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Memory Hierarchy

Temporal Locality

eKeep recently referenced
items at higher levels

eFuture references satisfied
quickly
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Spatial Locality

*Bring neighbors of
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Virtual Memory Implementation

e Caches have fixed policies, hardware FSM for
control, pipeline stall

e VM has very different miss penalties
— Remember disks are 10+ ms!

e Hence engineered differently
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Page Faults

e Avirtual memory miss is a page fault

— Physical memory location does not exist
— Exception is raised, save PC
— Invoke OS page fault handler

e Find a physical page (possibly evict)

e |nitiate fetch from disk
— Switch to other task that is ready to run
— Interrupt when disk access complete
— Restart original instruction
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Address Translation

VA PA Dirty |Ref |Protection
0x20004000 |[0x2000 |Y/N |Y/N |Read/Write/
Execute

e O/S and hardware communicate via PTE

e How do we find a PTE?
— &PTE = PTBR + page number * sizeof(PTE)
— PTBR is private for each program

e Context switch replaces PTBR contents
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Address Translation

Virtual Page Number | Offset
PTBR + D VA PA
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Page Table Size

e How big is page table?
— 232 /4K * 4B = 4M per program (!)
— Much worse for 64-bit machines

e To make it smaller

— Use limit register(s)
e |f VA exceeds limit, invoke O/S to grow region

— Use a multi-level page table
— Make the page table pageable (use VM)
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Multilevel Page Table

Offset
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Hashed Page Table

e Use a hash table or inverted page table

— PT contains an entry for each real address
e Instead of entry for every virtual address

— Entry is found by hashing VA
— Oversize PT to reduce collisions:
#PTE = 4 x (#phys. pages)

17 Apr 2013 Computer Architecture@MNIT 9 C A D S L



Hashed Page Table

Virtual Page Number | Offset
PTBR Hash PTEO | PTE1 | PTE2 | PTE3
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High-Performance VM

e VA translation
— Additional memory reference to PTE

— Each instruction fetch/load/store now 2 memory
references

e Or more, with multilevel table or hash collisions
— Even if PTE are cached, still slow
e Hence, use special-purpose cache for PTEs
— Called TLB (translation lookaside buffer)
— Caches PTE entries
— Exploits temporal and spatial locality (just a cache)
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Virtual Memory Protection

e Each process/program has private virtual address
space
— Automatically protected from rogue programs
e Sharing is possible, necessary, desirable
— Avoid copying, staleness issues, etc.
e Sharing in a controlled manner
— Grant specific permissions
e Read
e Write
e Execute
e Any combination
— Store permissions in PTE and TLB
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Summary

e Memory hierarchy: Register file
— Under compiler/programmer control
— Complex register allocation algorithms to optimize
utilization
e Memory hierarchy: Virtual Memory
— Placement: fully flexible
— |dentification: through page table
— Replacement: approximate LRU or LFU
— Write policy: write-through
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Summary

e Page tables
— Forward page table
e &PTE = PTBR + VPN * sizeof(PTE)
— Multilevel page table

e Tree structure enables more compact storage for sparsely
populated address space

— Inverted or hashed page table
e Stores PTE for each real page instead of each virtual page
e HPT size scales up with physical memory

— Also used for protection, sharing at page level
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Summary

e TLB

— Special-purpose cache for PTEs

— Often accessed in parallel with L1 cache
e Main memory design

— Commodity DRAM chips

— Wide design space for
e Minimizing cost, latency
e Maximizing bandwidth, storage

17 Apr 2013 Computer Architecture@MNIT 16 C A D S L



Thank You
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