Virtual Memory

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CP-226: Computer Architecture

Lecture 21 (12 April 2013)

CADSL

Memory Hierarchy

Temporal Locality

- Keep recently referenced items at higher levels
- Future references satisfied quickly

Spatial Locality

- Bring neighbors of recently referenced to higher levels
- Future references satisfied quickly

Placement

Memory Type	Placement	Comments
Registers	Anywhere; Int, FP, SPR	Compiler/programmer manages
Cache	Fixed in H/W	Direct-mapped,
(SRAM)		set-associative,
		fully-associative
DRAM	Anywhere	O/S manages
Disk	Anywhere	O/S manages

Main Memory and Virtual Memory

- Use of virtual memory
 - Main memory becomes another level in the memory hierarchy
 - Enables programs with address space or working set that exceed physically available memory
 - No need for programmer to manage overlays, etc.
 - Sparse use of large address space is OK
 - Allows multiple users or programs to timeshare limited amount of physical memory space and address space
- Bottom line: efficient use of expensive resource, and ease of programming

Virtual Memory

• Enables

- Use more memory than system has
- Program can think it is the only one running
 - Don't have to manage address space usage across programs
 - E.g. think it always starts at address 0x0
- Memory protection
 - Each program has private VA space: no-one else can clobber
- Better performance
 - Start running a large program before all of it has been loaded from disk

Virtual Memory – Placement

- Main memory managed in larger blocks
 - Page size typically 4K 16K
- Fully flexible placement; fully associative
 - Operating system manages placement
 - ➤ Indirection through *page table*
 - Maintain mapping between:
 - Virtual address (seen by programmer)
 - Physical address (seen by main memory)

Virtual Memory – Placement

- Fully associative implies expensive lookup?
 - In caches, yes: check multiple tags in parallel
- In virtual memory, expensive lookup is avoided by using a level of indirection
 - Lookup table or hash table
 - Called a page table

Virtual Memory – Identification

Virtual Address	Physical Address	Dirty bit
0x20004000	0x2000	Y/N

- Similar to cache tag array
 - Page table entry contains VA, PA, dirty bit
- Virtual address:
 - Matches programmer view; based on register values
 - Can be the same for multiple programs sharing same system, without conflicts
- Physical address:
 - Invisible to programmer, managed by O/S
 - Created/deleted on demand basis, can change

Virtual Memory – Replacement

- Similar to caches:
 - FIFO
 - LRU; overhead too high
 - Approximated with reference bit checks
 - Clock algorithm
 - Random
- O/S decides, manages

Virtual Memory – Write Policy

- Write back
 - Disks are too slow to write through

- Page table maintains dirty bit
 - Hardware must set dirty bit on first write
 - O/S checks dirty bit on eviction
 - Dirty pages written to backing store
 - Disk write, 10+ ms

Virtual Memory Implementation

 Caches have fixed policies, hardware FSM for control, pipeline stall

- VM has very different miss penalties
 - Remember disks are 10+ ms!

Hence engineered differently

Thank You

