Computer System

Virendra Singh

Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/ E-mail: viren@ee.iitb.ac.in

CP-226: Computer Architecture

Lecture 3 (30 Jan 2013) CADSL

About This Course

- Course Textbook
 - D.A. Patterson and J.L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 4th edition, Elsevier/Morgan Kauffman.
 - 3rd edition OK if 4th edition not available.
- Homework
 - Couple of homework assignments, unequally weighted
- Tests
 - Periodic tests will be conducted (some are scheduled and some surprise)

2

About This Course

- Project
 - Implement processor for MNIT-CS13 ISA
 - Priority: working nonpipelined version
 - Bonus: pipelined version
 - Groups of 3 students
 - Form teams early
 - Must demo and submit written report

Historic Events

- 1623, 1642: Wilhelm Strickland/Blaise Pascal built a mechanical counter with carry.
- 1823-34: Charles Babbage designed difference engine. <u>http://www.youtube.com/watch</u> <u>v=0anlyVGeWOI&feature=related</u>

Babbage's Difference Engine

• Babbage Difference Engine

- Hand-cranked mechanical computer.
- Computed polynomial functions.
- Designed by Charles Babbage in the early to mid 1800s.
 - Arguably the world's first computer scientist, lived 1791-1871.
- He wasn' t able to build it because he lost his funding.

 His plans survived and this working model was built.

Includes a working printer!

http://www.computerhistory.org/babbage/

Historic Events

- 1943-44: John Mauchly (professor) and J. Presper Eckert (graduate student) built ENIAC at U. Pennsylvania.
- 1944: Howard Aiken used "separate data and program memories" in MARK I – IV computers – *Harvard Architecture*.
- 1945-52: John von Neumann proposed a "stored program computer" EDVAC (Electronic Discrete Variable Automatic Computer) – Von Neumann Architecture – use the same memory for program and data.

Most Influential Document

 "Preliminary Discussion of the Logical Design of an Electronic Computing Instrument," 1946 report by A. W. Burks, H. H. Holdstine and J. von Neumann. Appears in *Papers of John von Neumann*, W. Aspray and A. Burks (editors), MIT Press, Cambridge, Mass., 1987, pp. 97-146.

Theory of Computing

- Alan Turing (1912-1954) gave a model of computing in 1936 *Turing Machine*.
- Original paper: A. M. Turing, "On Computable Numbers with an Application to the *Entscheidungsproblem**," *Proc. Royal Math. Soc.*, ser. 2, vol. 42, pp. 230-265, 1936.
- Recent book: David Leavitt, *The Man Who Knew Too Much: Alan Turing and the Invention of the Computer (Great Discoveries),* W. W. Norton & Co., 2005.
- * The question of decidability, posed by mathematician Hilbert.

History Continues

- 1946-52: Von Neumann built the IAS computer at the Institute of Advanced Studies, Princeton – A prototype for most future computers.
- 1947-50: Eckert-Mauchly Computer Corp. built UNIVAC I (Universal Automatic Computer), used in the 1950 census.
- 1949: Maurice Wilkes built EDSAC (Electronic Delay Storage Automatic Calculator), the first stored-program computer.

What was Computing Like?

- A data processing application involved passing decks of punched cards through electromechanical "unit record" machines.
- Repetitive sort, calculate, collate, and tabulate operations ...
 - ... were programmed with hand-wired plugboard control panels.

Plugboard Control Panel

IBM 407 Accounting Machine (1949)

30 Jan 2013

Computer Architecture@MNIT

11

Plugboard Control Panel

30 Jan 2013

Computer Architecture@MNIT

12

Programming a Plugboard

 "Programming" was hand-wiring plugboards.

"Hmm, should I pass this parameter by value or by reference?"

30 Jan 2013

Programming a Plugboard

Figure 3.33 Plugboard wiring for IBM 514

- Plugboard wiring diagram
 - It doesn't look too complicated, does it?

30 Jan 2013

Computer Architecture@MNIT

CADSL

Data Processing

- Cards were punched manually at a keypunch machine.
 - Or they were punched automatically by unit-record equipment under program control.

30 Jan 2013

Data Processing

- Cards were re-keyed on a verifier to ensure accuracy.
 - Good cards were notched at the top right edge.
 - Bad cards were notched at the top edge above each erroneous column.

30 Jan 2013

Data Processing

Figure 2-16.-Grouped cards in a definite sequence.

Figure 2-17 .- End of the line processing.

30 Jan 2013

- A sorter sorted cards one column at a time.
 - You had to run decks of cards multiple times through a sorter.
- Accounting machines performed arithmetic on card fields and printed reports.

Computer Architecture@MNIT

17

Running a Data Processing Application ...

- ... meant passing decks of cards through a sequence of unit-record machines.
 - Each machine was programmed via its plugboard to perform its task for the application.
 - Each machine had little or no memory.
 - The punched cards stored the data records
 - The data records moved as the cards moved.

An entire work culture evolved around punched cards!

Von Neumann Bottleneck

- Von Neumann architecture uses the same memory for instructions (program) and data.
- The time spent in memory accesses can limit the performance. This phenomenon is referred to as *von Neumann bottleneck*.
- To avoid the bottleneck, later architectures restrict most operands to registers (temporary storage in processor).

Ref.: D. E. Comer, *Essentials of Computer Architecture*, Upper Saddle River, NJ: Pearson Prentice-Hall, 2005, p. 87.

John von Neumann (1903-1957)

30 Jan 2013

Second Generation Computers

- 1955 to 1964
- Transistor replaced vacuum tubes
- Magnetic core memories
- Floating-point arithmetic
- High-level languages used: ALGOL, COBOL and FORTRAN
- System software: compilers, subroutine libraries, batch processing
- Example: IBM 7094

Third Generation Computers

- Beyond 1965
- Integrated circuit (IC) technology
- Semiconductor memories
- Memory hierarchy, virtual memories and caches
- Time-sharing
- Parallel processing and pipelining
- Microprogramming
- Examples: IBM 360 and 370, CYBER, ILLIAC IV, DEC PDP and VAX, Amdahl 470

C Programming Language and UNIX Operating System

The Current Generation

- Personal computers
- Laptops and Palmtops
- Networking and wireless
- SOC and MEMS technology
- And the future!
 - Biological computing
 - Molecular computing
 - Nanotechnology
 - Optical computing
 - Quantum computing

Single Processor Performance

Computer Architecture's Changing Definition

• 1950s to 1960s:

Computer Architecture Course = Computer Arithmetic

- 1970s to mid 1980s:
 Computer Architecture Course = Instruction Set Design, especially ISA appropriate for compilers
- 1990s onwards:

Computer Architecture Course = Design of CPU (Processor Microarchitecture), memory system, I/O system, Multiprocessors

Computer Architecture

30 Jan 2013

Computer Architecture@MNIT

CADSIL

What's the Big Deal?

- Tower of abstraction
- Complex interfaces implemented by layers below
- Abstraction hides detail
- Hundreds of engineers build one product
- Complexity unmanageable otherwise

Bottom Line

- Designers must know BOTH software and hardware
- Both contribute to layers of abstraction
- IC costs and performance
- Compilers and Operating Systems

Building Computer Chips

- Complex multi-step process
 - ✓ Slice silicon ingots into wafers
 - ✓ Process wafers into patterned wafers
 - ✓ Dice patterned wafers into dies
 - ✓ Test dies, select good dies
 - ✓ Bond to package
 - ✓ Test parts
 - ✓ Ship to customers and make money

Building Computer Chips

30 Jan 2013

Computer Architecture@MNIT

CADSL

Thank You

30 Jan 2013

