2/0 Hit
Load Ox3C | 111100 |3/0 Miss 11 1
Load 0x20 | 100000 |0/0 Miss
Load 0x33 | 110011 |0/1 Miss

16 Mar 2013 Computer Architecture@MNIT 28 CADSL

Cache Example

e 32B Cache: <BS=4,5=4,B=8> Tag Array
— 0=2, i=2, t=2; 2-way set-associative Tag0 | Tagl | LRU
— Initially empty
— Only tag array shown on right 01 11 1
e Trace execution of:
Reference | Binary Set/Way | Hit/Miss 0
Load 0x2A | 101010 |2/0 Miss 10 {
Load 0x2B | 101011 |2/0 Hit
Load 0x3C [111100 |3/0 Miss 11 1
Load 0x20 | 100000 |0/0 Miss
Load 0x33 [110011 |0/1 Miss
Load Ox11 010001 |0/0 (lru) | Miss/Evict

16 Mar 2013 Computer Architecture@MNIT 29 CADSL

Cache Example

e 32B Cache: <BS=4,5=4,B=8> Tag Array
— 0=2, i=2, t=2; 2-way set-associative Tag0 | Tagl | LRU
— Initially empty
— Only tag array shown on right 01 11 1
e Trace execution of:
Reference | Binary Set/Way | Hit/Miss 0
Load 0Ox2A | 101010 |2/0 Miss 10 d 1
Load 0x2B | 101011 |2/0 Hit
Load Ox3C [111100 |3/0 Miss 11 1
Load 0x20 | 100000 |0/0 Miss
Load 0x33 [110011 |0/1 Miss
Load Ox11 010001 |0/0 (lru) | Miss/Evict
Store 0x29 | 101001 | 2/0 Hit/Dirty

16 Mar 2013 Computer Architecture@MNIT 30 CADSL

Thank You

16 Mar 2013 Computer Architecture@MNIT 31 CADSL

