Virtual Memory

Virendra Singh

Associate Professor
Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/
E-mail: viren@ee.iitb.ac.in

C?~226 Computer Architectwre

Lecture 21 (12 April 2013) CADSL

Memory Hierarchy

Temporal Locality

eKeep recently referenced
items at higher levels

eFuture references satisfied
quickly

| & D L1 Cache

Spatial Locality

*Bring neighbors of
recently referenced to
higher levels

eFuture references satisfied
quickly

1L

Shared L2 Cache

17 Apr 2013

Computer Architecture@MNIT

2 CADSL

Virtual Memory Implementation

e Caches have fixed policies, hardware FSM for
control, pipeline stall

e VM has very different miss penalties
— Remember disks are 10+ ms!

e Hence engineered differently

17 Apr 2013 Computer Architecture@MNIT 3 C A D S L

Page Faults

e Avirtual memory miss is a page fault

— Physical memory location does not exist
— Exception is raised, save PC
— Invoke OS page fault handler

e Find a physical page (possibly evict)

e |nitiate fetch from disk
— Switch to other task that is ready to run
— Interrupt when disk access complete
— Restart original instruction

17 Apr 2013 Computer Architecture@MNIT 4 C A D S L

Address Translation

VA PA Dirty |Ref |Protection
0x20004000 |[0x2000 |Y/N |Y/N |Read/Write/
Execute

e O/S and hardware communicate via PTE

e How do we find a PTE?
— &PTE = PTBR + page number * sizeof(PTE)
— PTBR is private for each program

e Context switch replaces PTBR contents

17 Apr 2013 Computer Architecture@MNIT 5 C A D S L

Address Translation

Virtual Page Number | Offset
PTBR + D VA PA
17 Apr 2013 Computer Architecture@MNIT C A D S L

Page Table Size

e How big is page table?
— 232 /4K * 4B = 4M per program (!)
— Much worse for 64-bit machines

e To make it smaller

— Use limit register(s)
e |f VA exceeds limit, invoke O/S to grow region

— Use a multi-level page table
— Make the page table pageable (use VM)

17 Apr 2013 Computer Architecture@MNIT 7 C A D S L

Multilevel Page Table

Offset

PTBR @

J@)
O

17 Apr 2013 Computer Architecture@MNIT 8 C A D S L

Hashed Page Table

e Use a hash table or inverted page table

— PT contains an entry for each real address
e Instead of entry for every virtual address

— Entry is found by hashing VA
— Oversize PT to reduce collisions:
#PTE = 4 x (#phys. pages)

17 Apr 2013 Computer Architecture@MNIT 9 C A D S L

Hashed Page Table

Virtual Page Number | Offset
PTBR Hash PTEO | PTE1 | PTE2 | PTE3
17 Apr 2013 Computer Architecture@MNIT 10 C A D S L

High-Performance VM

e VA translation
— Additional memory reference to PTE

— Each instruction fetch/load/store now 2 memory
references

e Or more, with multilevel table or hash collisions
— Even if PTE are cached, still slow
e Hence, use special-purpose cache for PTEs
— Called TLB (translation lookaside buffer)
— Caches PTE entries
— Exploits temporal and spatial locality (just a cache)

17 Apr 2013 Computer Architecture@MNIT 11 C A D S L

313029 seesecvenenns 5141312111098 ... 3210

Virtual page number Page offset
N 20 4 12
Valid Dirty Tag Physical page number
TLB O
O
TLB hit «—te = 'S
o—
o—
o
J20
Physical page number | Page offset
Physical address
Physical address tag | Cache index Byte
offset
N \1 6 N \1 4 N \2
Valid Tag Data
Cache
—)| § [] 4
o T
Cache hit Data
17 Apr 2013 Computer Architecture@MNIT 12 C A D S L

Virtual Memory Protection

e Each process/program has private virtual address
space
— Automatically protected from rogue programs
e Sharing is possible, necessary, desirable
— Avoid copying, staleness issues, etc.
e Sharing in a controlled manner
— Grant specific permissions
e Read
e Write
e Execute
e Any combination
— Store permissions in PTE and TLB

17 Apr 2013 Computer Architecture@MNIT 13 C A D S L

Summary

e Memory hierarchy: Register file
— Under compiler/programmer control
— Complex register allocation algorithms to optimize
utilization
e Memory hierarchy: Virtual Memory
— Placement: fully flexible
— |dentification: through page table
— Replacement: approximate LRU or LFU
— Write policy: write-through

17 Apr 2013 Computer Architecture@MNIT 14 C A D S L

Summary

e Page tables
— Forward page table
e &PTE = PTBR + VPN * sizeof(PTE)
— Multilevel page table

e Tree structure enables more compact storage for sparsely
populated address space

— Inverted or hashed page table
e Stores PTE for each real page instead of each virtual page
e HPT size scales up with physical memory

— Also used for protection, sharing at page level

17 Apr 2013 Computer Architecture@MNIT 15 C A D S L

Summary

e TLB

— Special-purpose cache for PTEs

— Often accessed in parallel with L1 cache
e Main memory design

— Commodity DRAM chips

— Wide design space for
e Minimizing cost, latency
e Maximizing bandwidth, storage

17 Apr 2013 Computer Architecture@MNIT 16 C A D S L

Thank You

17 Apr 2013 Computer Architecture@MNIT 17 CADSL

