RISC Design: Memory System Design

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CP-226: Computer Architecture

Lecture 18 (05 April 2013)

CADSL

Memory Hierarchy

Temporal Locality

- Keep recently referenced items at higher levels
- Future references satisfied quickly

Spatial Locality

- Bring neighbors of recently referenced to higher levels
- Future references satisfied quickly

Shared L2 Cache

Main Memory

Summary

- Memory technology
- Memory hierarchy
 - Temporal and spatial locality
- Caches
 - Placement
 - Identification
 - Replacement
 - Write Policy
- Pipeline integration of caches

Performance

CPU execution time = (CPU clock cycles + memory stall cycles) x Clock Cycle time

Memory Stall cycles = Number of misses x miss penalty

- = IC x misses/Instruction x miss penalty
- =IC x memory access/instruction x miss rate x miss penalty

Performance: Miss

- Miss rate
 - > Fraction of cache access that result in a miss
- Causes of misses
 - **➤** Compulsory
 - First reference to a block
 - Capacity
 - Blocks discarded and later retrieved
 - > Conflict
 - Program makes repeated references to multiple addresses from different blocks that map to the same location in the cache

Memory Optimization

$$\frac{\text{Misses}}{\text{Instruction}} = \frac{\text{Miss rate} \times \text{Memory accesses}}{\text{Instruction count}} = \frac{\text{Miss rate} \times \frac{\text{Memory accesses}}{\text{Instruction}}$$

Average memory access time = Hit time + Miss rate \times Miss penalty

- Reducing miss rate
 - Larger block size, larger cache size, higher associativity
- Reducing miss penalty
 - ➤ Multi-level caches, read priority over write
- Reducing time to hit in the cache
 - > Avoid address translation when indexing caches

Memory Hierarchy Basics

- Six basic cache optimizations:
 - Larger block size
 - Reduces compulsory misses
 - Increases capacity and conflict misses, increases miss penalty
 - > Larger total cache capacity to reduce miss rate
 - Increases hit time, increases power consumption
 - Higher associativity
 - Reduces conflict misses
 - Increases hit time, increases power consumption

Memory Hierarchy Basics

- Six basic cache optimizations:
 - Higher number of cache levels
 - Reduces overall memory access time
 - Giving priority to read misses over writes
 - Reduces miss penalty
 - ➤ Avoiding address translation in cache indexing
 - Reduces hit time

Summary

- Memory technology
- Memory hierarchy
 - Temporal and spatial locality
- Caches
 - Placement
 - Identification
 - Replacement
 - Write Policy
- Pipeline integration of caches

Thank You

